The Neuroimmune Regulation and Potential Therapeutic Strategies of Optic Pathway Glioma
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Effect of Optic Pathway Glioma on Vision and Retinal Ganglion Cell (RGC) Function
3.2. The Role of Immune Cells in Optic Pathway Glioma Growth
3.3. The Role of Neurons in Optic Pathway Gliomagenesis
3.4. Implications for Optic Pathway Glioma Treatment
3.4.1. Targeting the Neoplastic Cells
3.4.2. Targeting the Microenvironment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alvord, E.C., Jr.; Lofton, S. Gliomas of the optic nerve or chiasm. Outcome by patients’ age, tumor site, and treatment. J. Neurosurg. 1988, 68, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Cummings, T.J.; Provenzale, J.M.; Hunter, S.B.; Friedman, A.H.; Klintworth, G.K.; Bigner, S.H.; McLendon, R.E. Gliomas of the optic nerve: Histological, immunohistochemical (MIB-1 and p53), and MRI analysis. Acta Neuropathol. 2000, 99, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.N.; White, V.A.; Nimmo, M.; Rootman, J. Optic nerve gliomas: Role of Ki-67 staining of tumour and margins in predicting long-term outcome. Br. J. Ophthalmol. 2011, 95, 1077–1081. [Google Scholar] [CrossRef]
- Reis, G.F.; Bloomer, M.M.; Perry, A.; Phillips, J.J.; Grenert, J.P.; Karnezis, A.N.; Tihan, T. Pilocytic astrocytomas of the optic nerve and their relation to pilocytic astrocytomas elsewhere in the central nervous system. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc. 2013, 26, 1279–1287. [Google Scholar] [CrossRef]
- Cutarelli, P.E.; Roessmann, U.R.; Miller, R.H.; Specht, C.S.; Grossniklaus, H.E. Immunohistochemical properties of human optic nerve glioma. Evidence of type 1 astrocyte origin. Investig. Ophthalmol. Vis. Sci. 1991, 32, 2521–2524. [Google Scholar]
- Wan, M.J.; Ullrich, N.J.; Manley, P.E.; Kieran, M.W.; Goumnerova, L.C.; Heidary, G. Long-term visual outcomes of optic pathway gliomas in pediatric patients without neurofibromatosis type 1. J. Neuro Oncol. 2016, 129, 173–178. [Google Scholar] [CrossRef]
- Dalla Via, P.; Opocher, E.; Pinello, M.L.; Calderone, M.; Viscardi, E.; Clementi, M.; Battistella, P.A.; Laverda, A.M.; Da Dalt, L.; Perilongo, G. Visual outcome of a cohort of children with neurofibromatosis type 1 and optic pathway glioma followed by a pediatric neuro-oncology program. Neuro Oncol. 2007, 9, 430–437. [Google Scholar] [CrossRef]
- Listernick, R.; Charrow, J.; Greenwald, M.; Mets, M. Natural history of optic pathway tumors in children with neurofibromatosis type 1: A longitudinal study. J. Pediatr. 1994, 125, 63–66. [Google Scholar] [CrossRef]
- Listernick, R.; Louis, D.N.; Packer, R.J.; Gutmann, D.H. Optic pathway gliomas in children with neurofibromatosis 1: Consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann. Neurol. 1997, 41, 143–149. [Google Scholar] [CrossRef]
- Habiby, R.; Silverman, B.; Listernick, R.; Charrow, J. Precocious puberty in children with neurofibromatosis type 1. J. Pediatr. 1995, 126, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Guillamo, J.S.; Creange, A.; Kalifa, C.; Grill, J.; Rodriguez, D.; Doz, F.; Barbarot, S.; Zerah, M.; Sanson, M.; Bastuji-Garin, S.; et al. Prognostic factors of CNS tumours in Neurofibromatosis 1 (NF1): A retrospective study of 104 patients. Brain 2003, 126, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Khatua, S.; Gutmann, D.H.; Packer, R.J. Neurofibromatosis type 1 and optic pathway glioma: Molecular interplay and therapeutic insights. Pediatr. Blood Cancer 2018, 65, e26838. [Google Scholar] [CrossRef]
- Taylor, T.; Jaspan, T.; Milano, G.; Gregson, R.; Parker, T.; Ritzmann, T.; Benson, C.; Walker, D. Radiological classification of optic pathway gliomas: Experience of a modified functional classification system. Br. J. Radiol. 2008, 81, 761–766. [Google Scholar] [CrossRef]
- Yu, J.; Deshmukh, H.; Gutmann, R.J.; Emnett, R.J.; Rodriguez, F.J.; Watson, M.A.; Nagarajan, R.; Gutmann, D.H. Alterations of BRAF and HIPK2 loci predominate in sporadic pilocytic astrocytoma. Neurology 2009, 73, 1526–1531. [Google Scholar] [CrossRef]
- Lewis, R.A.; Gerson, L.P.; Axelson, K.A.; Riccardi, V.M.; Whitford, R.P. Von Recklinghausen neurofibromatosis. II. Incidence of optic gliomata. Ophthalmology 1984, 91, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Listernick, R.; Charrow, J.; Greenwald, M.J.; Esterly, N.B. Optic gliomas in children with neurofibromatosis type 1. J. Pediatr. 1989, 114, 788–792. [Google Scholar] [CrossRef]
- Venes, J.L.; Latack, J.; Kandt, R.S. Postoperative regression of opticochiasmatic astrocytoma: A case for expectant therapy. Neurosurgery 1984, 15, 421–423. [Google Scholar] [CrossRef]
- Brzowski, A.E.; Bazan, C., 3rd; Mumma, J.V.; Ryan, S.G. Spontaneous regression of optic glioma in a patient with neurofibromatosis. Neurology 1992, 42, 679–681. [Google Scholar] [CrossRef]
- Perilongo, G.; Moras, P.; Carollo, C.; Battistella, A.; Clementi, M.; Laverda, A.; Murgia, A. Spontaneous partial regression of low-grade glioma in children with neurofibromatosis-1: A real possibility. J. Child Neurol. 1999, 14, 352–356. [Google Scholar] [CrossRef]
- Jacob, K.; Albrecht, S.; Sollier, C.; Faury, D.; Sader, E.; Montpetit, A.; Serre, D.; Hauser, P.; Garami, M.; Bognar, L.; et al. Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours. Br. J. Cancer 2009, 101, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Deliganis, A.V.; Geyer, J.R.; Berger, M.S. Prognostic significance of type 1 neurofibromatosis (von Recklinghausen Disease) in childhood optic glioma. Neurosurgery 1996, 38, 1114–1118, discussion 1118–1119. [Google Scholar] [CrossRef] [PubMed]
- Anastasaki, C.; Orozco, P.; Gutmann, D.H. RAS and beyond: The many faces of the neurofibromatosis type 1 protein. Dis. Models Mech. 2022, 15, dmm049362. [Google Scholar] [CrossRef] [PubMed]
- Ballester, R.; Marchuk, D.; Boguski, M.; Saulino, A.; Letcher, R.; Wigler, M.; Collins, F. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 1990, 63, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.F.; Lin, B.; Tanaka, K.; Dunn, D.; Wood, D.; Gesteland, R.; White, R.; Weiss, R.; Tamanoi, F. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 1990, 63, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Basu, T.N.; Gutmann, D.H.; Fletcher, J.A.; Glover, T.W.; Collins, F.S.; Downward, J. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 1992, 356, 713–715. [Google Scholar] [CrossRef]
- DeClue, J.E.; Papageorge, A.G.; Fletcher, J.A.; Diehl, S.R.; Ratner, N.; Vass, W.C.; Lowy, D.R. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 1992, 69, 265–273. [Google Scholar] [CrossRef]
- Johannessen, C.M.; Reczek, E.E.; James, M.F.; Brems, H.; Legius, E.; Cichowski, K. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc. Natl. Acad. Sci. USA 2005, 102, 8573–8578. [Google Scholar] [CrossRef]
- Dasgupta, B.; Yi, Y.; Chen, D.Y.; Weber, J.D.; Gutmann, D.H. Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Res. 2005, 65, 2755–2760. [Google Scholar] [CrossRef]
- Kaul, A.; Toonen, J.A.; Cimino, P.J.; Gianino, S.M.; Gutmann, D.H. Akt- or MEK-mediated mTOR inhibition suppresses Nf1 optic glioma growth. Neuro Oncol. 2015, 17, 843–853. [Google Scholar] [CrossRef]
- Anastasaki, C.; Gutmann, D.H. Neuronal NF1/RAS regulation of cyclic AMP requires atypical PKC activation. Hum. Mol. Genet. 2014, 23, 6712–6721. [Google Scholar] [CrossRef] [PubMed]
- Kogiso, M.; Qi, L.; Lindsay, H.; Huang, Y.; Zhao, X.; Liu, Z.; Braun, F.K.; Du, Y.; Zhang, H.; Bae, G.; et al. Xenotransplantation of pediatric low grade gliomas confirms the enrichment of BRAF V600E mutation and preservation of CDKN2A deletion in a novel orthotopic xenograft mouse model of progressive pleomorphic xanthoastrocytoma. Oncotarget 2017, 8, 87455–87471. [Google Scholar] [CrossRef] [PubMed]
- Sanden, E.; Eberstal, S.; Visse, E.; Siesjo, P.; Darabi, A. A standardized and reproducible protocol for serum-free monolayer culturing of primary paediatric brain tumours to be utilized for therapeutic assays. Sci. Rep. 2015, 5, 12218. [Google Scholar] [CrossRef]
- Bajenaru, M.L.; Hernandez, M.R.; Perry, A.; Zhu, Y.; Parada, L.F.; Garbow, J.R.; Gutmann, D.H. Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Res. 2003, 63, 8573–8577. [Google Scholar]
- Zhu, Y.; Harada, T.; Liu, L.; Lush, M.E.; Guignard, F.; Harada, C.; Burns, D.K.; Bajenaru, M.L.; Gutmann, D.H.; Parada, L.F. Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development 2005, 132, 5577–5588. [Google Scholar] [CrossRef]
- Guo, X.; Pan, Y.; Gutmann, D.H. Genetic and genomic alterations differentially dictate low-grade glioma growth through cancer stem cell-specific chemokine recruitment of T cells and microglia. Neuro Oncol. 2019, 21, 1250–1262. [Google Scholar] [CrossRef]
- Kaul, A.; Toonen, J.A.; Gianino, S.M.; Gutmann, D.H. The impact of coexisting genetic mutations on murine optic glioma biology. Neuro Oncol. 2015, 17, 670–677. [Google Scholar] [CrossRef]
- Solga, A.C.; Gianino, S.M.; Gutmann, D.H. NG2-cells are not the cell of origin for murine neurofibromatosis-1 (Nf1) optic glioma. Oncogene 2014, 33, 289–299. [Google Scholar] [CrossRef]
- Toonen, J.A.; Anastasaki, C.; Smithson, L.J.; Gianino, S.M.; Li, K.; Kesterson, R.A.; Gutmann, D.H. NF1 germline mutation differentially dictates optic glioma formation and growth in neurofibromatosis-1. Hum. Mol. Genet. 2016, 25, 1703–1713. [Google Scholar] [CrossRef] [PubMed]
- Listernick, R.; Ferner, R.E.; Liu, G.T.; Gutmann, D.H. Optic pathway gliomas in neurofibromatosis-1: Controversies and recommendations. Ann. Neurol. 2007, 61, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.J.; Loguidice, M.; Gutmann, D.H.; Listernick, R.; Ferner, R.E.; Ullrich, N.J.; Packer, R.J.; Tabori, U.; Hoffman, R.O.; Ardern-Holmes, S.L.; et al. Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: A multicenter retrospective analysis. Neuro Oncol. 2012, 14, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Diggs-Andrews, K.A.; Brown, J.A.; Gianino, S.M.; Rubin, J.B.; Wozniak, D.F.; Gutmann, D.H. Sex Is a major determinant of neuronal dysfunction in neurofibromatosis type 1. Ann. Neurol. 2014, 75, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Balcer, L.J.; Liu, G.T.; Heller, G.; Bilaniuk, L.; Volpe, N.J.; Galetta, S.L.; Molloy, P.T.; Phillips, P.C.; Janss, A.J.; Vaughn, S.; et al. Visual loss in children with neurofibromatosis type 1 and optic pathway gliomas: Relation to tumor location by magnetic resonance imaging. Am. J. Ophthalmol. 2001, 131, 442–445. [Google Scholar] [CrossRef]
- Jose, P.; Couceiro, R.; Passos, J.; Jorge Teixeira, F. Visual Outcomes of Optic Pathway Glioma Treated With Chemotherapy in Neurofibromatosis Type 1. J. Pediatr. Ophthalmol. Strabismus 2022, 59, 128–135. [Google Scholar] [CrossRef]
- Kornreich, L.; Blaser, S.; Schwarz, M.; Shuper, A.; Vishne, T.H.; Cohen, I.J.; Faingold, R.; Michovitz, S.; Koplewitz, B.; Horev, G. Optic pathway glioma: Correlation of imaging findings with the presence of neurofibromatosis. AJNR Am. J. Neuroradiol. 2001, 22, 1963–1969. [Google Scholar] [PubMed]
- Avery, R.A.; Mansoor, A.; Idrees, R.; Trimboli-Heidler, C.; Ishikawa, H.; Packer, R.J.; Linguraru, M.G. Optic pathway glioma volume predicts retinal axon degeneration in neurofibromatosis type 1. Neurology 2016, 87, 2403–2407. [Google Scholar] [CrossRef]
- Zeid, J.L. Current update on the visual outcome of optic pathway glioma associated with neurofibromatosis type-1. Front. Surg. 2022, 9, 908573. [Google Scholar] [CrossRef]
- Varan, A.; Batu, A.; Cila, A.; Soylemezoğlu, F.; Balcı, S.; Akalan, N.; Zorlu, F.; Akyüz, C.; Kutluk, T.; Büyükpamukçu, M. Optic glioma in children: A retrospective analysis of 101 cases. Am. J. Clin. Oncol. 2013, 36, 287–292. [Google Scholar] [CrossRef]
- Dodgshun, A.J.; Elder, J.E.; Hansford, J.R.; Sullivan, M.J. Long-term visual outcome after chemotherapy for optic pathway glioma in children: Site and age are strongly predictive. Cancer 2015, 121, 4190–4196. [Google Scholar] [CrossRef]
- Kalin-Hajdu, E.; Décarie, J.C.; Marzouki, M.; Carret, A.S.; Ospina, L.H. Visual acuity of children treated with chemotherapy for optic pathway gliomas. Pediatr. Blood Cancer 2014, 61, 223–227. [Google Scholar] [CrossRef]
- Prada, C.E.; Hufnagel, R.B.; Hummel, T.R.; Lovell, A.M.; Hopkin, R.J.; Saal, H.M.; Schorry, E.K. The Use of Magnetic Resonance Imaging Screening for Optic Pathway Gliomas in Children with Neurofibromatosis Type 1. J. Pediatr. 2015, 167, 851–856.e1. [Google Scholar] [CrossRef]
- Ing, C.; DiMaggio, C.; Whitehouse, A.; Hegarty, M.K.; Brady, J.; von Ungern-Sternberg, B.S.; Davidson, A.; Wood, A.J.; Li, G.; Sun, L.S. Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics 2012, 130, e476–e485. [Google Scholar] [CrossRef] [PubMed]
- Arnljots, U.; Nilsson, M.; Sandvik, U.; Myrberg, I.H.; Munoz, D.M.; Blomgren, K.; Hellgren, K. Optical Coherence Tomography Identifies Visual Pathway Involvement Earlier than Visual Function Tests in Children with MRI-Verified Optic Pathway Gliomas. Cancers 2022, 14, 318. [Google Scholar] [CrossRef] [PubMed]
- Zahavi, A.; Toledano, H.; Cohen, R.; Sella, S.; Luckman, J.; Michowiz, S.; Goldenberg-Cohen, N. Use of Optical Coherence Tomography to Detect Retinal Nerve Fiber Loss in Children With Optic Pathway Glioma. Front. Neurol. 2018, 9, 1102. [Google Scholar] [CrossRef] [PubMed]
- Moradi, P.; Robson, A.G.; Rose, G.E.; Holder, G.E. Electrophysiological monitoring in a patient with an optic nerve glioma. Doc. Ophthalmol. Adv. Ophthalmol. 2008, 117, 171–174. [Google Scholar] [CrossRef]
- Trisciuzzi, M.T.; Riccardi, R.; Piccardi, M.; Iarossi, G.; Buzzonetti, L.; Dickmann, A.; Colosimo, C., Jr.; Ruggiero, A.; Di Rocco, C.; Falsini, B. A fast visual evoked potential method for functional assessment and follow-up of childhood optic gliomas. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2004, 115, 217–226. [Google Scholar] [CrossRef]
- Wolsey, D.H.; Larson, S.A.; Creel, D.; Hoffman, R. Can screening for optic nerve gliomas in patients with neurofibromatosis type I be performed with visual-evoked potential testing? J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2006, 10, 307–311. [Google Scholar] [CrossRef]
- Toonen, J.A.; Ma, Y.; Gutmann, D.H. Defining the temporal course of murine neurofibromatosis-1 optic gliomagenesis reveals a therapeutic window to attenuate retinal dysfunction. Neuro Oncol. 2017, 19, 808–819. [Google Scholar] [CrossRef]
- Hegedus, B.; Hughes, F.W.; Garbow, J.R.; Gianino, S.; Banerjee, D.; Kim, K.; Ellisman, M.H.; Brantley, M.A., Jr.; Gutmann, D.H. Optic nerve dysfunction in a mouse model of neurofibromatosis-1 optic glioma. J. Neuropathol. Exp. Neurol. 2009, 68, 542–551. [Google Scholar] [CrossRef]
- Zeid, J.L.; Charrow, J.; Sandu, M.; Goldman, S.; Listernick, R. Orbital optic nerve gliomas in children with neurofibromatosis type 1. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2006, 10, 534–539. [Google Scholar] [CrossRef]
- Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature 2013, 496, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Voet, S.; Prinz, M.; van Loo, G. Microglia in Central Nervous System Inflammation and Multiple Sclerosis Pathology. Trends Mol. Med. 2019, 25, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Rock, R.B.; Gekker, G.; Hu, S.; Sheng, W.S.; Cheeran, M.; Lokensgard, J.R.; Peterson, P.K. Role of microglia in central nervous system infections. Clin. Microbiol. Rev. 2004, 17, 942–964. [Google Scholar] [CrossRef] [PubMed]
- Donat, C.K.; Scott, G.; Gentleman, S.M.; Sastre, M. Microglial Activation in Traumatic Brain Injury. Front. Aging Neurosci. 2017, 9, 208. [Google Scholar] [CrossRef]
- Hansen, D.V.; Hanson, J.E.; Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 2018, 217, 459–472. [Google Scholar] [CrossRef]
- Huang, Y.K.; Liu, C.C.; Wang, S.; Cheng, H.C.; Meadows, C.; Chang, K.C. The Role of Aldose Reductase in Beta-Amyloid-Induced Microglia Activation. Int. J. Mol. Sci. 2022, 23, 15088. [Google Scholar] [CrossRef]
- Gutmann, D.H.; Kettenmann, H. Microglia/Brain Macrophages as Central Drivers of Brain Tumor Pathobiology. Neuron 2019, 104, 442–449. [Google Scholar] [CrossRef]
- Xu, C.; Xiao, M.; Li, X.; Xin, L.; Song, J.; Zhan, Q.; Wang, C.; Zhang, Q.; Yuan, X.; Tan, Y.; et al. Origin, activation, and targeted therapy of glioma-associated macrophages. Front. Immunol. 2022, 13, 974996. [Google Scholar] [CrossRef]
- Wang, G.; Zhong, K.; Wang, Z.; Zhang, Z.; Tang, X.; Tong, A.; Zhou, L. Tumor-associated microglia and macrophages in glioblastoma: From basic insights to therapeutic opportunities. Front. Immunol. 2022, 13, 964898. [Google Scholar] [CrossRef]
- Poon, C.C.; Sarkar, S.; Yong, V.W.; Kelly, J.J.P. Glioblastoma-associated microglia and macrophages: Targets for therapies to improve prognosis. Brain 2017, 140, 1548–1560. [Google Scholar] [CrossRef]
- Cui, Q.; Yin, Y.; Benowitz, L.I. The role of macrophages in optic nerve regeneration. Neuroscience 2009, 158, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; He, X.; Meng, H.; Li, Y.; Dmitriev, P.; Tian, F.; Page, J.C.; Lu, Q.R.; He, Z. Robust Myelination of Regenerated Axons Induced by Combined Manipulations of GPR17 and Microglia. Neuron 2020, 108, 876–886.E4. [Google Scholar] [CrossRef] [PubMed]
- Pong, W.W.; Higer, S.B.; Gianino, S.M.; Emnett, R.J.; Gutmann, D.H. Reduced microglial CX3CR1 expression delays neurofibromatosis-1 glioma formation. Ann. Neurol. 2013, 73, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Daginakatte, G.C.; Gianino, S.M.; Zhao, N.W.; Parsadanian, A.S.; Gutmann, D.H. Increased c-Jun-NH2-kinase signaling in neurofibromatosis-1 heterozygous microglia drives microglia activation and promotes optic glioma proliferation. Cancer Res. 2008, 68, 10358–10366. [Google Scholar] [CrossRef]
- Daginakatte, G.C.; Gutmann, D.H. Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum. Mol. Genet. 2007, 16, 1098–1112. [Google Scholar] [CrossRef]
- Pan, Y.; Bush, E.C.; Toonen, J.A.; Ma, Y.; Solga, A.C.; Sims, P.A.; Gutmann, D.H. Whole tumor RNA-sequencing and deconvolution reveal a clinically-prognostic PTEN/PI3K-regulated glioma transcriptional signature. Oncotarget 2017, 8, 52474–52487. [Google Scholar] [CrossRef]
- Wolf, Y.; Yona, S.; Kim, K.W.; Jung, S. Microglia, seen from the CX3CR1 angle. Front. Cell Neurosci. 2013, 7, 26. [Google Scholar] [CrossRef]
- Solga, A.C.; Pong, W.W.; Kim, K.Y.; Cimino, P.J.; Toonen, J.A.; Walker, J.; Wylie, T.; Magrini, V.; Griffith, M.; Griffith, O.L.; et al. RNA Sequencing of Tumor-Associated Microglia Reveals Ccl5 as a Stromal Chemokine Critical for Neurofibromatosis-1 Glioma Growth. Neoplasia 2015, 17, 776–788. [Google Scholar] [CrossRef]
- Pan, Y.; Xiong, M.; Chen, R.; Ma, Y.; Corman, C.; Maricos, M.; Kindler, U.; Semtner, M.; Chen, Y.H.; Dahiya, S.; et al. Athymic mice reveal a requirement for T-cell-microglia interactions in establishing a microenvironment supportive of Nf1 low-grade glioma growth. Genes Dev. 2018, 32, 491–496. [Google Scholar] [CrossRef]
- Toonen, J.A.; Solga, A.C.; Ma, Y.; Gutmann, D.H. Estrogen activation of microglia underlies the sexually dimorphic differences in Nf1 optic glioma-induced retinal pathology. J. Exp. Med. 2017, 214, 17–25. [Google Scholar] [CrossRef]
- Eberl, G.; Colonna, M.; Di Santo, J.P.; McKenzie, A.N. Innate lymphoid cells. Innate lymphoid cells: A new paradigm in immunology. Science 2015, 348, aaa6566. [Google Scholar] [CrossRef] [PubMed]
- Vivier, E.; Artis, D.; Colonna, M.; Diefenbach, A.; Di Santo, J.P.; Eberl, G.; Koyasu, S.; Locksley, R.M.; McKenzie, A.N.J.; Mebius, R.E.; et al. Innate Lymphoid Cells: 10 Years On. Cell 2018, 174, 1054–1066. [Google Scholar] [CrossRef]
- Davis, S.J.; Ikemizu, S.; Evans, E.J.; Fugger, L.; Bakker, T.R.; van der Merwe, P.A. The nature of molecular recognition by T cells. Nat. Immunol. 2003, 4, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Romero, I.; Garrido, F.; Garcia-Lora, A.M. Metastases in immune-mediated dormancy: A new opportunity for targeting cancer. Cancer Res. 2014, 74, 6750–6757. [Google Scholar] [CrossRef]
- Philip, M.; Schietinger, A. CD8(+) T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 2022, 22, 209–223. [Google Scholar] [CrossRef]
- Guo, X.; Pan, Y.; Xiong, M.; Sanapala, S.; Anastasaki, C.; Cobb, O.; Dahiya, S.; Gutmann, D.H. Midkine activation of CD8(+) T cells establishes a neuron-immune-cancer axis responsible for low-grade glioma growth. Nat. Commun. 2020, 11, 2177. [Google Scholar] [CrossRef]
- Mancusi, R.; Monje, M. The neuroscience of cancer. Nature 2023, 618, 467–479. [Google Scholar] [CrossRef]
- Pan, Y.; Hysinger, J.D.; Barron, T.; Schindler, N.F.; Cobb, O.; Guo, X.; Yalcin, B.; Anastasaki, C.; Mulinyawe, S.B.; Ponnuswami, A.; et al. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature 2021, 594, 277–282. [Google Scholar] [CrossRef]
- Anastasaki, C.; Mo, J.; Chen, J.K.; Chatterjee, J.; Pan, Y.; Scheaffer, S.M.; Cobb, O.; Monje, M.; Le, L.Q.; Gutmann, D.H. Neuronal hyperexcitability drives central and peripheral nervous system tumor progression in models of neurofibromatosis-1. Nat. Commun. 2022, 13, 2785. [Google Scholar] [CrossRef]
- Sharif, S.; Ferner, R.; Birch, J.M.; Gillespie, J.E.; Gattamaneni, H.R.; Baser, M.E.; Evans, D.G. Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: Substantial risks after radiotherapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 2570–2575. [Google Scholar] [CrossRef]
- Armstrong, G.T.; Conklin, H.M.; Huang, S.; Srivastava, D.; Sanford, R.; Ellison, D.W.; Merchant, T.E.; Hudson, M.M.; Hoehn, M.E.; Robison, L.L.; et al. Survival and long-term health and cognitive outcomes after low-grade glioma. Neuro Oncol. 2011, 13, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Shalitin, S.; Gal, M.; Goshen, Y.; Cohen, I.; Yaniv, I.; Phillip, M. Endocrine outcome in long-term survivors of childhood brain tumors. Horm. Res. Paediatr. 2011, 76, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Grill, J.; Couanet, D.; Cappelli, C.; Habrand, J.L.; Rodriguez, D.; Sainte-Rose, C.; Kalifa, C. Radiation-induced cerebral vasculopathy in children with neurofibromatosis and optic pathway glioma. Ann. Neurol. 1999, 45, 393–396. [Google Scholar] [CrossRef]
- Ater, J.L.; Xia, C.; Mazewski, C.M.; Booth, T.N.; Freyer, D.R.; Packer, R.J.; Sposto, R.; Vezina, G.; Pollack, I.F. Nonrandomized comparison of neurofibromatosis type 1 and non-neurofibromatosis type 1 children who received carboplatin and vincristine for progressive low-grade glioma: A report from the Children’s Oncology Group. Cancer 2016, 122, 1928–1936. [Google Scholar] [CrossRef] [PubMed]
- Packer, R.J.; Ater, J.; Allen, J.; Phillips, P.; Geyer, R.; Nicholson, H.S.; Jakacki, R.; Kurczynski, E.; Needle, M.; Finlay, J.; et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J. Neurosurg. 1997, 86, 747–754. [Google Scholar] [CrossRef]
- Hill, C.S.; Devesa, S.C.; Ince, W.; Borg, A.; Aquilina, K. A systematic review of ongoing clinical trials in optic pathway gliomas. Child’s Nerv. Syst. 2020, 36, 1869–1886. [Google Scholar] [CrossRef]
- Tang, Y.; Gutmann, D.H. Neurofibromatosis Type 1-Associated Optic Pathway Gliomas: Current Challenges and Future Prospects. Cancer Manag. Res. 2023, 15, 667–681. [Google Scholar] [CrossRef]
- Venkatesh, H.S.; Johung, T.B.; Caretti, V.; Noll, A.; Tang, Y.; Nagaraja, S.; Gibson, E.M.; Mount, C.W.; Polepalli, J.; Mitra, S.S.; et al. Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion. Cell 2015, 161, 803–816. [Google Scholar] [CrossRef]
- Venkatesh, H.S.; Tam, L.T.; Woo, P.J.; Lennon, J.; Nagaraja, S.; Gillespie, S.M.; Ni, J.; Duveau, D.Y.; Morris, P.J.; Zhao, J.J.; et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 2017, 549, 533–537. [Google Scholar] [CrossRef]
- Luo, J.L.; Maeda, S.; Hsu, L.C.; Yagita, H.; Karin, M. Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 2004, 6, 297–305. [Google Scholar] [CrossRef]
- Majety, M.; Runza, V.; Lehmann, C.; Hoves, S.; Ries, C.H. A drug development perspective on targeting tumor-associated myeloid cells. FEBS J. 2018, 285, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Steidl, C.; Lee, T.; Shah, S.P.; Farinha, P.; Han, G.; Nayar, T.; Delaney, A.; Jones, S.J.; Iqbal, J.; Weisenburger, D.D.; et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N. Engl. J. Med. 2010, 362, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Jeong, J.H.; Chen, Z.; Chen, Z.; Luo, J.L. Targeting Tumor Microenvironment by Small-Molecule Inhibitors. Transl. Oncol. 2020, 13, 57–69. [Google Scholar] [CrossRef]
- Mudd, T.W.; Guddati, A.K. Management of hepatotoxicity of chemotherapy and targeted agents. Am. J. Cancer Res. 2021, 11, 3461–3474. [Google Scholar]
- Santos, M.L.C.; de Brito, B.B.; da Silva, F.A.F.; Botelho, A.; de Melo, F.F. Nephrotoxicity in cancer treatment: An overview. World J. Clin. Oncol. 2020, 11, 190–204. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.C.; Laffin, B.; Ponder, J.; Enzsoly, A.; Nemeth, J.; LaBarbera, D.V.; Petrash, J.M. Beta-glucogallin reduces the expression of lipopolysaccharide-induced inflammatory markers by inhibition of aldose reductase in murine macrophages and ocular tissues. Chem. Biol. Interact. 2013, 202, 283–287. [Google Scholar] [CrossRef]
- Chang, K.C.; Ponder, J.; Labarbera, D.V.; Petrash, J.M. Aldose reductase inhibition prevents endotoxin-induced inflammatory responses in retinal microglia. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2853–2861. [Google Scholar] [CrossRef]
- Rao, M.; Huang, Y.K.; Liu, C.C.; Meadows, C.; Cheng, H.C.; Zhou, M.; Chen, Y.C.; Xia, X.; Goldberg, J.L.; Williams, A.M.; et al. Aldose reductase inhibition decelerates optic nerve degeneration by alleviating retinal microglia activation. Sci. Rep. 2023, 13, 5592. [Google Scholar] [CrossRef]
- Solga, A.C.; Toonen, J.A.; Pan, Y.; Cimino, P.J.; Ma, Y.; Castillon, G.A.; Gianino, S.M.; Ellisman, M.H.; Lee, D.Y.; Gutmann, D.H. The cell of origin dictates the temporal course of neurofibromatosis-1 (Nf1) low-grade glioma formation. Oncotarget 2017, 8, 47206–47215. [Google Scholar] [CrossRef]
- Isakson, S.H.; Rizzardi, A.E.; Coutts, A.W.; Carlson, D.F.; Kirstein, M.N.; Fisher, J.; Vitte, J.; Williams, K.B.; Pluhar, G.E.; Dahiya, S.; et al. Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1. Commun. Biol. 2018, 1, 158. [Google Scholar] [CrossRef]
- White, K.A.; Swier, V.J.; Cain, J.T.; Kohlmeyer, J.L.; Meyerholz, D.K.; Tanas, M.R.; Uthoff, J.; Hammond, E.; Li, H.; Rohret, F.A.; et al. A porcine model of neurofibromatosis type 1 that mimics the human disease. JCI Insight 2018, 3, e120402. [Google Scholar] [CrossRef] [PubMed]
- Moreno, L.; Bautista, F.; Ashley, S.; Duncan, C.; Zacharoulis, S. Does chemotherapy affect the visual outcome in children with optic pathway glioma? A systematic review of the evidence. Eur. J. Cancer 2010, 46, 2253–2259. [Google Scholar] [CrossRef] [PubMed]
- Shofty, B.; Ben-Sira, L.; Freedman, S.; Yalon, M.; Dvir, R.; Weintraub, M.; Toledano, H.; Constantini, S.; Kesler, A. Visual outcome following chemotherapy for progressive optic pathway gliomas. Pediatr. Blood Cancer 2011, 57, 481–485. [Google Scholar] [CrossRef]
- Wong, K.A.; Benowitz, L.I. Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Injury: Role of Inflammation and Other Factors. Int. J. Mol. Sci. 2022, 23, 10179. [Google Scholar] [CrossRef]
- Xie, L.; Yin, Y.; Benowitz, L. Chemokine CCL5 promotes robust optic nerve regeneration and mediates many of the effects of CNTF gene therapy. Proc. Natl. Acad. Sci. USA 2021, 118, e2017282118. [Google Scholar] [CrossRef]
- Williams, P.R.; Benowitz, L.I.; Goldberg, J.L.; He, Z. Axon Regeneration in the Mammalian Optic Nerve. Annu. Rev. Vis. Sci. 2020, 6, 195–213. [Google Scholar] [CrossRef]
- Fague, L.; Liu, Y.A.; Marsh-Armstrong, N. The basic science of optic nerve regeneration. Ann. Transl. Med. 2021, 9, 1276. [Google Scholar] [CrossRef]
- Mendell, J.R.; Al-Zaidy, S.A.; Rodino-Klapac, L.R.; Goodspeed, K.; Gray, S.J.; Kay, C.N.; Boye, S.L.; Boye, S.E.; George, L.A.; Salabarria, S.; et al. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol. Ther. 2021, 29, 464–488. [Google Scholar] [CrossRef]
- Singh, R.K.; Occelli, L.M.; Binette, F.; Petersen-Jones, S.M.; Nasonkin, I.O. Transplantation of Human Embryonic Stem Cell-Derived Retinal Tissue in the Subretinal Space of the Cat Eye. Stem Cells Dev. 2019, 28, 1151–1166. [Google Scholar] [CrossRef]
- Luo, Z.; Chang, K.C.; Wu, S.; Sun, C.; Xia, X.; Nahmou, M.; Bian, M.; Wen, R.R.; Zhu, Y.; Shah, S.; et al. Directly induced human retinal ganglion cells mimic fetal RGCs and are neuroprotective after transplantation in vivo. Stem Cell Rep. 2022, 17, 2690–2703. [Google Scholar] [CrossRef]
- Luo, Z.; Xian, B.; Li, K.; Li, K.; Yang, R.; Chen, M.; Xu, C.; Tang, M.; Rong, H.; Hu, D.; et al. Biodegradable scaffolds facilitate epiretinal transplantation of hiPSC-Derived retinal neurons in nonhuman primates. Acta Biomater. 2021, 134, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Lim, D.H. Recent Updates on Radiation Therapy for Pediatric Optic Pathway Glioma. Brain Tumor Res. Treat. 2022, 10, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Vaz-Salgado, M.A.; Villamayor, M.; Albarran, V.; Alia, V.; Sotoca, P.; Chamorro, J.; Rosero, D.; Barrill, A.M.; Martin, M.; Fernandez, E.; et al. Recurrent Glioblastoma: A Review of the Treatment Options. Cancers 2023, 15, 4279. [Google Scholar] [CrossRef] [PubMed]
- Lazurko, C.; Linder, R.; Pulman, K.; Lennox, G.; Feigenberg, T.; Fazelzad, R.; May, T.; Zigras, T. Bevacizumab Treatment for Low-Grade Serous Ovarian Cancer: A Systematic Review. Curr. Oncol. 2023, 30, 8159–8171. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, F.; Takano, M.; Yonezawa, U.; Taguchi, A.; Kolakshyapati, M.; Okumichi, H.; Kiuchi, Y.; Kurisu, K. Bevacizumab for optic pathway glioma with worsening visual field in absence of imaging progression: 2 case reports and literature review. Childs Nerv. Syst. 2020, 36, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Park, K.K.; Liu, K.; Hu, Y.; Smith, P.D.; Wang, C.; Cai, B.; Xu, B.; Connolly, L.; Kramvis, I.; Sahin, M.; et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008, 322, 963–966. [Google Scholar] [CrossRef]
- Gicquel, J.J.; Vabres, P.; Bonneau, D.; Mercie, M.; Handiri, L.; Dighiero, P. Retinal angioma in a patient with Cowden disease. Am. J. Ophthalmol. 2003, 135, 400–402. [Google Scholar] [CrossRef]
Genotype | Optic Glioma Phenotype | Ref |
---|---|---|
Nf1flox/−; hGfap-Cre Nf1flox/flox; hGfap-Cre | tumor developed by 2 months of age | [35] |
Nf1flox/neo; Gfap-Cre *# | tumor developed by 3 months of age | [34] |
Nf1flox/neo; Ptenflox/+; Gfap-Cre | tumor developed by 3 months of age | [37] |
Nf1flox/neo; Olig2-Cre | tumor developed by 6 months of age | [109] |
Nf1flox/neo; Prom1-CreER | tumor developed by 3 months of age | [109] |
Nf1flox/R681X; Gfap-Cre | tumor developed by 3 months of age | [39] |
Nf1flox/G848R; Gfap-Cre | no tumor detected by 3 months of age | [39] |
Nf1flox/C383X; Gfap-Cre | 25% mice developed tumor by 3 months of age | [36] |
Nf1flox/R1278P; Gfap-Cre | tumor developed by 3 months of age | [36] |
Cell/Tissue Type | Molecule | Role in Optic Glioma Progression | Ref |
---|---|---|---|
Retinal ganglion cells | Midkine | stimulate T cell Ccl4 production by binding to LRP1 | [86] |
Retinal ganglion cells | HCN | Nf1 mutation induced HCN dysfunction induces neuronal hyperactivity; modulates midkine level | [89] |
Optic nerve | ADAM10 | increased secretion in response to light-induced neuronal activity; cleaves neuroligin-3 | [88] |
Optic nerve | Neuroligin-3 | required for optic gliomagenesis | [88] |
CD8+ T cells | CCL4 | stimulate microglial Ccl5 production by binding to CCR5 | [86] |
Microglia | CCL5 | binds to CD44 on tumor cells and increases tumor cell survival | [86] |
Microglia | CX3CR1 | required for tumorigenesis | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irshad, K.; Huang, Y.-K.; Rodriguez, P.; Lo, J.; Aghoghovwia, B.E.; Pan, Y.; Chang, K.-C. The Neuroimmune Regulation and Potential Therapeutic Strategies of Optic Pathway Glioma. Brain Sci. 2023, 13, 1424. https://doi.org/10.3390/brainsci13101424
Irshad K, Huang Y-K, Rodriguez P, Lo J, Aghoghovwia BE, Pan Y, Chang K-C. The Neuroimmune Regulation and Potential Therapeutic Strategies of Optic Pathway Glioma. Brain Sciences. 2023; 13(10):1424. https://doi.org/10.3390/brainsci13101424
Chicago/Turabian StyleIrshad, Khushboo, Yu-Kai Huang, Paul Rodriguez, Jung Lo, Benjamin E. Aghoghovwia, Yuan Pan, and Kun-Che Chang. 2023. "The Neuroimmune Regulation and Potential Therapeutic Strategies of Optic Pathway Glioma" Brain Sciences 13, no. 10: 1424. https://doi.org/10.3390/brainsci13101424
APA StyleIrshad, K., Huang, Y. -K., Rodriguez, P., Lo, J., Aghoghovwia, B. E., Pan, Y., & Chang, K. -C. (2023). The Neuroimmune Regulation and Potential Therapeutic Strategies of Optic Pathway Glioma. Brain Sciences, 13(10), 1424. https://doi.org/10.3390/brainsci13101424