Assessing the Impact of Electrosuit Therapy on Cerebral Palsy: A Study on the Users’ Satisfaction and Potential Efficacy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Evaluation and Questionnaire Administration
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cherni, Y.; Ballaz, L.; Lemaire, J.; Dal Maso, F.; Begon, M. Effect of Low Dose Robotic-Gait Training on Walking Capacity in Children and Adolescents with Cerebral Palsy. Neurophysiol. Clin. 2020, 50, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Perpetuini, D.; Russo, E.F.; Cardone, D.; Palmieri, R.; Filippini, C.; Tritto, M.; Pellicano, F.; De Santis, G.P.; Calabrò, R.S.; Merla, A. Identification of Functional Cortical Plasticity in Children with Cerebral Palsy Associated to Robotic-Assisted Gait Training: An fNIRS Study. J. Clin. Med. 2022, 11, 6790. [Google Scholar] [CrossRef] [PubMed]
- Palisano, R.J.; Cameron, D.; Rosenbaum, P.L.; Walter, S.D.; Russell, D. Stability of the Gross Motor Function Classification System. Dev. Med. Child Neurol. 2006, 48, 424–428. [Google Scholar] [CrossRef]
- Meseguer-Henarejos, A.-B.; Sánchez-Meca, J.; López-Pina, J.-A.; Carles-Hernández, R. Inter- and Intra-Rater Reliability of the Modified Ashworth Scale: A Systematic Review and Meta-Analysis. Eur. J. Phys. Rehabil. Med. 2018, 54, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Field, D.A.; Roxborough, L.A. Validation of the Relation between the Type and Amount of Seating Support Provided and Level of Sitting Scale (LSS) Scores for Children with Neuromotor Disorders. Dev. Neurorehabilit. 2012, 15, 202–208. [Google Scholar] [CrossRef]
- Blackman, J.A.; Svensson, C.I.; Marchand, S. Pathophysiology of Chronic Pain in Cerebral Palsy: Implications for Pharmacological Treatment and Research. Dev. Med. Child Neurol. 2018, 60, 861–865. [Google Scholar] [CrossRef]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.-C.; et al. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment. JAMA Pediatr. 2017, 171, 897–907. [Google Scholar] [CrossRef]
- Schwartz, I.; Meiner, Z. Robotic-Assisted Gait Training in Neurological Patients: Who May Benefit? Ann. Biomed. Eng. 2015, 43, 1260–1269. [Google Scholar] [CrossRef]
- Sluka, K.A.; Walsh, D. Transcutaneous Electrical Nerve Stimulation: Basic Science Mechanisms and Clinical Effectiveness. J. Pain 2003, 4, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Etoom, M. Comments on: Influence of Transcutaneous Electrical Nerve Stimulation on Spasticity, Balance, and Walking Speed in Stroke Patients: A Systematic Review and Meta-Analysis. J. Rehabil. Med. 2018, 50, 94. [Google Scholar] [CrossRef]
- Perpetuini, D.; Russo, E.F.; Cardone, D.; Palmieri, R.; De Giacomo, A.; Pellegrino, R.; Merla, A.; Calabrò, R.S.; Filoni, S. Use and Effectiveness of Electrosuit in Neurological Disorders: A Systematic Review with Clinical Implications. Bioengineering 2023, 10, 680. [Google Scholar] [CrossRef]
- Flodström, C.; Viklund Axelsson, S.-A.; Nordström, B. A Pilot Study of the Impact of the Electro-Suit Mollii® on Body Functions, Activity, and Participation in Children with Cerebral Palsy. Assist. Technol. 2022, 34, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Mills, P.B.; Dossa, F. Transcutaneous Electrical Nerve Stimulation for Management of Limb Spasticity: A Systematic Review. Am. J. Phys. Med. Rehabil. 2016, 95, 309–318. [Google Scholar] [CrossRef]
- Perpetuini, D.; Russo, E.F.; Cardone, D.; Palmieri, R.; Filippini, C.; Tritto, M.; Pellicano, F.; De Santis, G.P.; Pellegrino, R.; Calabrò, R.S.; et al. Psychophysiological Assessment of Children with Cerebral Palsy during Robotic-Assisted Gait Training through Infrared Imaging. Int. J. Environ. Res. Public Health 2022, 19, 15224. [Google Scholar] [CrossRef]
- Lequerica, A.H.; Kortte, K. Therapeutic Engagement: A Proposed Model of Engagement in Medical Rehabilitation. Am. J. Phys. Med. Rehabil. 2010, 89, 415–422. [Google Scholar] [CrossRef]
- Demers, L.; Weiss-Lambrou, R.; Ska, B. Quebec User Evaluation of Satisfaction with Assistive Technology Versione 2.0. Inst. Matching Pers. Technol. Webster N. Y. 2000, 2, 34–54. [Google Scholar]
- Jutai, J.; Day, H. Psychosocial Impact of Assistive Devices Scale (PIADS). Technol. Disabil. 2002, 14, 107–111. [Google Scholar] [CrossRef]
- Morris, C.; Bartlett, D. Gross Motor Function Classification System: Impact and Utility. Dev. Med. Child Neurol. 2004, 46, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Tofani, M.; Candeloro, C.; Sabbadini, M.; Field, D.; Frascarelli, F.; Lucibello, L.; Valente, D.; Galeoto, G.; Castelli, E. A Study Validating the Italian Version of the Level of Sitting Scale in Children with Cerebral Palsy. Clin. Rehabil. 2019, 33, 1810–1818. [Google Scholar] [CrossRef]
- Demers, L.; Monette, M.; Descent, M.; Jutai, J.; Wolfson, C. The Psychosocial Impact of Assistive Devices Scale (PIADS): Translation and Preliminary Psychometric Evaluation of a Canadian–French Version. Qual. Life Res. 2002, 11, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Bax, M.; Goldstein, M.; Rosenbaum, P.; Leviton, A.; Paneth, N.; Dan, B.; Jacobsson, B.; Damiano, D. Executive Committee for the Definition of Cerebral Palsy Proposed Definition and Classification of Cerebral Palsy, April 2005. Dev. Med. Child Neurol. 2005, 47, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Monbaliu, E.; Himmelmann, K.; Lin, J.-P.; Ortibus, E.; Bonouvrié, L.; Feys, H.; Vermeulen, R.J.; Dan, B. Clinical Presentation and Management of Dyskinetic Cerebral Palsy. Lancet Neurol. 2017, 16, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.A.; Field-Fote, E.C.; Floeter, M.K. Patterned Sensory Stimulation Induces Plasticity in Reciprocal Ia Inhibition in Humans. J. Neurosci. 2003, 23, 2014–2018. [Google Scholar] [CrossRef]
- Rubio-Zarapuz, A.; Apolo-Arenas, M.D.; Clemente-Suárez, V.J.; Costa, A.R.; Pardo-Caballero, D.; Parraca, J.A. Acute Effects of a Session with The EXOPULSE Mollii Suit in a Fibromyalgia Patient: A Case Report. Int. J. Environ. Res. Public Health 2023, 20, 2209. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Veluswamy, S.K.; Hombali, A.; Mullick, A.; Manikandan, N.; Solomon, J.M. Effect of Transcutaneous Electrical Nerve Stimulation on Spasticity in Adults With Stroke: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2019, 100, 751–768. [Google Scholar] [CrossRef] [PubMed]
- Curtis, D.J.; Butler, P.; Saavedra, S.; Bencke, J.; Kallemose, T.; Sonne-Holm, S.; Woollacott, M. The Central Role of Trunk Control in the Gross Motor Function of Children with Cerebral Palsy: A Retrospective Cross-sectional Study. Dev. Med. Child Neurol. 2015, 57, 351–357. [Google Scholar] [CrossRef]
- Doctor, K.N.; Karnad, S.D.; Krishnan, S.K.; Jain, P.D. Understanding Postural and Segmental Trunk Control and Their Effect on Sitting in Children with Cerebral Palsy: A Systematic Scoping Review. CRP 2021, 33, 39012. [Google Scholar] [CrossRef]
- Raffalt, P.C.; Bencke, J.; Mortensen, K.; Torabi, T.P.; Wong, C.; Speedtsberg, M.B. Electro-Suit Treatment of Children with Unilateral Cerebral Palsy Alters Nonlinear Dynamics of Walking. Clin. Biomech. 2022, 98, 105714. [Google Scholar] [CrossRef]
- Jonasson, L.-L.; Sörbo, A.; Ertzgaard, P.; Sandsjö, L. Patients’experiences of Self-Administered Electrotherapy for Spasticity in Stroke and Cerebral Palsy: A Qualitative Study. J. Rehabil. Med. 2022, 54, jrm00263. [Google Scholar] [CrossRef]
- Nordstrom, B.; Prellwitz, M. A Pilot Study of Children and Parents Experiences of the Use of a New Assistive Device, the Electro Suit Mollii. Assist. Technol. 2021, 33, 238–245. [Google Scholar] [CrossRef]
- Tsytsarev, V.; Premachandra, K.; Takeshita, D.; Bahar, S. Imaging Cortical Electrical Stimulation in Vivo: Fast Intrinsic Optical Signal versus Voltage-Sensitive Dyes. Opt. Lett. 2008, 33, 1032–1034. [Google Scholar] [CrossRef]
- Chiarelli, A.M.; Perpetuini, D.; Croce, P.; Greco, G.; Mistretta, L.; Rizzo, R.; Vinciguerra, V.; Romeo, M.F.; Zappasodi, F.; Merla, A. Fiberless, Multi-Channel fNIRS-EEG System Based on Silicon Photomultipliers: Towards Sensitive and Ecological Mapping of Brain Activity and Neurovascular Coupling. Sensors 2020, 20, 2831. [Google Scholar] [CrossRef]
- Pinti, P.; Aichelburg, C.; Gilbert, S.; Hamilton, A.; Hirsch, J.; Burgess, P.; Tachtsidis, I. A Review on the Use of Wearable Functional Near-Infrared Spectroscopy in Naturalistic Environments. Jpn. Psychol. Res. 2018, 60, 347–373. [Google Scholar] [CrossRef]
- Aghajani, H.; Garbey, M.; Omurtag, A. Measuring Mental Workload with EEG+ fNIRS. Front. Hum. Neurosci. 2017, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, P. Hybrid EEG-fNIRS Based BCI for Rehabilitation. In Proceedings of the International Conference on Photonics and Imaging in Biology and Medicine (2017), Suzhou, China, 26 September 2017; Optical Society of America: Washington, DC, USA; p. W3A.134. [Google Scholar]
- Perpetuini, D.; Chiarelli, A.M.; Cardone, D.; Filippini, C.; Rinella, S.; Massimino, S.; Bianco, F.; Bucciarelli, V.; Vinciguerra, V.; Fallica, P. Prediction of State Anxiety by Machine Learning Applied to Photoplethysmography Data. PeerJ 2021, 9, e10448. [Google Scholar] [CrossRef]
- Di Credico, A.; Perpetuini, D.; Izzicupo, P.; Gaggi, G.; Cardone, D.; Filippini, C.; Merla, A.; Ghinassi, B.; Di Baldassarre, A. Estimation of Heart Rate Variability Parameters by Machine Learning Approaches Applied to Facial Infrared Thermal Imaging. Front. Cardiovasc. Med. 2022, 9, 893374. [Google Scholar] [CrossRef] [PubMed]
- Perpetuini, D.; Di Credico, A.; Filippini, C.; Izzicupo, P.; Cardone, D.; Chiacchiaretta, P.; Ghinassi, B.; Di Baldassarre, A.; Merla, A. Is It Possible to Estimate Average Heart Rate from Facial Thermal Imaging? Eng. Proc. 2021, 8, 10. [Google Scholar]
- Hjortskov, N.; Rissén, D.; Blangsted, A.K.; Fallentin, N.; Lundberg, U.; Søgaard, K. The Effect of Mental Stress on Heart Rate Variability and Blood Pressure during Computer Work. Eur. J. Appl. Physiol. 2004, 92, 84–89. [Google Scholar] [CrossRef] [PubMed]
Participants | 26 | 12 |
---|---|---|
Age (years) | 11 ± 7.00 | 10 ± 5.69 |
Gender | ||
Female | 8 | 2 |
Male | 18 | 10 |
Cerebral Palsy | ||
Quadriplegia | 22 | 10 |
Diplegia | 2 | 2 |
Hemiplegia | 2 | 0 |
Classification | ||
Spastic | 19 | 8 |
Spastic-dyskinetic Hypotonic | 5 | 3 |
2 | 1 | |
GMFCS | ||
I | 2 | 0 |
II | 3 | 2 |
III | 4 | 1 |
IV | 9 | 6 |
V | 8 | 3 |
PIADS | |||
---|---|---|---|
Competence Subscale | Adaptability Subscale | Self-Esteem Subscale | |
Pt1 | 1.00 | 2.33 | 0.88 |
Pt2 | 2.17 | 1.83 | 1.50 |
Pt3 | 0.33 | 0.33 | 0.25 |
Pt4 | 0.00 | 0.00 | 0.00 |
Pt5 | 1.25 | 1.17 | 1.38 |
Pt6 | 1.17 | 0.00 | 0.00 |
Pt7 | 0.00 | 0.00 | 0.00 |
Pt8 | 1.25 | 1.83 | 1.50 |
Pt9 | 0.00 | 0.00 | 0.00 |
Pt10 | 0.17 | 0.67 | 0.00 |
Pt11 | 0.67 | 0.50 | 0.75 |
Pt12 | 0.08 | 0.17 | 0.25 |
Lowest score | 0.00 | 0.00 | 0.00 |
Highest score | 2.17 | 2.33 | 1.5 |
Mean | 0.67 | 0.74 | 0.59 |
Standard deviation | 0.70 | 0.85 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perpetuini, D.; Russo, E.F.; Cardone, D.; Palmieri, R.; De Giacomo, A.; Intiso, D.; Pellicano, F.; Pellegrino, R.; Merla, A.; Calabrò, R.S.; et al. Assessing the Impact of Electrosuit Therapy on Cerebral Palsy: A Study on the Users’ Satisfaction and Potential Efficacy. Brain Sci. 2023, 13, 1491. https://doi.org/10.3390/brainsci13101491
Perpetuini D, Russo EF, Cardone D, Palmieri R, De Giacomo A, Intiso D, Pellicano F, Pellegrino R, Merla A, Calabrò RS, et al. Assessing the Impact of Electrosuit Therapy on Cerebral Palsy: A Study on the Users’ Satisfaction and Potential Efficacy. Brain Sciences. 2023; 13(10):1491. https://doi.org/10.3390/brainsci13101491
Chicago/Turabian StylePerpetuini, David, Emanuele Francesco Russo, Daniela Cardone, Roberta Palmieri, Andrea De Giacomo, Domenico Intiso, Federica Pellicano, Raffaello Pellegrino, Arcangelo Merla, Rocco Salvatore Calabrò, and et al. 2023. "Assessing the Impact of Electrosuit Therapy on Cerebral Palsy: A Study on the Users’ Satisfaction and Potential Efficacy" Brain Sciences 13, no. 10: 1491. https://doi.org/10.3390/brainsci13101491
APA StylePerpetuini, D., Russo, E. F., Cardone, D., Palmieri, R., De Giacomo, A., Intiso, D., Pellicano, F., Pellegrino, R., Merla, A., Calabrò, R. S., & Filoni, S. (2023). Assessing the Impact of Electrosuit Therapy on Cerebral Palsy: A Study on the Users’ Satisfaction and Potential Efficacy. Brain Sciences, 13(10), 1491. https://doi.org/10.3390/brainsci13101491