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Abstract: This study aimed to develop and validate machine learning (ML) models that predict
age using intracranial vessels’ tortuosity and diameter features derived from magnetic resonance
angiography (MRA) data. A total of 171 subjects’ three-dimensional (3D) time-of-flight MRA image
data were considered for analysis. After annotations of two endpoints in each arterial segment,
tortuosity features such as the sum of the angle metrics, triangular index, relative length, and product
of the angle distance, as well as the vessels’ diameter features, were extracted and used to train
and validate the ML models for age prediction. Features extracted from the right and left internal
carotid arteries (ICA) and basilar arteries were considered as the inputs to train and validate six ML
regression models with a four-fold cross validation. The random forest regression model resulted in
the lowest root mean square error of 14.9 years and the highest average coefficient of determination
of 0.186. The linear regression model showed the lowest average mean absolute percentage error
(MAPE) and the highest average Pearson correlation coefficient (0.532). The mean diameter of the
right ICA vessel segment was the most important feature contributing to prediction of age in two
out of the four regression models considered. An ML of tortuosity descriptors and diameter features
extracted from MRA data showed a modest correlation between real age and ML-predicted age.
Further studies are warranted for the assessment of the model’s age predictions in patients with
intracranial vessel diseases.

Keywords: machine learning; magnetic resonance angiography; intracranial artery; age prediction;
medical image analysis; feature extraction

1. Introduction

Aging and its related diseases affect individuals during their life spans. Due to im-
provements in healthcare and medical technology, life expectancy and the proportion of
elderly people have increased worldwide recently [1]. As a measure of brain-related aging,
predictions of age from brain image data have been increasingly investigated by numer-
ous research groups [2–5]. A great deal of studies has been conducted using structural
magnetic resonance imaging (MRI) data for brain age prediction. Brain image data from
healthy subjects have been used to develop a machine learning (ML) model for predicting
chronological age [6,7]. T1-weighted structural brain MRI data have been used to train and
validate a deep convolutional neural network (CNN) architecture [8]. Region-of-interest
(ROI) volumes extracted from T1-weighted structural data have been used as features
for ML regression models [9]. T1-weighted brain MRI and computed tomography (CT)
data were used in a past study [10]. Multimodal MRI images, including T1-weighted
imaging, T2* relaxometry, and diffusion tensor imaging (DTI) have been used to extract
features and predict brain age using a multiple linear regression analysis [11]. T1-weighted,
fluid-attenuated inversion recovery (FLAIR), and susceptibility-weighted imaging (SWI)
images have been used to train a three-dimensional (3D) CNN architecture [12]. There
have also been association studies between the morphometric features available from MRI
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image data and chronological age. Gray matter volume and fractional anisotropy tend to
decrease with age [13]. High frequencies of white matter hyperintensities, microbleeds, or
lacunar infarcts have been associated with aging [3].

MR angiography (MRA) or computed tomography angiography (CTA) provide in-
sights different from those provided by commonly used structural T1-weighted brain image
data. MRA or CTA image data facilitate the noninvasive assessment of vascular aging.
Several studies have investigated the association between vascular tortuosity, kinking, and
coiling and age [14–16]. A more detailed quantitative analysis of the cerebral vasculature
can help assess chronological age [17]. The oldest age group tends to show a larger mean
diameter of the major intracranial vessel than the youngest age group [17]. A lower number
of unbranched small vessels has been observed in older age groups [17,18]. The length and
meandering of bifurcating branches have been shown to increase with age [19], although the
study did not involve an ML-based age prediction. Deep CNN models trained on healthy
subjects’ MRA have been demonstrated to estimate the biological aging of intracranial
vessels in patients suspected of having vessel-related diseases. Nam et al. proposed a deep
CNN model for predicting chronological age using healthy subjects’ brain time-of-flight
(TOF) MRA data [20]. Mouches et al. demonstrated high accuracy in brain age prediction
by combining MRA data with T1-weighted data in deep CNN architectures [21]. They
identified the basilar artery, the middle cerebral artery M2 segments, and the left posterior
cerebral artery as the artery regions that mainly contribute to age prediction. It has been
reported that arterial tortuosity is a risk factor for aneurysms or other vessel-aging-related
diseases [14,22].

The extraction of morphometric features with a vessel analysis tool has been inves-
tigated to evaluate aging and disease conditions from the intracranial vasculatures [23].
With a similar purpose in mind, instead of using end-to-end deep CNN architectures, we
proposed the use of tortuosity and diameter features extracted from a vessel segment in
the region of the circle of Willis arteries from 3D TOF MRA image data, and we predicted
subjects’ ages using an ML regression model. We also investigated what image features
would contribute the most to the age predictions in some regression models.

2. Materials and Methods
2.1. Data and Preprocessing

Three-dimensional TOF MRA data and age information were available in the IXI
datasets (https://brain-development.org/ixi-dataset (accessed on 25 October 2023)), which
were obtained from normal and healthy subjects. After 87 subjects’ data were discarded,
the data from 171 subjects were considered for our analysis. The data exclusion criteria
were: (1) the image data were of poor quality, (2) the imaging field of view (FOV) was
not sufficient along the superior-inferior direction to cover the basilar artery (BA) and
internal carotid arteries (ICAs), or (3) the Dijkstra’s path-finding result was incorrect in
either the left or right ICA. The data with the insufficient FOV were discarded in our
analysis because the selection of the two endpoints needed to be consistent anatomically
for the feature extraction. Also, the data with incorrect path-finding results were discarded
because incorrect path-finding would result in incorrect feature extraction, which would
negatively affect age prediction. The incorrect path-finding result was attributed to the fact
that the Dijkstra algorithm finds the shortest path in a centerline, and a highly tortuous
vessel such as the ICA may produce false positive centerlines which would be shorter than
the correct path. The 171 subjects had a mean age of 49.3 years with a standard deviation
of 16.5 years (age range = 20–83). A total of 85 subjects were male, and the remaining
86 subjects were female.

The overall process for the age predictions, including image preprocessing, is summa-
rized in Figure 1. A three-dimensional seeded region-growing was performed to segment
the vessels. The morphology.skeletonize function of the Scikit-Image library [24] was used
to obtain the 3D centerlines of the vessels. The Plotly (Plotly Technologies Inc., Montreal,
QC, Canada) Python library (https://plotly.com/python (accessed on 25 October 2023))

https://brain-development.org/ixi-dataset
https://plotly.com/python
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was used to manually annotate the landmarks in the circle of Willis arteries [25]. The
Dijkstra algorithm was used to find a path between two manually annotated endpoints.
The vessel segments were labeled with colors, as shown in Figure 2, and they included
the anterior communicating artery (ACOMM), left and right anterior cerebral arteries
(L-A1 and R-A1, respectively), left and right middle cerebral arteries (L-M1 and R-M1,
respectively), left and right internal carotid arteries (L-ICA and R-ICA, respectively), left
and right posterior communicating arteries (L-PCOMM and R-PCOMM, respectively), left
and right posterior cerebral arteries (L-P1, R-P1, L-P2, and R-P2, respectively), and basilar
arteries (BA). In Figure 2, ACOMM and L-PCOMM are not shown since the centerlines
of these vessel segments were not shown after the vessel segmentation followed by the
skeletonization. The resulting segments of the centerlines were colored differently, and
they were saved in .html files, which were opened to verify the accuracy of the manual
annotations. The points along the centerline underwent smoothing via spline interpolation,
as indicated by the red line in Figure 3.
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Figure 3. The spline interpolation for smoothing the centerline in a basilar artery. The skeleton is
discretized in the 3D coordinate space, and hence, when displayed, it shows a jagged appearance, as
indicated by the blue line. A spline interpolation results in the smooth curve which is indicated by
the red line.

2.2. Feature Extraction

The extracted features for each segment consisted of the curve length (lc), Euclidean
length (l), relative length (RL), sum of angle metrics (SOAM), product of angle distance
(PAD), and triangular index (TI). Table 1 shows the descriptions and mathematical formula-
tions for the tortuosity-related features along with image illustrations. In addition, diame-
ters were calculated along the centerline points using the ndimage.distance_transform_edt
function in the SciPy library [26] on a 3D binary vessel mask. The mean, minimum, maxi-
mum, standard deviation, 25th percentile, 50th percentile, and 75th percentile values of the
diameters were extracted for each segment. These features for the arterial segments in all
subjects considered were saved as .xlsx files. Some subjects’ data had missing values in
certain arterial segments. In our study, the ACOMM, L-PCOMM, and R-PCOMM segments
had more missing data than the remaining vessel segments.

To develop the ML models for age estimation, we took features from a subset of the
artery segments. The subset consisted of the left and right internal carotid artery (ICA)
tortuosity descriptors and basilar artery (BA) tortuosity descriptors, as well as the left
and right ICA and BA diameter features. We determined two endpoints in a left or right
ICA vessel segment by annotating one endpoint at the bifurcation of the ACA, ICA, and
MCA and annotating the other endpoint at the highest curvature of the C3 segment. We
also determined two endpoints in a BA vessel segment by annotating one endpoint at
the bifurcation of the BA and PCAs and annotating the other endpoint at the bifurcation
of the BA and vertebral arteries (VAs). The BA and ICAs were chosen because there
were no missing data in their feature values across all subjects, and they had relatively
greater vessel lengths and thicknesses than the other vessel segments, facilitating a more
reliable quantitative image analysis than the small and thin vessel segments whose vessel
diameters could be close to the width of one or two voxels. Hence, the total number of
features per subject was 3 × 13 = 39, which is equivalent to three vessel segments multiplied
by 13 features (i.e., six features related to tortuosity and seven features related to vessel
diameter statistics).
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Table 1. List of tortuosity features per vessel segment.

Feature Name Description Illustration

Curve length (lc) The length along the curve
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2.3. Model Development

The ML model development was performed using the Scikit-learn library [27]. We
compared the following six ML models for age prediction: (1) random forest regression,
(2) linear regression, (3) AdaBoost regression, (4) gradient boosting regression, (5) Bayesian
ridge regression, and (6) XGBoost regression.

2.3.1. Random Forest

Random forest is an ensemble-based ML method that uses the predictions made by
multiple decision trees. Each decision tree is trained on data samples randomly selected
with replacements [28]. Moreover, a subset of features is randomly chosen for a decision
tree during training. In regression, a test sample goes through all the trained decision tree
models individually, and then the final output is the average of the predictions made by
the decision tree models. Random forest is popular due to its simplicity for training.

2.3.2. Linear Regression

In a linear regression model, the output is given as a linear combination of the input
features with a bias term added. Linear regression is simple and interpretable because it
can describe how the inputs affect the output. Training is performed based on parameter
estimation on a linear model with a certain optimization method. The least squares method
is the most popular method for the parameter estimation [29]. The linear model parameters
are used to predict an outcome with test data. With regards to prediction performance,
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linear regression sometimes can be superior to other sophisticated nonlinear ML models in
cases with small numbers of training samples or low signal-to-noise ratio samples.

2.3.3. Bayesian Ridge Regression

A Bayesian ridge regression model is a model that utilizes a posterior probability distri-
bution in its weight parameters. Bayesian ridge regression adds the l2-norm regularization
terms to the objective function of the linear regression model. The model parameters in the
linear model are assumed to follow a Gaussian distribution [30]. Bayesian ridge regression
with l2-norm regularization not only prevents overfitting but also is robust against outliers.

2.3.4. AdaBoost

AdaBoost is an acronym for adaptive boosting algorithm [31]. The boosting first
generates many weaker ML classifiers during training, and then it creates a final model by
constructing a fine-tuned and stronger classifier with all the weaker models. It trains a base
classifier from an initial training dataset and then modifies the weights of the initial training
data samples based on the classifier’s performance. The weights of the misclassified
samples become larger, and a new base classifier will be trained with the samples whose
weights are changed. Among ML models, AdaBoost is less prone to overfitting and can be
used to improve the accuracy of weaker classifiers.

2.3.5. Gradient Boosting

Gradient boosting is an ML approach that first generates a decision tree to approximate
a non-linear relationship between the input features and the output, and then it uses
boosting as described in the AdaBoost method. It works by iteratively fitting a new model
to the residual errors of a previous model. Unlike AdaBoost, gradient boosting updates
weights using gradient descent. The method can reduce bias, but overfitting may occur. It
theoretically performs better than AdaBoost, but it takes computationally longer and has a
memory disadvantage.

2.3.6. XGBoost

XGBoost is an acronym for extreme gradient boosting [32]. It is based on gradient
boosting, and importantly, it is designed to support parallel computing for time-efficient
predictions from large scale datasets. It learns a tree model during each training iteration
to minimize residual errors. XGBoost includes regularization to prevent overfitting and
is widely adopted in medical data analysis due to its improved performance in terms of
speed, scalability, and accuracy.

2.3.7. Training and Validation

A four-fold cross-validation was performed for our evaluation. The 171 subjects
were randomly assigned to one of the four groups for the cross-validation. For each fold,
hyperparameters were tuned on the training data using a randomized search [33] after
the determination of a candidate hyperparameter set in the scikit-learn library. Table 2
shows the hyperparameter values used to train each of the following five regression models:
random forest regression, AdaBoost regression, gradient boosting regression, Bayesian
ridge regression, and XGBoost. An evaluation based on the validation data was performed
using the metrics described in the next section.
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Table 2. Hyperparameter settings of the regression models.

Regression Model Hyperparameter

Random forest regression
n_estimators = 74, max_depth = 14,

min_samples_leaf = 2, min_samples_split = 6,
max_features = ‘sqrt’, criterion = ‘absolute_error’

AdaBoost regression learning_rate = 0.07, loss = ‘exponential’, and
n_estimators = 163

Gradient boosting regression
criterion = ‘friedman_mse’, learning_rate = 0.11,

loss = ‘absolute_error’, max_depth = 15,
n_estimator = 198, and tol = 0.003

Bayesian ridge regression
alpha_1 = 0.0004, alpha_2 = 1 × 10−6,

alpha_init = 10, lambda_1 = 1 × 10−5, and
Tol = 0.01

XGBoost regression
colsample_bytree = 0.95, gamma = 0.22,

learning_rate = 0.30, max_depth = 4,
n_estimators = 138, and subsample = 0.84

2.4. Evaluation

The performance of the age prediction was quantified using the below metrics. We
assumed that xi was the real chronological age of the ith subject and yi was the predicted
age of the ith subject. We defined the Pearson correlation coefficient as follows:

r = ∑N
i=1 (xi − x)(yi − y)√

∑N
i=1(xi − x)2∑N

i=1(yi − y)2
, (1)

where x is a mean of the xi values and y is a mean of the yi values. We defined the root
mean square error (RMSE) as follows:

RMSE =

√
∑N

i=1(xi − yi)
2

N
. (2)

We defined the mean absolute percentage error (MAPE) as follows:

MAPE =
1
N ∑N

i=1

∣∣∣∣ xi − yi
xi

∣∣∣∣. (3)

The coefficient of determination or R2 was defined as follows:

R2 = 1 − ∑N
i=1(xi − yi)

2

∑N
i=1(xi − x)2 (4)

Feature importance was calculated for the tree-based models, including the random
forest regression, Adaboost regression, gradient boosting regression, and XGBoost regres-
sion models with the Scikit-learn library. The calculation was based on the contribution
of each feature to the model’s prediction performance. The features that led to significant
reductions in the Gini impurity or mean square error were considered more important.

Qualitative evaluation was performed by visualizing the scatter plot, which showed
correlations between the chronological ages and the ML-predicted ages. Its implementation
was made using the Matplotlib Python library [34].

3. Results

After applying the data exclusion criteria provided in the Materials and Methods
section, 87 subjects’ data were discarded. The remaining 171 subjects were considered
for analysis. Table 3 shows the prediction performances of the six ML regression models.
The random forest regression model exhibited the lowest average RMSE and the highest
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average R2. The linear regression model exhibited the lowest average MAPE and the
highest average Pearson correlation coefficient. The Bayesian ridge regression model
showed the poorest performance in all the evaluation metrics considered in this study.
The AdaBoost and XGBoost regression models showed similar overall performances. The
AdaBoost regression model ranked second for its RMSE, third for its R2, third for its MAPE,
and fourth for its Pearson correlation coefficient. The XGBoost regression model ranked
fourth for its RMSE, fourth for its R2, second for its MAPE, and third for its Pearson
correlation coefficient.

Table 3. Evaluation of the models’ predictions using the four-fold cross-validation. The bold text
indicates the best performances among the models.

Regression Model Root Mean Squared
Error (RMSE) R2 Mean Absolute

Percentage Error (MAPE)
Pearson Correlation

Coefficient

Random forest regression 14.867 ± 0.515 0.186 ± 0.031 0.319 ± 0.022 0.459 ± 0.058
Linear regression 15.000 ± 1.032 0.162 ± 0.140 0.290 ± 0.015 0.532 ± 0.067

AdaBoost regression 14.965 ± 0.496 0.175 ± 0.029 0.315 ± 0.023 0.438 ± 0.044
Gradient boosting regression 15.554 ± 1.478 0.106 ± 0.136 0.320 ± 0.034 0.357 ± 0.163

Bayesian ridge regression 16.009 ± 0.419 0.055 ± 0.041 0.347 ± 0.018 0.258 ± 0.089
XGBoost regression 15.207 ± 0.905 0.148 ± 0.062 0.312 ± 0.031 0.456 ± 0.072

Figure 4 shows the scatter plots for the real ages vs. the ML-predicted ages for the
exemplary training and the validation data for three regression models, which were (a) the
random forest regression model, (b) the linear regression model, and (c) the XGBoost
regression model. The random forest model showed overestimation in the young age range
while showing underestimation in the old age range, as shown in the training data plot in
Figure 4a. The linear regression model showed a more highly scattered plot than the other
two models when the left figure in Figure 4b is compared with the left figures in Figure 4a,c.
The XGBoost regression model showed almost perfect alignment along the y = x line, as
shown in the top figure of Figure 4c, but the validation result showed a more scattered
result than the training result, as shown in Figure 4c, implying overfitting in the model
training procedure.

Figure 5 shows the ten most important features estimated from the four tree-based
models of the random forest regression, AdaBoost regression, gradient boosting regression,
and XGBoost regression models. The R-ICA_diam_mean ranked first in the random forest
regression and AdaBoost regression models. It ranked second in the XGBoost regression
model and sixth in the gradient boosting model. The L-ICA_diam_mean was also one of
the important contributing factors in all four models. It ranked second in the random forest
regression model, third in the AdaBoost regression model, first in the gradient boosting
regression model, and third in the XGBoost regression model. The R-ICA_diam_mean, L-
ICA_diam_mean, R-ICA_lc, and R-ICA_diam_std features were in the top-ten list in all four
models. The diameter-related features appeared more in the list than the tortuosity-related
features for the XGBoost regression model, as shown in Figure 5d.
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4. Discussion

We provided the first demonstration of ML-based age prediction and a feature impor-
tance assessment based on angiography image data with tortuosity and thickness features
extracted from individual vessel segments in the ICA and BA. A variety of ML regression
models were trained and validated, and they demonstrated different age prediction scores
in terms of RMSE, R2, MAPE, and Pearson correlation coefficient values. Our findings
indicated that the linear regression model showed a prediction performance similar to or
higher than the other complex ML models in certain evaluation metrics, although the other
complex ML models are known to be well-suited for data showing a nonlinear relationship
between features and outcomes. In addition, the ML prediction performance was not
as high as expected for the tortuosity and thickness features. This implied that vessel
geometry features may not be the determining factors for predicting chronological ages in
healthy volunteers. It is noted from the literature that confounding factors such as aerobic
activity level can make it difficult to predict chronological age by relying on a vessel’s
morphometric features alone for ML prediction [35].

We considered the ICAs and BA segments for age prediction. The reason why we
chose these segments was that these vessels are usually longer and thicker than other
vessel segments such that it could be easier to perform a reliable quantification of vessel
tortuosity and diameter measurements. There may be room for improvement in age
prediction by considering other vessel segments with longer vessel lengths than those used
in our study. For example, Wright et al. analyzed PCAs, ACAs, and MCAs, including
their distal branches, in order to associate their morphometric measurements with age.
They demonstrated a Pearson correlation coefficient of 0.30 between age and bifurcating
branch length, a Pearson correlation coefficient of 0.18 between age and fractal dimension,
and a Pearson correlation coefficient of 0.44 between age and tortuosity [19]. Bullitt et al.
indicated that the number of unbranched vessels was lower for an older age group. They
interpreted their results by stating that as a result of the thickening of vessel wall due to
aging, the lumen of the small vessel became too thin to be imaged for the old age group [17].
Chen et al. [23] suggested a detailed analysis by tracing more distal arteries and labeling
arteries in more precise categories than the method used in the study of Wright et al. [19].

A 3D CNN model trained using MRA image data was investigated for the purpose
of predicting age [20]. Unlike our approach, their method was an end-to-end approach
that took a 3D TOF MRA image as an input and the predicted age as the output. In
contrast to the deep CNN model development and validation, our approach was more
direct in explaining what features contributed the most to age prediction. The deep CNN
model automatically finds features from the data itself, but one of the major concerns is
its black-box nature, which lacks in the model’s interpretability of the prediction results.
Our study evaluated the rankings of feature importance in four tree-based ML models
and indicated that the mean vessel diameter information in the right ICA segment was the
highest-contributing feature for age prediction.

There was a similar study that investigated the performance of age prediction using
ML regression models. Simfukwe and Youn applied ML regression models to features of
brain region volumes in order to predict brain age [36]. In their study, the Bayesian ridge
regression model showed the highest R2 value of 0.3 compared to other regression models,
including the gradient boosting regression, support vector regression, and linear regression
models. In our study, the extracted tortuosity and diameter features could be used for other
prediction purposes. One potential area of application is risk prediction for intracranial
aneurysm, as demonstrated by Nouri et al. [37].

The proposed method involved image segmentation, feature extraction, and ML-
based prediction. Automatic segmentation based on deep learning may help improve
the object or lesion identification performance [38,39]. Radiomic feature extraction could
increase the dimensions of the features for precision medicine [40]. We focused on age
prediction, but this framework could be applied to other purposes such as diagnosis [41],
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clinical decision-making [42], and outcome prediction [43] in acute stroke neuroimaging
and tumor imaging.

SHapley Additive exPlanations (SHAP) [44] was not applied to our study, though
it has the potential to interpret a machine learning model by finding a distribution of
the contribution of each feature value in the model’s outcome. The feature with the
widest distribution has the highest impact, and thus, it is regarded as the most important
feature. SHAP has numerous medical applications in interpreting a predictive machine
learning model. For example, its interpretability has been demonstrated in a prognostic risk
stratification model for acute ischemic stroke [45], a feature selection task for the diagnosis
of Parkinson’s disease [46], and a classification task for the diagnosis of glaucoma [47].

Our study had several limitations. First, the data used in our study did not have
clinical information such as history of stroke, smoking, hypertension, dyslipidemia, etc.
The predictions were made solely using angiographic image features. Second, the sample
size was small, and hence, the data did not encompass substantial biological and anatomical
variations among the subjects. Third, the data used in our study had static measurements
and did not reveal temporal changes that occurred over an individual’s lifetime. Fourth, our
image analysis approaches were sophisticated such that it was difficult to obtain large-scale
data from multiple institutions. They involved multiple steps for image preprocessing
such that any error in any processing step would result in invalid data for the training and
validation of a machine learning prediction model.

5. Conclusions

This study showed the feasibility of age prediction using tortuosity and vessel diameter
features extracted from individual vessel segments in circle of Willis arteries in magnetic
resonance angiography data. Six machine learning regression models were developed and
validated for age prediction. The linear regression model showed the highest correlation
between real age and predicted age. A drawback of the proposed approach was the need
for manual annotations of individual vessel segments as these are time consuming. The
proposed method based on an ML regression of arterial segments’ vessel features had
the advantage of explicitly determining the importance of features, while deep CNN
prediction on an MRA image lacks interpretability. The proposed semi-automatic technique
for quantifying segmental blood vessels’ morphometric features on TOF-MRA images is
viable not only for age prediction, but also for other research areas such as the evaluation
of treatment effects in atherosclerotic vessels and the assessment of risk of aneurysm in the
bifurcations of vessels.
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