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Abstract: Neural transplantation represents a promising approach to repairing damaged brain
circuitry. Cellular grafts have been shown to promote functional recovery through “bystander effects”
and other indirect mechanisms. However, extensive brain lesions may require direct neuronal
replacement to achieve meaningful restoration of function. While fetal cortical grafts have been
shown to integrate with the host brain and appear to develop appropriate functional attributes, the
significant ethical concerns and limited availability of this tissue severely hamper clinical translation.
Induced pluripotent stem cell-derived cells and tissues represent a more readily scalable alternative.
Significant progress has recently been made in developing protocols for generating a wide range
of neural cell types in vitro. Here, we discuss recent progress in neural transplantation approaches
for two conditions with distinct design needs: Parkinson’s disease and cortical injury. We discuss
the current status and future application of injections of dopaminergic cells for the treatment of
Parkinson’s disease as well as the use of structured grafts such as brain organoids for cortical repair.

Keywords: neural replacement; brain organoids; tissue engineering; Parkinson’s disease

1. Introduction

In December 1999, on the eve of the 21st century, Professors Richard Winn and Matthew
Howard published an opinion piece in The Lancet with predictions for what would transpire
in the next 100 years in neurosurgery [1]. Their central thesis described a shift from the
mechanical era to a biological era of neurosurgery, with therapies increasingly focused
on interventions at the cellular level. In many ways, this idea has proven to be extremely
prescient. In recent years, research into neural repair via cellular transplantation has grown
to include increasingly sophisticated cell constructs and methods, including the use of
self-organizing brain organoids.

Cell therapy is thought to mediate neural repair through two categories of mechanisms.
The first category relies on activation of “bystander effects” that facilitate endogenous
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regeneration mechanisms and modulate immune responses. The second category is the
replacement of damaged tissue to directly restore function [2,3]. In this paradigm, engrafted
neurons incorporate into host neuronal networks to supplement or restore brain function
and cerebral processing capacity. In cases of moderate to severe brain damage, bystander
effects and endogenous repair may be insufficient to restore function. Neural substrate
expansion to directly replace damaged cells is the natural alternative.

An early strategy for neural replacement therapy involved the transplantation of
fetal neural tissue into a damaged brain region. In 1979, a pair of landmark studies were
published describing a significant reduction in motor abnormalities in parkinsonian rats
following transplantation of mesencephalic tissue, which contains a high proportion of
dopaminergic neuroblasts, into the caudate nucleus [4,5]. These successes led to two double-
blind clinical trials in the late 1990s of intrastriatal implantation of fetal mesencephalic
tissue in Parkinson’s disease patients [6,7]. Similar fetal tissue-based approaches were
concurrently explored for cortical repair, with rodent fetal cortex transplanted into injury
cavities in the cortex of adult rodents [8–10]. These fetal cortical grafts were shown to inte-
grate with host brain and appeared to develop appropriate functional attributes [4,11,12].
These fetal grafts also formed targeted long-distance connections within the host brain as
well as participated in limb movements [12,13]. However, the significant ethical concerns
and limited availability of fetal tissue have limited their clinical translation.

Induced pluripotent stem cell (iPSC)-derived cultures represent a more readily translat-
able alternative [14–16], with iPSC-derived cell systems spanning from monolayer cortical
cultures to region-specific brain organoids. Great progress has been made in developing
protocols for generating a wide range of neural cell types in vitro. In addition, autologous
iPSCs have been used to generate patient-matched grafts, which enable transplantation
strategies that dispense with the need for immunosuppression [17]. Transplanted iPSC-
derived neurons have been shown to behave similarly to fetal neural tissue in preclinical
models in several key respects, including long-distance axonal outgrowth [18–20] and their
electrophysiological and neurochemical properties [15,21].

Overall funding for stem cell research in the United States has gradually increased over the
past 25 years, greatly buoyed by private and individual state-level investments [22–24]. Total
stem cell research funding by the National Institutes for Health consistently increased from
fiscal year 2013 to fiscal year 2024, rising from 1.273 billion to 2.365 billion dollars [25]. In
addition, state governments, most notably California, have made significant commitments
to stem cell and regenerative medicine research. The California Institute for Regenerative
Medicine has committed 3 billion dollars to these efforts, including several large projects
involving transplantation-based repair [26].

In aggregate, these developments have stimulated significant interest in applying
neural replacement therapy to a range of neurological conditions. To optimize the suc-
cess of these therapies, it is essential to consider the context of the disease process for
which neural replacement therapy is being applied, especially with respect to the design
parameters of the ideal graft. Neural replacement therapy is far from “one-size-fits-all”. To
illustrate this point, we discuss recent progress in neural transplantation approaches for
two specific conditions with distinct design needs: Parkinson’s disease (PD) and cortical
injury. We consider treatment approaches for PD directed at dopamine replenishment,
namely injections of dissociated dopamine progenitor cells, as well as strategies aimed at
more extensive reconstitution of the nigrostriatal pathway. By comparison, strategies for
cortical repair may require more highly structured substrates that reflect the organization
of cortex. To this end, we review recent developments for engrafted brain organoids as
well as remaining challenges for clinical translation.

2. Neural Repair Approaches Should Reflect Disease-Specific Needs

Neurological disorders encompass a wide range of pathologies and neuroanatomical
structures. Cell therapies should be tailored to restore function based on an understanding
of the underlying neuroanatomy and disease mechanisms. While significant progress has
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recently been made towards developing therapies for many neurological conditions, PD
and cortical injury represent a particularly interesting comparison due to the contrasting
design needs of a neural replacement therapy for each of these diseases. Parkinson’s disease
primarily affects a single cell type, dopaminergic neurons in the substantia nigra (SN) of
the midbrain. On the other hand, cortical injury, such as traumatic brain injury, stroke,
and surgical resection of lesions, involves disruption of a highly organized horizontal and
vertical structure formed by many cell types (Figure 1). Therefore, neural replacement
approaches for these two conditions have disparate needs that reflect these differences. Cell
therapies for other conditions will require tailoring the repair substrates to the structure of
the relevant affected brain regions.
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creation of clinically translatable dopaminergic neurons has been an iterative process, and 
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As therapeutic strategies move forward, several key design needs for PD bear careful con-
sideration. First, the SNpc is primarily comprised of densely clustered DA cell nuclei and 
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Many classical symptoms of Parkinson’s disease are caused by a decrease in dopaminergic innervation
of the striatum due to loss of dopaminergic cells in the substantia nigra pars compacta. Dashed
arrows represent the nigrostriatal pathway. By comparison, the cerebral cortex has an elaborate
cytoarchitecture comprising six layers, which is disrupted in conditions such as traumatic brain
injury and stroke. L1 represents the most superficial cortical layer, while L6 represents the deepest
layer. In Alzheimer’s disease (AD) the hippocampus is significantly affected, often accompanied by
ventricular enlargement and cortical shrinkage. Therefore, neural replacement strategies for each of
these conditions should reflect the structure of the damaged tissue.

Neural repair for PD has long been focused on the replacement of dopamine in the
basal ganglia [4–7]. The fundamental pathology of PD is the loss of dopaminergic neurons
in the substantia nigra pars compacta (SNpc), which projects to the striatum [27,28]. The
creation of clinically translatable dopaminergic neurons has been an iterative process, and
it has recently yielded promising methodologies for generating the desired cells [20,29]. As
therapeutic strategies move forward, several key design needs for PD bear careful consider-
ation. First, the SNpc is primarily comprised of densely clustered DA cell nuclei and lacks
extensive laminar architecture [30]. This anatomy supports injection of dissociated cells as
a viable treatment for PD, whereas dissociated cells may be unsuitable for repair of more
highly structured brain regions. Second, the location for injections, either the SN or striatum,
is an important parameter. Intrastriatal transplantation has the advantage of delivering DA
near to its target structure, with transplanted DA cells requiring only short-distance axonal
outgrowth to synapse with host striatal neurons [31–33]. However, this ectopic placement
prevents engrafted cells from receiving appropriate afferent inputs and participating in the
basal ganglia feedback circuit. By comparison, intranigral transplantation may represent
a more effective approach for true reconstruction of the nigrostriatal pathway [34]. The
challenge with this approach is the need for intranigral grafts to send long-distance axons
to the striatum [35], an obstacle that may limit the degree of DA replenishment compared
to intrastriatal grafts. Therefore, while recreating the nigrostriatal pathway may represent
the most complete repair of degenerated host circuitry, it bears consideration whether the
benefits of normal feedback signaling to the SN are outweighed by the added technical
requirements of intranigral grafting.
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In contrast, effective neural replacement therapy for cortical injury will likely require
the use of a neural substrate that reproduces the structural and functional complexity of
the cerebral cortex. The high degree of vertical and horizontal structure within the cortex
gives rise to the cortical circuitry that mediates information processing and supports a
wide range of cognitive functions [36]. The laminar organization of neocortex, which is
comprised of six distinct cellular layers, enables specific patterns of connectivity, with each
layer having distinct sources of afferents and efferents [37]. This pattern of information flow
through cortical layers gives rise to the canonical cortical “microcircuit”, which performs
processing that is central to cortical function. Functionally similar cells are also radially
aligned to form cortical columns, with variations within patterns of vertical and horizontal
connectivity contributing to differences in circuitry across different cortical regions [38].
Lastly, interneurons within these columns form extensive connections to modulate network
activity [39–41]. Given these important features, a cell product designed for cortical repair
should possess sufficient structure to support sophisticated function.

In the remainder of this review, we will discuss recent progress in the development
of neural replacement strategies for PD and cortical repair. We will consider how these
approaches address the design needs of cell therapies for each condition, as well as areas
for further investigation.

3. Restoring the Nigrostriatal Pathway in Parkinson’s Disease

Parkinson’s disease is a neurodegenerative disorder that is pathologically character-
ized by the progressive loss of dopaminergic neurons projecting to the striatum from the
SN of the midbrain. The lack of dopaminergic innervation results in disruption of the
direct and indirect pathways of the basal ganglia, which causes the tremor and rigidity
that are the clinical hallmarks of PD. While current treatments such as levodopa and deep
brain stimulation can mitigate PD symptoms, they do not address the underlying death
of DA neurons that causes motor impairment. Cell transplantation therapy that directly
replaces lost DA neurons with exogenous cells has therefore long been the focus of intense
research. Approaches that have been investigated for cell replacement in PD fall into the
general categories of (1) fetal mesencephalic tissue, (2) stem cell-derived DA neurons, and
(3) tissue-engineered constructs that mimic the nigrostriatal pathway

a. Transplantation of fetal mesencephalic tissue demonstrates proof-of-principle for
neural replacement

Early cell replacement efforts for PD demonstrated the high therapeutic potential
of neural replacement therapy but also revealed several obstacles. In the 1980s, a series
of pre-clinical transplantation studies was performed using DA progenitors from mid-
trimester rat fetuses, guided by the premise that reinnervation of the denervated striatum
would ameliorate symptoms of PD [4,42]. The authors observed recovery of motor function
in transplanted animals, with the degree of improvement correlated with the degree
of reinnervation of the host striatum by engrafted cells. The strength of these results,
supported by additional experiments producing similar results when human fetal DA cells
were transplanted into parkinsonian rats [43], led to the first clinical trial in 1987 by Madrazo
and colleagues in Mexico [44]. This trial was shortly followed by the initiation of similar
trials in the United States [45], England [46], Spain [47], France [48], and Belgium [49]. The
results of this wave of early trials were heterogeneous, with significant benefits observed
in some patients [50–52] and modest to no benefit in others [53,54]. In addition, wide
discussion took place surrounding the significant ethical issues associated with fetal tissue
research [55]. Notably, US federal policy prohibited the use of National Institutes of
Health funding to support research into transplantation of human fetal tissue until it
was overturned by the Clinton administration in 1993 [56]. While fetal mesencephalic
tissue ultimately proved to be unsuitable for broad clinical use due to ethical and logistical
concerns, these early studies created a foundation upon which subsequent approaches
were built. Therefore, it is valuable to consider the successes and challenges of these
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initial trials of fetal mesencephalic tissue transplantation in detail and how they informed
subsequent efforts.

The degree of efficacy in clinical trials of fetal mesencephalic tissue transplantation was
highly variable. This heterogeneity of clinical benefit was observed both between studies
as well as between patients within an individual study [6,7,57,58]. While some cases were
observed to have increases in striatal 18F-Dopa uptake at the transplanted site and moderate
improvements in motor symptoms, other patients had limited graft survival or developed
graft-induced side effects [6,7]. Several potentially causal factors were suggested, including
problems with patient selection, immunosuppressive protocols, surgical approach, and
trial design [6,7,58]. For example, older patients may have had more advanced disease and
been non-responsive to levodopa before the start of these clinical trials [59]. In addition,
this group of patients may have had a lower degree of neural plasticity as well as less
diffuse PD pathology [6]. Furthermore, neuroinflammation is known to increase with age,
such that older patients may have suffered from an increased post-transplantation immune
response with subsequent reduced survival of engrafted cells [60]. Overall, these clinical
trials suggested that DA cell replacement had the potential to reduce disease progression,
but the underlying biology was not fully understood. Closer examination of trial results is
therefore highly relevant in considering future therapies.

These initial fetal tissue transplantation clinical trials established proof-of-principle
for long-term graft survival and striatal reinnervation, despite providing inconsistent
clinical benefits. Post-mortem findings from 18 months [61] and 4 to 16 years post-
transplantation [7,28,62] revealed extensive graft survival and striatal innervation. More
recently, a post-mortem study reported graft survival in a single patient 24 years post-
transplantation, representing the longest post-grafting interval reported to date [63]. Graft
survival was also confirmed using 18F-dopa PET in clinical trials [6,64]. Collectively,
these results indicate that long-term graft survival is clearly possible, although clinical im-
provements were variable. Notably, post-mortem immunohistochemical analysis showed
microglial infiltrates in grafts for four patients, suggesting a sustained immune response [7].
Interestingly, strong graft survival and reinnervation of the striatum were not consistently
correlated with clinical benefits, particularly in patients who were older at the time of
transplantation [7,53,54]. It has been proposed that this may be related to progressive DA
denervation in areas outside the graft-innervated region, such that patients with more
advanced PD did not experience benefits [65]. Consequently, transplantation approaches
may require implantation sites to be tailored to individual patient pathology to optimize
functional outcomes.

The potential for graft-induced side effects, primarily dyskinesias, was a key concern of
the early clinical trials. In a 2001 double-blind study led by Curt Freed and colleagues, 5 out
of 33 patients receiving a transplant developed dyskinesias [6]. Olanow and colleagues
later reported an even higher rate of dyskinesias (13 of 23 patients), including three patients
with dyskinesias that were disabling and required additional surgical intervention [7].
Several mechanisms have been suggested to underlie these graft-induced dyskinesias,
including graft contamination by serotonergic neurons [66]. This hypothesis is supported
by a significant attenuation of dyskinesias following administration of a 5-HT1A receptor
agonist, busiprone, which reduces the activity of serotonergic cells [66,67]. The 5-HT1A
autoreceptor, an inhibitory G-protein coupled receptor, is known to be highly expressed
on serotonergic neurons, where it functions to hyperpolarize cells and decrease serotonin
release [68]. Alternatively, dyskinesias may arise due to unequal distribution of injected
cells, leading to “hot spots” of DA neurons [69,70]. Lastly, it is possible that dyskinesias are
the result of inadequate feedback signaling to the intrastriatal DA cell grafts, resulting in
uncontrolled levels of DA in the striatum.

Despite heterogeneous outcomes, the strong graft survival and significant clinical
benefit to some patients in these early fetal mesencephalic tissue transplantation trials
catalyzed research into neural replacement strategies for treatment of PD. Neural stem
cells (NSCs) were viewed as a potential alternative cell source, which could be injected
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into the nigrostriatal pathway and receive cues from the host microenvironment to dif-
ferentiate towards a DA cell phenotype. Several early studies were performed based on
this hypothesis, demonstrating promising functional and behavioral recovery in parkin-
sonian rodents transplanted with NSCs [71,72]. However, subsequent preclinical studies
strongly suggested that the benefits of NSC grafts were mediated by bystander effects
rather than cell replacement [73–76]. The long-term outlook of this approach remains to be
determined. The strategy of stem cell-derived DA neurons has largely overtaken NSCs as a
more effective strategy for true cell replacement in PD.

b. Stem cell-derived dopaminergic cells as a translatable alternative to fetal tissue

Stem cell differentiation has been regarded as one of the most promising means to
produce human DA cells for transplantation-based PD therapies. In this approach, in vitro
culture conditions are used to pattern human stem cells to produce DA progenitor cells,
which can then be isolated for transplantation. This approach bypasses both the ethical
issues associated with fetal grafts as well as the low DA cell yield observed in NSC grafts. In
2011, the Studer lab published a protocol for efficient generation of midbrain DA neurons
from iPSCs [77]. This method pairs floor plate induction with dual SMAD inhibition
to reliably produce tyrosine hydroxylase-positive DA neurons. However, the reliance on
animal-derived factors, namely KnockOut Serum Replacement (KOSR), posed a meaningful
barrier to translation. When differentiation was attempted using synthetic alternatives
to KOSR, the quality of resulting DA neurons was found to be significantly decreased.
This problem was recently resolved by the Studer group in 2021 [29], a full decade after
the publication of their initial floor plate protocol. Using bi-phasic WNT activation, DA
neurons can now be consistently derived from iPSCs without introduction of contaminants
from animal-derived reagents.

This differentiation protocol was then used to perform preclinical studies using hESC-
derived cryopreserved DA neurons [20]. Cryopreservation enables the delivery of a cen-
trally generated cell product to different clinical locations, which would not be possible
with fresh cells. The Tabar and Studer labs therefore tested the intrastriatal transplantation
of cryopreserved hESC-derived DA cells, a final cell product labeled as MSK-DA01, into
a parkinsonian rat model [20]. At 8 months post-transplantation, transplanted rats were
found to have improved motor skills compared to animals injected with vehicle based on
amphetamine-induced rotational testing. Transplanted animals were shown to have signifi-
cantly fewer amphetamine-induced rotations per minute. The efficacy of the treatment was
further supported by histological data showing axonal outgrowth of the engrafted cells.
These findings set the stage for clinical trials, which began in May 2021.

The Phase I safety study of MSK-DA01, an allogeneic cell product derived entirely
from the WA09 hESC line, was conducted by BlueRock Therapeutics and Bayer. The
study enrolled 12 patients who had been diagnosed with PD between 5 and 15 years
before the start of the trial and still demonstrated response to levodopa [78]. Surgical
transplantation of MSK-DA01 cells was performed to the post-commissural putamen
bilaterally at one of two different doses: 5 patients received 0.9 million cells per putamen,
and 7 patients received 2.7 million cells per putamen. Transplantation was followed by
1 year of immunosuppression. Recently, results were released indicating that the study
met safety and tolerability objectives with no serious adverse events directly related to
introduction of the DA cells [79]. Furthermore, initial findings indicated an improvement in
motor symptoms. The Hauser Diary, a measurement of time patients spend symptomatic,
indicated an improvement in both dosage groups, with the higher dose producing the
most improvement [79–81]. Following these results, a Phase II study is being initiated with
planned enrollment beginning in the first half of 2024 [79].

Other notable clinical trials of stereotactic injection of human pluripotent stem cell
(hPSC)-derived DA progenitor cells have also been conducted in parallel (Table 1). Stud-
ies conducted by Kyoto University, Weill Cornell/Massachusetts General Hospital, and
upcoming Aspen trials are all notable for their use of true autografts derived from patient-
derived iPS cells. A set of clinical trials was initiated in Japan in 2018 (JMA-IIA00384,
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UMIN00003356) as a collaboration between the Center for iPS Cell Research and Appli-
cation (CiRA), Kyoto Hospital, and Astellas Pharmaceuticals. These studies used similar
inclusion criteria to the more recent BlueRock/Bayer trial, with seven patients receiving a
single dose of 2.4 million iPSC-derived DA neurons in August 2018 [82]. A single patient
also received implantation of DA progenitors derived from autologous iPSCs through a
collaboration between Weill Cornell Medical Center and Massachusetts General Hospi-
tal [83,84]. In the Weill Cornell/Massachusetts General Hospital trial, stereotactic injection
delivered cells into the left hemisphere of the putamen, with a second injection into the
right hemisphere 6 months later. Stabilization or improvement of clinical symptoms was
observed 18 to 24 months after DA cell injection, and no adverse events were reported.
Collectively, these results are highly encouraging for the therapeutic potential of DA cell
replacement for PD.

There remain some outstanding questions and obstacles revealed by these trials, pri-
marily related to optimal surgery delivery techniques, long-term outcomes, and scalability
of approach. The surgical method used for graft implantation is critical for optimizing
both the survival and distribution of injected cells. Schweitzer and colleagues developed a
“columnar” injection protocol, wherein DA cells were deposited at a constant rate along a
designated segment of the track created by the surgical cannula [83]. By using the cannula
track itself and injecting the cell suspension at a constant rate while the cannula was re-
moved, a uniform density of cells may be seeded with a greater contact surface between the
graft and the adjacent host tissue. Further optimization of surgical techniques will likely
lead to greater improvements in graft outcomes.

The initial inflammatory response to the cell transplantation procedure is another key
factor in determining survival of engrafted DA cells. A recent study highlighted the role of
acute neuroinflammation in guiding the differential survival of tyrosine hydroxylase(TH)-
positive and TH-negative engrafted cells [60]. Park and colleagues performed transplan-
tation of DA progenitor cells into large lesions in rodent striatum, both with and without
co-injection of autologous regulatory T-cells. Co-injection of regulatory T-cells resulted in a
significant increase in survival of engrafted TH-positive cells at both two weeks and twenty
weeks post-transplantation. In addition, co-injection with regulatory T-cells produced
larger improvement in amphetamine-induced and apomorphine-induced rotation tests
than DA progenitor cells alone. Overall, this suggests that immune cells clearly have a role
to play in neural repair strategies.

The long-term efficacy and side effects of DA cell therapy are also not yet fully un-
derstood. While case reports have described long-term outcomes of a small number of
patients [57,63], more systematic studies are needed to make reliable inferences. The final
cell type composition of DA cell products must be further studied over longer differen-
tiation periods, given concerns associated with serotonergic cells possibly giving rise to
dyskinesias. Additionally, the question of whether autologous grafts have genetic predis-
positions to PD pathologies over the long term remains unanswered. Furthermore, it may
be the case that transplanted cells will become “infected” by pathologic alpha-synuclein
from diseased native cells. Postmortem studies from trials of fetal tissue transplantation
revealed a gradual accumulation of alpha-synuclein in graft cells [62,63], although data
were insufficient to determine if there was any clear functional impact of this pathology.

The overall scalability of iPSC-derived DA progenitor cells remains unclear. While
these cell products can theoretically be produced at large scale to clinical standards, the
efficiency of the production process and necessary quality control testing have yet to be
fully tested on a commercial scale. Processes such as cryopreservation of DA cells [20] may
allow for distribution to various clinical sites. However, the efficacy of this approach must
be assessed when more broadly implemented. Overall, it will be essential to maintain best
practices as the manufacture of hPSC-derived DA cells is expanded. Results from a Phase
III trial may provide further insight into these issues.
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Table 1. Ongoing clinical trials of dopamine cell replacement for treatment of Parkinson’s.

Cell Source Title Sponsor Phase Number of
Participants

Immuno-
Suppression

Used
Trial Start Clinical Trial ID Reference

hESC/NSC-
derived DA
progenitors

Parthenogenetic
hNSCs

A single arm, open-label phase 1
study to evaluate the safety and

tolerability of ISC-hpNSC injected
into the striatum and substantia nigra
of patients with Parkinson’s disease

Cyto Therapeutics I 12 Yes 2016 NCT02452723 Garitaonandia
et al., 2016 [85]

hESC-derived
mDAPs

(MSK-DA01)

Phase 1 safety and tolerability study
of MSK-DA01 cell therapy for
advanced Parkinson’s disease

BlueRock Thera-
peutics/Memorial

Sloan
Kettering/Weill

Cornell

I 12 Yes 2021 NCT04802733 Piao et al.,
2021 [20]

hESC-derived
mDAPs

(STEM-PD)

STEM-PD trial: A multicentre, single
arm, first in human, dose-escalation

trial, investigating the safety and
tolerability of intraputamenal

transplantation of human embryonic
stem cell derived dopaminergic cells

for Parkinson’s disease
(STEM-PD product)

Lund Univer-
sity/Cambridge

University
I/II 8 Yes 2022 EudraCT-2021-

001366-38
Kirkeby et al.,

2023 [86]

hiPSC-derived DA
progenitors

Autologous
hiPSC-derived

mDAPs

Transplantation of autologous
midbrain dopaminergic neuron

precursors derived from a
Parkinson’s disease patient’s induced

pluripotent stem cells

Harvard
University N/A 1 No 2017 IND17145 Schweitzer et al.,

2020 [83]

Allogeneic
hiPSC-derived

mDAPs

Kyoto trial to evaluate the safety and
efficacy of iPSC-derived

dopaminergic progenitors in the
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c. Tissue-engineered constructs to reconstruct the nigrostriatal pathway

Tissue-engineered nigrostriatal pathway (TE-NSP) technology represents an alterna-
tive approach to cell therapy for PD that has the potential to not only replace decreased
endogenous dopamine but also reconstruct the long-distance axonal connections that
comprise the nigrostriatal pathway. While injections of dissociated dopaminergic cells
may form grafts that effectively increase dopaminergic signaling in the striatum, they are
very unlikely to rebuild degenerated nigrostriatal circuitry. Consequently, the DA cells
may be unable to respond to feedback signaling that normally regulates the substantia
nigra, and the appropriate timing of dopaminergic signaling in the striatum may not be
restored [6,74,88]. This lack of feedback regulation may limit the effectiveness of DA cell
therapy and contribute to increased risk of side effects such as dyskinesias.

TE-NSPs, comprising a miniature tubular hydrogel seeded with dopaminergic neurons
and extracellular matrix components [89–93], may allow for more effective restoration of
the motor control feedback circuit between the SN and striatum (Figure 2). While TE-NSPs
constructs typically have a diameter of only a few hundred microns, they can support
long axonal growth. For example, a recent study demonstrated 9 mm of axonal after
28 days in vitro [94]. The seeding of TE-NSPs with neural aggregates rather than dissoci-
ated neurons produced a 10-fold increase in the rate of axonal outgrowth [94]. Importantly,
TE-NSPs could be stereotactically injected without disruption of axonal projections within
the column [34]. In a rat parkinsonian model, TE-NSP neurons survived in the SNpc,
and axons extended to integrate within the striatum [95]. Also, TE-NSPs fabricated using
hPSC-derived DA neurons were grown to scaled-up dimensions, comprising 200,000 DA
neurons with axonal projections of >2 cm [93]. Seeding of columns with hPSC-derived DA
cells and subsequent injection may therefore more directly address the design needs of
neural replacement therapy for PD. TE-NSPs may also be used to deliver brain organoids
with associated axon tracts [96], which contain multiple neural cell types and more ex-
tensive cytoarchitecture. A similar approach may be applied using midbrain organoids.
Translation of this next-generation strategy for PD treatment is currently being spearheaded
by Innervace, Inc. (New York, NY, USA).
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Figure 2. Workflow for iPSC-derived dopaminergic progenitor cell treatment for Parkinson’s dis-
ease: Injection of dissociated cells and implantation of engineered microcolumns. (a) A represen-
tation of the generation of midbrain dopaminergic (DA) progenitor cells by human pluripotent stem
cell (PSC) culture, followed by quality control and cell intrastriatal (green arrow) or intranigral (red
arrow) injection. (b) Tissue-engineered nigrostriatal pathway (TE-NSP) technology may be used to
deliver DA cells to more specifically reconstitute nigrostriatal circuitry.

There remain several key aspects of TE-NSP technology that need to be optimized for
the clinical setting. The length of axonal outgrowth must be further increased to address the
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greater length of the nigrostriatal pathway in humans relative to animal models. In addition,
survival of engrafted cells and maintenance of axonal integrity requires investigation in the
context of a larger brain, with long-term follow-up. Finally, there are important surgical
considerations associated with implanting TE-NSPs, which requires a different approach
than the established procedure for injection of dissociated cells. While scaling up the
strategy used for TE-NSP implantation into animal models [34] may represent a solution,
long-term safety and efficacy must be verified for clinical translation.

4. Structured Grafts for Cortical Repair

Repair of the cerebral cortex represents an area of great unmet clinical need, with no
options currently available for functional replacement of lost tissue in conditions such as
traumatic brain injury, stroke, and surgical resection of lesions. We propose that structured
neural grafts that more closely reproduce normal cortical architecture are the optimal repair
substrate for damaged cerebral cortex. The laminar architecture of cortex, described earlier,
plays a key role in visual processing and has been shown to be highly preserved across
other cortical areas [97,98]. Cortical layers connect to form a canonical microcircuit, with
information flowing from the thalamus through the cortical laminae and then back to
subcortical targets. In addition, layers II/III and V form horizontal, intralaminar connec-
tions. This structural arrangement, if present in an engineered tissue in vitro and preserved
following transplantation, could result in structured grafts that more efficiently integrate
with the host cortex and augment its computational capacity. Overall, the reproduction of
tissue architecture may be one of the most notable advantages of using 3D relative to 2D
cell systems as neural grafts for cortical repair.

a. Neural replacement as a treatment for cortical injury

Investigation into transplantation-based cortical repair followed a similar trajectory
to that discussed for PD. Pioneering experiments were performed using insertion of fetal
cortical grafts into aspiration injury cavities in adult rats, with the authors reporting func-
tional integration with host cortex at up to 10 months post-transplantation [11]. In another
notable study, fetal cortical cells were inserted into adult rats following a fluid percussion
injury, with observation of subsequent improvements of motor and cognitive function [99].
Further studies were performed using intracranial bone marrow transplantation [100] as
well as NSCs derived from multipotent cell lines [101], with both approaches demonstrat-
ing functional improvement in small animal models of traumatic brain injury. Notably,
however, the functional benefit associated with cell transplantation in these studies is likely
to have been mediated by bystander effects. By comparison, seminal work by the Kokaia
group showed that transplanted rat NSCs formed specific corticothalamic and contralat-
eral hippocampal connections and received functional synaptic inputs from neighboring
host neurons [102]. This evidence of functional integration of engrafted cells with host
circuitry provided important support for neural replacement as a potential strategy for
cortical repair.

The development of more robust cortical neuron differentiation protocols enabled
investigation into the use of hPSC-derived neurons to rebuild cortical circuits [103,104].
The Vanderhaeghen group transplanted hPSC-derived cortical neurons into neonatal mice,
reporting integration and up to 9-month survival of engrafted cells [104]. Later, Vander-
haeghen and colleagues transplanted mouse ESC-derived neurons of visual cortex identity
into an injury cavity in mouse visual cortex, observing formation of long-range reciprocal
connections with the surrounding intact host circuitry [105]. In a subsequent study, intra-
ventricular injection of hPSC-derived cortical neurons resulted in the integration of human
neurons with mouse cortex and the adoption of orientation selectivity [106]. Furthermore,
these studies demonstrated responses of engrafted neurons to visual sensory stimulation
of host animals. Separately, the Kokaia group transplanted hPSC-derived cortical neurons
into stroke-damaged rat cortex, resulting in the formation of efferent connections between
engrafted cells and host cortical and subcortical areas [21]. In an additional set of experi-
ments, engrafted hPSC-derived neurons were shown to receive inputs from host afferents
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and respond to sensory stimuli [107]. Collectively, these studies provide support for the
ability of hPSC-derived neurons to efficiently integrate with host cortex in the setting of
both intact and injured brain.

Clinical trials of cell-based therapies for cortical injury remain ongoing, most notably
for stroke [108]. Initial results have demonstrated that transplantation of bone marrow stem
cells resulted in improvement on multiple stroke scales in patients with chronic stroke [109].
Notably, the study authors proposed that functional restoration observed in these trials
was likely driven by “bystander effect”, such as trophic support provided by secreted
factors, rather than true circuit reconstruction. While such an approach may be suitable for
certain injuries, it is likely inadequate to address cases of more extensive tissue loss with
less intact circuitry. Extensive integration of engrafted cells in the setting of large cortical
injury has only been demonstrated using tissue-based grafts [11,12] rather than injection
of dissociated cells. Therefore, structured grafts may be more suitable for direct neural
replacement for treatment of significant cortical tissue loss.

b. Organoids as an alternative form of structured cortical graft

While fetal cortical grafts may be ideal to use, their translation potential is limited.
Brain organoids, which are self-organizing neural tissues generated from hPSCs, may
be a viable alternative to fetal tissue. Forebrain organoids are produced using directed
differentiation protocols and recapitulate several key features of human embryonic cortical
development. Most notably, forebrain organoids have been shown to contain laminar
structure containing upper- and lower-layer neurons [110,111] as well as outer radial glial
cells [112,113]. Overall, organoids represent the lab-grown brain tissue that has by far the
greatest degree of cortical architecture. Therefore, organoids are a strong candidate for use
as a neural repair substrate.

In the remainder of this section, we discuss recent progress in the organoid field
relevant to their suitability as substrates for use in neural transplantation, including cell type
diversity and potential for regional specification, cortical architecture, electrophysiological
function, and graft survival and appropriate integration. In addition, we consider remaining
challenges to the clinical implementation of organoids as a repair substrate (Figure 3).
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Figure 3. Obstacles to the use of organoids in transplantation-based cortical repair. Brain
organoids currently lack vascularization, leading to internal necrosis due to lack of sufficient oxygen
perfusion and nutrient supply. Organoid culture protocols produce morphologically heterogeneous
organoids which are highly variable in size and number of neural progenitor zones. An optimal
organoid age for specific cortical repair applications must be more precisely identified. A stronger
understanding of organoid microcircuitry, such as the presence of a cortical microcircuit, is important
for improving the utility of organoids in neural repair.
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c. Cell type diversity and potential for regional specification

Brain organoids reproduce the cell type diversity of the brain to a significant extent,
containing a range of neural cell types as well as human-specific outer radial glia, astrocytes,
and oligodendrocytes [111,114,115]. Brain organoids can be generated using whole-brain
protocols that produce a rich diversity of brain cell types [116,117]. However, these entities
demonstrate significant variability in cell populations across both organoid batches and
stem cell lines [117]. Region-specific protocols represent an alternative approach, leveraging
small molecules to guide differentiation. The past decade has seen tremendous progress
in this area, with organoids recapitulating dorsal forebrain [118–120], hippocampus [121],
thalamus [122], hypothalamus [111], cerebellum [123], ventral forebrain [124–126], mid-
brain [127], and choroid plexus [128]. Regional specification is meaningful in the context of
neural transplantation since the regional identity of engrafted neurons is crucial to effective
reconstruction of cortical circuitry [104,129,130]. In addition, region-specific organoids have
been shown to be have less batch-to-batch and inter-batch variability than whole-brain
organoids [131], representing a meaningful advantage for clinical translation.

While organoids derived using region-specific differentiation protocols may lack the
full complement of cell types, organoids may be supplemented with underrepresented
cell types such as interneurons. The Gage group recently demonstrated the feasibility of
supplementing organoids with other cell types by adding microglia to cortical organoids
prior to transplantation into mouse retrosplenial cortex [132]. Assembloids have also been
created by fusing two different region-specific organoids, including cortico-striatal [129],
cortico-thalamic [126,133], and cortico-motor assembloids [134]. This approach may simi-
larly be used to incorporate interneurons into organoids [124,125,135], thereby enhancing
their potential as a substrate for transplantation-based repair.

d. Electrophysiological activity

Importantly, brain organoids can be maintained for the long culture times necessary
for functional maturation. Cortical organoids have been shown to demonstrate steady
increases in firing rate, synchronicity, population spiking events, and burst frequency
during 10 months in culture [136,137]. Furthermore, whole-brain organoids have recently
been shown to have action potentials with inter-spike intervals which are exponentially
distributed and have Poisson-like spike trains [138]. Notably, this activity is known to be
an emergent feature of primate cortex [139]. Flexible mesh multielectrode arrays have also
been developed, allowing for the capture of activity from a larger number of sites on the
surface of an organoid [140–142]. However, such approaches are limited by the inability to
record from single cells or from the interior of an organoid.

Oscillatory activity has also been observed in cortical organoids in vitro [135,143].
Notably, oscillations were only observed when cortical organoids were supplemented with
interneurons [135]. Consequently, the authors of this study suggested that the emergence
of multi-frequency oscillatory activity in organoids is dependent upon the presence of
inhibitory interneurons. The balance between excitatory and inhibitory synaptic inputs
within a neural circuit is highly important to brain function, with specific interneuron
subtypes supporting electrophysiological features such as feedforward inhibition, feed-
back inhibition, and disinhibition [144]. Organoids, particularly region-specific, cortical
organoids, are known to lack somatostatin-positive and parvalbumin-positive interneu-
rons [145], two important populations which migrate from the ganglionic eminence to the
dorsal telencephalon during development [146,147]. Oscillations have also been reported
in unfused whole-brain organoids [138], which are known to contain a wider range of
neural cell types albeit in stochastic proportions [117]. Overall, this suggests that a more
representative number of inhibitory interneurons may allow organoids to more closely
approximate normal cortical activity.

e. Graft survival and integration

Recent organoid transplantation studies have demonstrated robust graft survival [132,
148–151]. For example, Revah et al. and Jgamadze et al. similarly observed surviving
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organoid grafts in >80% of transplanted animals at 2 months and 1, 2, and 3 months post-
transplantation, respectively. By comparison, attempts at transplantation of dissociated
neurons have observed <10% survival of engrafted cells [152], with low graft survival also
seen in other studies using injections of dissociated cells for injury repair [153–155]. This
large difference in survival rate of structured grafts versus dissociated cells has also been
noted in embryonic tissue transplants, with pieces of engrafted tissue performing better
than injection of a cell suspension [156,157].

Remarkably, brain organoid grafts achieve functional integration with host circuits.
They show brain region-specific electrophysiological responses, as demonstrated using
visual stimulation [158,159] as well as sensory stimulation [150]. Notably, neurons in
engrafted organoids have also been shown to possess more sophisticated function such
as orientation selectivity [148]. There is also evidence that stimulation of grafts can affect
animal behavior, although not in a brain region-specific manner [150]. This degree of
functional integration supports the translational potential of organoids.

f. Challenges and possible next steps

i. Vascularization

Current organoids lack vascularization, leading to inadequate nutrient supply, oxygen
perfusion, and exchange of waste. These factors result in the development of necrosis at
the core of the organoid as it enlarges, limiting the size to which healthy organoids can be
grown. While several approaches have been used to overcome this constraint, including
organoid slicing [113], agitation of media [116], use of air-liquid interfaces [158], and use of
hyperoxic conditions [118], further optimization work remains necessary.

Several strategies for brain organoid vascularization may be viable to pursue. The co-
culture of stem cells with human umbilical vein endothelial cells (HUVEC) prior to neural
differentiation has been used to generate pre-vascularized cortical organoids [160]. This
approach has the advantage of generating organoids with fully integrated blood vessels as
early as day 42 in vitro, likely before any significant necrosis may occur. However, the con-
sequences of HUVEC signaling during neural differentiation requires further exploration,
as it is possible that the presence of HUVECs may perturb neural patterning. Another
approach involves using doxycycline-inducible ectopic expression of the embryonic tran-
scription factor human ETS variant 2 to begin vascularization in day 18 organoids [161].
A third protocol relies on the application of soluble factors such as vascular endothelial
growth factor and angiopoietins to stimulate vascular growth in partially differentiated
organoids [159]. These latter two strategies fail to generate branched vascular networks, in-
stead producing a small number of large but disconnected vessels throughout the organoid.
Furthermore, in all of these methods of organoid vascularization, the blood vessels still
lack a central pump to create a fully functioning circulatory system. A microfluidic ap-
proach to vascularization, as demonstrated by the Huh and Ingber groups in placental and
lung organoids, respectively [162–164], may enable dynamic fluid flow through organoids.
Notably, organoid vascularization is required for development of a blood-brain barrier,
which plays a key role in regulation of substances entering the brain [165]. However, it
is unlikely that organoid vascularization alone is sufficient for establishment of a true
blood-brain barrier, given the absence of important factors such as shear stress provided by
fluid flow, as well as a full physiological complement of pericytes, oligodendrocytes, and
immune cells [159–161,165]. Overall, further refinement may be required to develop robust
strategies for brain organoid vascularization.

ii. Variability in culture

In addition to cell type diversity, it is important to consider morphological variability
in organoids. Currently, cortical organoids have high variability in their number of cortical
units. These rosettes, comprised of Pax6+ neural progenitor cells surrounded by concentric
layers of neurons, resemble the human ventricular and subventricular zones. The forma-
tion of multiple neural rosettes within organoids represents a challenge for restoration of
cortical structure and translation. Several approaches to producing single-rosette organoids



Brain Sci. 2023, 13, 1654 14 of 23

have recently been studied. A monolayer culture of neuroepithelium may be differenti-
ated within a micropatterned array, which geometrically constrains growth to promote
formation of a single neural rosette [166]. Rosettes are then released from the array and
maintained in suspension culture. In an alternative method, rosettes are manually cut out
of monolayer cultures to form organoids, which are subsequently transferred to suspension
culture [167,168]. These additional processes increase the cost of organoid generation and
decrease overall yield. However, increasing the reproducibility of organoid size and rosette
structure will ultimately be important for clinical translation.

iii. Timeline of maturation

Brain organoid maturity is a parameter that requires careful consideration in the
context of transplantation outcomes. Cortical organoids have been shown to mature at a
similar rate to neurons in the developing human brain [117,131,169], with transcriptomic
and morphological features of day 250–300 organoids generally reflecting those of postnatal
brain [169]. Furthermore, hPSC-derived organoids have been shown to follow a specifically
human developmental timescale, distinctly longer than even those of organoids derived
from cell lines obtained from nonhuman primates [170]. It may be possible that less mature
organoids are optimal for certain cortical repair applications, while more mature organoids
are better suited for others. Consequently, further research is necessary to identify the ideal
organoid age for use in specific cortical repair procedures. Once an ideal age of organoids
is determined, efficient organoid transplantation and integration may require manipulating
the maturation of organoids.

Several strategies have been proposed to accelerate organoid maturation in vitro.
Organoid vascularization has been demonstrated using several methods, as discussed
above. Such approaches aim to generate organoids containing blood vessels, thereby
preventing internal necrosis and more closely approximating normal brain. These studies
have reported an increase in mature neurons within organoids, despite the majority lacking
fluid flow through their vascular networks. Supplementation of organoids with microglia, a
cell type which is absent in current brain organoids, has also been demonstrated to increase
neural maturation [171,172]. Microglia-supplemented organoids were shown to have
increased cell maturity based on single-cell transcriptomic analyses as well as more mature
electrophysiological properties in multi-electrode array recordings. Notably, this result
suggests that supplementation of organoids with other underrepresented cell types, such
as inhibitory interneurons, may represent a promising means of accelerating maturation.

iv. Cortical circuitry

Obtaining a stronger understanding of organoid neural circuity is important for better
defining the utility of organoids as a substrate for neural repair. However, the development
of cortical microcircuitry which is characteristic of neocortex, such as the canonical cortical
microcircuit described earlier, has not been more explicitly studied in organoids. The
presence of organized microcircuitry in neural grafts may enable greater restoration of
function in the injured brain. While extensive cellular characterization of organoids has
been performed, organoid microcircuitry has not yet been explicitly mapped. Therefore,
the development of organoid microcircuitry represents an important avenue for future
study of structured grafts.

5. Conclusions

Global collaboration has led to significant progress in developing neural repair ther-
apies, with more widespread clinical translation appearing increasingly likely. As the
field of central nervous system cell replacement continues to advance, it is prudent to
consider that neural replacement therapies should be guided by the specific design needs
associated with the neurological condition being treated and its relevant neuroanatomy
and neural circuitry. The high structural and functional complexity of the cerebral cortex
means that it is improbable that long-term treatment of cortical injury will be achieved
through injections of dissociated cells. Rather, grafts will likely need to be highly structured
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to enable efficient structural and functional integration with host brain. By comparison,
the distinct pathology of PD—extensive loss of midbrain DA cells—supports the use of
injections of dissociated cells in the striatum. While unstructured grafts of DA progenitor
cells may provide therapeutic benefit for PD by restoring dopamine secretion, subsequent
research may achieve even greater symptom relief and avoidance of side effects through
strategies based on reconstruction of the circuitry of the basal ganglia.

The future of neural replacement therapy will likely involve the use of a wide range
of specific neuronal subtypes, immunomodulatory strategies, and advanced surgical tech-
niques to enable more extensive circuit reconstruction. These may target a multitude of
neurological conditions, with individual therapeutic approaches tailored to address specific
disease pathophysiology and corresponding design needs. The integration of immune
cells into neural grafts has shown promise in preclinical models of Parkinson’s disease [60]
and, more recently, of Alzheimer’s disease [173]. For example, the restoration of microglial
function represents a plausible approach to treatment of Alzheimer’s-associated neurode-
generation [173,174]. Immunomodulation may continue to be a significant focus in tissue
repair, encompassing strategies such as immune checkpoint blockade [175,176] and im-
mune cell engineering [177]. Specifically in the realm of cortical repair, there will likely be a
need to optimize the neuronal subtype composition of grafts to match the areal identity of
damaged tissue. Additionally, the computational capacity of grafts may be enhanced to
support the function of native brain, perhaps through supplementation of grafts with key
interneuron populations. The excitatory-inhibitory balance within a neuronal network is
essential to network activity and has been shown to be dysregulated in conditions such
as Alzheimer’s disease [178]. In addition, strategies such as pre-transplantation graft en-
trainment using optogenetic and chemogenetic tools may increase functional activity in
cell grafts. The integration of structured grafts with existing circuits may also be further
optimized through the use of small molecules and graft-pre-vascularization. Alternatively,
gene therapy may be used for direct neuronal reprogramming from glia to achieve neural
replacement in conditions such as stroke [179]. For example, the neurogenic capacity of
subsets of astrocytes may enable the use of local astrocytic cells for limited replacement
of neurons in the setting of more limited injury [180,181]. In addition, there is evidence
that ependymal cells may become neurogenic following stroke-like injury, with inhibition
of Notch signaling promoting a proliferative response [182]. Finally, neural replacement
strategies may be informed by gene expression and multi-regional analyses to develop
a stronger understanding of disease-based design needs [183]. Collectively, the combi-
nation of methods to generate neuronal subtypes to reflect those lost in a given disease,
advances in transplantation techniques, and novel genetic tools may yield more powerful
and personalized therapies.
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