Cognitive Reserve in Isolated Rapid Eye-Movement Sleep Behavior Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Video-PSG
2.2. Neuropsychological Evaluation
2.3. Motor and Non-Motor Symptoms Questionnaires
2.4. CRIq
2.5. Statistical Analyses
3. Results
3.1. Clinical Characteristics of the Sample
3.2. Characterisation of the Sample According to CRIq
3.3. MCI Distribution across CRIq Levels
3.4. Association between Neuropsychological Performances and CRIq Levels
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Academy of Sleep Medicine. International Classification of Sleep Disorders, 3rd ed.; American Academy of Sleep Medicine: Darien, IL, USA, 2014. [Google Scholar]
- Högl, B.; Stefani, A.; Videnovic, A. Idiopathic REM sleep behaviour disorder and neurodegeneration—An update. Nat. Rev. Neurol. 2018, 14, 40–56. [Google Scholar] [CrossRef]
- Spillantini, M.G.; Schmidt, M.L.; Lee, V.M.-Y.; Trojanowski, J.Q.; Jakes, R.; Goedert, M. α-Synuclein in Lewy bodies. Nature 1997, 388, 839. [Google Scholar] [CrossRef] [PubMed]
- Spillantini, M.G.; Crowther, R.A.; Jakes, R.; Hasegawa, M.; Goedert, M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. USA 1998, 95, 6469–6473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galbiati, A.; Verga, L.; Giora, E.; Zucconi, M.; Ferini-Strambi, L. The risk of neurodegeneration in REM sleep behavior disorder: A systematic review and meta-analysis of longitudinal studies. Sleep Med. Rev. 2019, 43, 37–46. [Google Scholar] [CrossRef]
- Postuma, R.B.; Iranzo, A.; Hu, M.; Högl, B.; Boeve, B.F.; Manni, R.; Oertel, W.H.; Arnulf, I.; Ferini-Strambi, L.; Puligheddu, M.; et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: A multicentre study. Brain 2019, 142, 744–759. [Google Scholar] [CrossRef] [Green Version]
- Barulli, D.; Stern, Y. Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends Cogn. Sci. 2013, 17, 502–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- M. Tucker, A.; Stern, Y. Cognitive reserve in aging. Curr. Alzheimer Res. 2011, 8, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012, 11, 1006–1012. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Yu, J.-T.; Tan, M.-S.; Tan, L. Cognitive reserve and Alzheimer’s disease. Mol. Neurobiol. 2015, 51, 187–208. [Google Scholar] [CrossRef]
- Hindle, J.V.; Martyr, A.; Clare, L. Cognitive reserve in Parkinson’s disease: A systematic review and meta-analysis. Park. Relat. Disord. 2014, 20, 1–7. [Google Scholar] [CrossRef]
- Cubo, E.; Rojo, A.; Ramos, S.; Quintana, S.; Gonzalez, M.; Kompoliti, K.; Aguilar, M. The importance of educational and psychological factors in Parkinson’s disease quality of life. Eur. J. Neurol. 2002, 9, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Perneczky, R.; Häussermann, P.; Drzezga, A.; Boecker, H.; Granert, O.; Feurer, R.; Förstl, H.; Kurz, A. Fluoro-deoxy-glucose positron emission tomography correlates of impaired activities of daily living in dementia with Lewy bodies: Implications for cognitive reserve. Am. J. Geriatr. Psychiatry 2009, 17, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Perneczky, R.; Drzezga, A.; Boecker, H.; Ceballos-Baumann, A.O.; Granert, O.; Förstl, H.; Kurz, A.; Häussermann, P. Activities of daily living, cerebral glucose metabolism, and cognitive reserve in Lewy body and Parkinson’s disease. Dement. Geriatr. Cogn. Disord. 2008, 26, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Perneczky, R.; Häussermann, P.; Diehl-Schmid, J.; Boecker, H.; Förstl, H.; Drzezga, A.; Kurz, A. Metabolic correlates of brain reserve in dementia with Lewy bodies: An FDG PET study. Dement. Geriatr. Cogn. Disord. 2007, 23, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Lamotte, G.; Morello, R.; Lebasnier, A.; Agostini, D.; Bouvard, G.; De La Sayette, V.; Defer, G.L. Influence of education on cognitive performance and dopamine transporter binding in dementia with Lewy bodies. Clin. Neurol. Neurosurg. 2016, 146, 138–143. [Google Scholar] [CrossRef]
- Carli, G.; Boccalini, C.; Vanoli, G.; Filippi, M.; Iannaccone, S.; Magnani, G.; Perani, D. Specific occupational profiles as proxies of cognitive reserve induce neuroprotection in dementia with Lewy bodies. Brain Imaging Behav. 2021, 15, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chen, J.; Xu, X.; Qiao, F.; Wang, X.; Ji, S.; Gu, Z.; Chhetri, J.K.; Chan, P. Education Moderates the Association of Probable REM Sleep Behavior Disorder With Cognitive and Motor Impairments in Community-Dwelling Older People. Front. Neurol. 2020, 11, 109. [Google Scholar] [CrossRef] [Green Version]
- Richards, M.; Deary, I.J. A life course approach to cognitive reserve: A model for cognitive aging and development? Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2005, 58, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Fratiglioni, L.; Paillard-Borg, S.; Winblad, B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 2004, 3, 343–353. [Google Scholar] [CrossRef]
- Reed, B.R.; Dowling, M.; Farias, S.T.; Sonnen, J.; Strauss, M.; Schneider, J.A.; Bennett, D.A.; Mungas, D. Cognitive activities during adulthood are more important than education in building reserve. J. Int. Neuropsychol. Soc. 2011, 17, 615–624. [Google Scholar] [CrossRef]
- Nucci, M.; Mapelli, D.; Mondini, S. Cognitive Reserve Index questionnaire (CRIq): A new instrument for measuring cognitive reserve. Aging Clin. Exp. Res. 2012, 24, 218–226. [Google Scholar] [PubMed]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- Klem, G.H. The ten-twenty electrode system of the international federation. the internanional federation of clinical nenrophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 52, 3–6. [Google Scholar]
- Frauscher, B.; Iranzo, A.; Gaig, C.; Gschliesser, V.; Guaita, M.; Raffelseder, V.; Ehrmann, L.; Sola, N.; Salamero, M.; Tolosa, E.; et al. Normative EMG values during REM sleep for the diagnosis of REM sleep behavior disorder. Sleep 2012, 35, 835–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Marcus, C.L.; Vaughn, B.V. The AASM Manual for the Scoring of Sleep and Associated Events, Version 2.6; American Academy of Sleep Medicine: Darien, IL, USA, 2020. [Google Scholar]
- Measso, G.; Cavarzeran, F.; Zappalà, G.; Lebowitz, B.D.; Crook, T.H.; Pirozzolo, F.J.; Amaducci, L.A.; Massari, D.; Grigoletto, F. The mini-mental state examination: Normative study of an Italian random sample. Dev. Neuropsychol. 1993, 9, 77–85. [Google Scholar] [CrossRef]
- De Renzi, E.; Faglioni, P. Normative data and screening power of a shortened version of the Token Test. Cortex 1978, 14, 41–49. [Google Scholar] [CrossRef]
- Novelli, G.; Papagno, C.; Capitani, E.; Laiacona, M. Tre test clinici di ricerca e produzione lessicale. Taratura su sogetti normali. Arch. Psicol. Neurol. Psichiatr. 1986, 47, 477–506. [Google Scholar]
- Catricala, E.; Della Rosa, P.A.; Ginex, V.; Mussetti, Z.; Plebani, V.; Cappa, S.F. An Italian battery for the assessment of semantic memory disorders. Neurol. Sci. 2013, 34, 985–993. [Google Scholar] [CrossRef]
- Orsini, A.; Grossi, D.; Capitani, E.; Laiacona, M.; Papagno, C.; Vallar, G. Verbal and spatial immediate memory span: Normative data from 1355 adults and 1112 children. Ital. J. Neurol. Sci. 1987, 8, 537–548. [Google Scholar] [CrossRef]
- Kessels, R.P.C.; van Den Berg, E.; Ruis, C.; Brands, A.M.A. The backward span of the Corsi Block-Tapping Task and its association with the WAIS-III Digit Span. Assessment 2008, 15, 426–434. [Google Scholar] [CrossRef]
- Spinnler, H.; Tognoni, G. Italian Group on the Neuropsychological Study of Ageing: Italian standardization and classification of neuropsychological tests. Ital. J. Neurol. Sci. 1987, 6, 1–120. [Google Scholar]
- Carlesimo, G.A.; Caltagirone, C.; Gainotti, G.; Fadda, L.; Gallassi, R.; Lorusso, S.; Marfia, G.; Marra, C.; Nocentini, U.; Parnetti, L. The mental deterioration battery: Normative data, diagnostic reliability and qualitative analyses of cognitive impairment. Eur. Neurol. 1996, 36, 378–384. [Google Scholar] [CrossRef]
- Caffarra, P.; Vezzadini, G.; Dieci, F.; Zonato, F.; Venneri, A. Rey-Osterrieth complex figure: Normative values in an Italian population sample. Neurol. Sci. 2002, 22, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018, 90, 126–135. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. Off. J. Mov. Disord. Soc. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Martinez-Martin, P.; Schapira, A.H.V.; Stocchi, F.; Sethi, K.; Odin, P.; Brown, R.G.; Koller, W.; Barone, P.; MacPhee, G. International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson’s disease: The NMSQuest study. Mov. Disord. Off. J. Mov. Disord. Soc. 2006, 21, 916–923. [Google Scholar] [CrossRef]
- Visser, M.; Marinus, J.; Stiggelbout, A.M.; Van Hilten, J.J. Assessment of autonomic dysfunction in Parkinson’s disease: The SCOPA-AUT. Mov. Disord. Off. J. Mov. Disord. Soc. 2004, 19, 1306–1312. [Google Scholar] [CrossRef]
- Stern, Y. Cognitive reserve. Neuropsychologia 2009, 47, 2015–2028. [Google Scholar] [CrossRef] [PubMed]
- Perneczky, R.; Kempermann, G.; Korczyn, A.D.; Matthews, F.E.; Ikram, M.A.; Scarmeas, N.; Chetelat, G.; Stern, Y.; Ewers, M. Translational research on reserve against neurodegenerative disease: Consensus report of the International Conference on Cognitive Reserve in the Dementias and the Alzheimer’s Association Reserve, Resilience and Protective Factors Professional Interest Area working groups. BMC Med. 2019, 17, 47. [Google Scholar]
- Devos, H.; Gustafson, K.M.; Liao, K.; Ahmadnezhad, P.; Kuhlmann, E.; Estes, B.; Martin, L.; Mahnken, J.; Brooks, W.; Burns, J. Effect of cognitive reserve on physiological measures of cognitive workload in older adults with cognitive impairments. medRxiv 2022. [Google Scholar] [CrossRef]
- Guzzetti, S.; Mancini, F.; Caporali, A.; Manfredi, L.; Daini, R. The association of cognitive reserve with motor and cognitive functions for different stages of Parkinson’s disease. Exp. Gerontol. 2019, 115, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Krch, D.; Frank, L.E.; Chiaravalloti, N.D.; Vakil, E.; DeLuca, J. Cognitive reserve protects against memory decrements associated with neuropathology in traumatic brain injury. J. Head Trauma Rehabil. 2019, 34, E57–E65. [Google Scholar] [CrossRef] [PubMed]
- Sandry, J.; DeLuca, J.; Chiaravalloti, N. Working memory capacity links cognitive reserve with long-term memory in moderate to severe TBI: A translational approach. J. Neurol. 2015, 262, 59–64. [Google Scholar] [CrossRef] [PubMed]
n = 55 | % | |
---|---|---|
Male | 44 | 80.00% |
Hyposmia (yes) a | 26 | 50.98% |
MCI | 18 | 32.73% |
Mean ± SD | Min–Max | |
Age (years) | 66.38 ± 7.51 | 50–78 |
Disease duration (years) | 4.26 ± 3.56 | 0–17 |
Years of education (years) | 12.38 ± 4.11 | 5–23 |
Sleep latency (min) | 28.18 ± 26.49 | 1–123 |
WASO (min) | 70.14 ± 43.02 | 13–247 |
TST (min) | 361.18 ± 58.17 | 221–462 |
%SE | 78.45 ± 10.93 | 41.70–94.20 |
NAWK | 16.24 ± 12.63 | 5–94 |
N1 (%) | 11.66 ± 3.92 | 3.80–23.40 |
N2 (%) | 48.45 ± 8.63 | 29.20–69.40 |
Slow-wave seep (%) | 20.34 ± 10.04 | 4–51.50 |
REM sleep (%) | 20.38 ± 6.73 | 6.80–39.20 |
REM latency (min) | 99.61 ± 55.76 | 13.50–265 |
UPDRS total score b | 7.59 ± 5.59 | 0–22 |
SCOPA total score c | 8.66 ± 6.04 | 0–26 |
NMSS total score d | 26.00 ± 21.18 | 0–71 |
CRI—education | 108.04 ± 13.58 | 84–140 |
CRI—working activity | 111.44 ± 17.84 | 72–159 |
CRI—leisure time | 110.65 ± 22.67 | 72–165 |
CRI—total | 113.33 ± 18.66 | 77–156 |
CRIq Level | Cut-Off | n (%) | M/F | Age (Mean ± SD) | Disease Duration (Mean ± SD) |
---|---|---|---|---|---|
CRIq level 2 | 70–84 | 3 (5.45%) | 2/1 | 71.25 ± 6.40 | 3.67 ± 1.53 |
CRIq level 3 | 85–114 | 25 (44.45%) | 19/6 | 65.77 ± 7.05 | 3.43 ± 2.71 |
CRIq level 4 | 115–130 | 17 (32.73%) | 14/3 | 64.89 ± 8.08 | 4.72 ± 3.85 |
CRIq level 5 | ≥130 | 10 (18.18%) | 9/1 | 69.00 ± 7.18 | 5.27 ± 4.76 |
CRIq Level | iRBD − MCI | iRBD + MCI | ||
---|---|---|---|---|
n | % | n | % | |
CRIq level 2 | 2 | 66.67% | 1 | 33.33% |
CRIq level 3 | 17 | 68.00% | 8 | 32.00% |
CRIq level 4 | 10 | 58.82% | 7 | 41.18% |
CRIq level 5 | 9 | 90.00% | 1 | 10.00% |
Tests | Pathological Cut-Offs | All Patients n = 55 | CRIq Level 2 n = 3 | CRIq Level 3 n = 25 | CRIq Level 4 n = 17 | CRIq Level 5 n = 10 | |
---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p | ||
MMSE | <24.00 | 28.13 ± 1.39 | 27.97 ± 2.12 | 28.49 ± 1.41 | 27.91 ± 1.57 | 27.84 ± 0.55 | 0.638 |
Token test | <26.50 | 32.01 ± 1.89 | 33.12 ± 2.50 | 31.44 ± 2.30 | 32.51 ± 1.46 | 31.86 ± 1.09 | 0.204 |
Semantic fluency | <25.00 | 45.71 ± 8.81 | 49.50 ± 11.15 | 42.73 ± 9.92 | 45.61 ± 6.38 | 50.45 ± 7.46 | 0.107 |
Phonemic fluency | <17.00 | 32.13 ± 10.39 | 37.50 ± 16.92 | 29.09 ± 8.24 | 33.83 ± 12.68 | 33.45 ± 6.50 | 0.405 |
Oral naming test | <41.99 | 47.53 ± 0.91 | 47.85 ± 0.29 | 47.34 ± 1.14 | 47.39 ± 0.91 | 48.00 ± 0.00 | ᵃ |
Digit forward | <4.26 | 5.79 ± 1.05 | 6.16 ± 2.15 | 5.47 ± 1.09 | 5.89 ± 0.89 | 6.17 ± 0.55 | 0.354 |
Digit backward | <2.65 | 4.40 ± 1.08 | 4.56 ± 0.93 | 4.16 ± 0.95 | 4.48 ± 1.19 | 4.70 ± 1.20 | 0.642 |
Corsi span test | <3.46 | 5.21 ± 0.90 | 5.49 ± 0.75 | 5.01 ± 1.05 | 5.43 ± 0.88 | 5.12 ± 0.64 | 0.296 |
RAVLT-I | <28.53 | 44.08 ± 7.99 | 47.85 ± 9.38 | 40.13 ± 8.72 | 46.07 ± 6.04 | 47.34 ± 6.14 | 0.026 * |
RAVLT-D | <4.69 | 9.62 ± 2.43 | 10.17 ± 2.35 | 8.87 ± 2.83 | 9.76 ± 2.03 | 10.68 ± 1.95 | 0.203 |
RAVLT-R | <8.00 | 13.87 ± 2.18 | 15.75 ± 4.35 | 13.36 ± 2.63 | 14.00 ± 0.84 | 14.00 ± 1.48 | 0.221 |
ROCF-C | <28.88 | 32.29 ± 3.28 | 32.31 ± 6.72 | 32.26 ± 3.05 | 31.72 ± 3.30 | 33.25 ± 2.22 | 0.648 |
ROCF-R | <9.47 | 17.22 ± 5.37 | 20.37 ± 5.45 | 16.19 ± 4.73 | 15.41 ± 4.49 | 21.09 ± 6.09 | 0.029 * |
RPM | <18.00 | 29.70 ± 4.20 | 33.87 ± 2.87 | 28.75 ± 4.58 | 29.53 ± 3.92 | 30.39 ± 3.60 | 0.066 |
Attentive matrices | <31.00 | 49.06 ± 5.24 | 52.00 ± 5.50 | 49.62 ± 4.24 | 47.75 ± 6.35 | 49.02 ± 5.07 | 0.264 |
Cognitive Domain | CRIq Level 2 | CRIq Level 3 | CRIq Level 4 | CRIq Level 5 | |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p | |
Cognitive screening | −0.11 ± 1.51 | 0.26 ± 0.99 | 0.15 ± 1.12 | −0.20 ± 0.39 | 0.538 |
Language | 0.40 ± 0.69 | −0.22 ± 0.63 | 0.08 ± 0.42 | 0.25 ± 0.32 | 0.048 * |
Memory | 0.36 ± 0.65 | −0.19 ± 0.58 | 0.06 ± 0.31 | 0.25 ± 0.38 | 0.032 * |
Executive functions | 0.67 ± 0.96 | −0.02 ± 0.66 | −0.05 ± 0.54 | 0.05 ± 0.37 | 0.122 |
Visual spatial abilities | 0.29 ± 2.02 | 0.28 ± 0.92 | 0.12 ± 0.99 | 0.57 ± 0.67 | 0.458 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Este, G.; Berra, F.; Carli, G.; Leitner, C.; Marelli, S.; Zucconi, M.; Casoni, F.; Ferini-Strambi, L.; Galbiati, A. Cognitive Reserve in Isolated Rapid Eye-Movement Sleep Behavior Disorder. Brain Sci. 2023, 13, 176. https://doi.org/10.3390/brainsci13020176
D’Este G, Berra F, Carli G, Leitner C, Marelli S, Zucconi M, Casoni F, Ferini-Strambi L, Galbiati A. Cognitive Reserve in Isolated Rapid Eye-Movement Sleep Behavior Disorder. Brain Sciences. 2023; 13(2):176. https://doi.org/10.3390/brainsci13020176
Chicago/Turabian StyleD’Este, Giada, Francesca Berra, Giulia Carli, Caterina Leitner, Sara Marelli, Marco Zucconi, Francesca Casoni, Luigi Ferini-Strambi, and Andrea Galbiati. 2023. "Cognitive Reserve in Isolated Rapid Eye-Movement Sleep Behavior Disorder" Brain Sciences 13, no. 2: 176. https://doi.org/10.3390/brainsci13020176
APA StyleD’Este, G., Berra, F., Carli, G., Leitner, C., Marelli, S., Zucconi, M., Casoni, F., Ferini-Strambi, L., & Galbiati, A. (2023). Cognitive Reserve in Isolated Rapid Eye-Movement Sleep Behavior Disorder. Brain Sciences, 13(2), 176. https://doi.org/10.3390/brainsci13020176