
Citation: Wang, Y.; Chen, T.; Wang,

C.; Ogihara, A.; Ma, X.; Huang, S.;

Zhou, S.; Li, S.; Liu, J.; Li, K. A New

Smart 2-Min Mobile Alerting Method

for Mild Cognitive Impairment Due

to Alzheimer’s Disease in the

Community. Brain Sci. 2023, 13, 244.

https://doi.org/10.3390/

brainsci13020244

Academic Editors: Takao Yamasaki,

Takuro Ikeda and Yang Zhang

Received: 4 November 2022

Revised: 29 January 2023

Accepted: 29 January 2023

Published: 31 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Article

A New Smart 2-Min Mobile Alerting Method for Mild
Cognitive Impairment Due to Alzheimer’s Disease in
the Community
Yujia Wang 1,2,†, Tong Chen 3,†, Chen Wang 1,2, Atsushi Ogihara 2,4 , Xiaowen Ma 1,2, Shouqiang Huang 1,2,
Siyu Zhou 2,5, Shuwu Li 1,2, Jiakang Liu 1,2 and Kai Li 1,2,*

1 School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University,
Hangzhou 310053, China

2 Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine
and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University,
Hangzhou 310053, China

3 Department of Neurology, The Second Medical Center & National Clinical Research Center for Geriatric
Diseases, Chinese PLA General Hospital, Beijing 100853, China

4 Department of Health Sciences and Social Welfare, Faculty of Human Sciences, Waseda University,
Tokorozawa 359-1162, Japan

5 School of Public Health, Hangzhou Normal University, Hangzhou 311121, China
* Correspondence: kaili@fudan.edu.cn
† These authors contributed equally to this work.

Abstract: The early identification of mild cognitive impairment (MCI) due to Alzheimer’s disease
(AD), in an early stage of AD can expand the AD warning window. We propose a new capability
index evaluating the spatial execution process (SEP), which can dynamically evaluate the execution
process in the space navigation task. The hypothesis is proposed that there are neurobehavioral
differences between normal cognitive (NC) elderly and AD patients with MCI reflected in digital
biomarkers captured during SEP. According to this, we designed a new smart 2-min mobile alerting
method for MCI due to AD, for community screening. Two digital biomarkers, total mission execution
distance (METRtotal) and execution distance above the transverse obstacle (EDabove), were selected
by step-up regression analysis. For the participants with more than 9 years of education, the alerting
efficiency of the combination of the two digital biomarkers for MCI due to AD could reach 0.83. This
method has the advantages of fast speed, high alerting efficiency, low cost and high intelligence and
thus has a high application value for community screening in developing countries. It also provides
a new intelligent alerting approach based on the human–computer interaction (HCI) paradigm for
MCI due to AD in community screening.

Keywords: mild cognitive impairment due to Alzheimer’s disease; spatial execution process; alerting
in the community; digital biomarkers

1. Introduction

There are about 44 million Alzheimer’s disease (AD) patients worldwide [1], and
dementia due to AD accounts for 60% to 70% of all dementia cases [2]; this has become one
of the most important medical and social problems [3]. Because there is a long preclinical
phase in AD before the onset of the clinical syndrome, the underlying pathophysiological
process of AD and its clinical symptomatology are conceptualized as a continuum [4,5]. AD
can be divided into three stages [6]: preclinical AD, mild cognitive impairment (MCI) due
to AD and dementia due to AD. Among them, preclinical AD [4] is the period during which
early AD brain changes are present, but cognitive symptoms have not yet manifested,
whereas dementia due to AD [5] is dementia secondary to AD pathophysiology. MCI
due to AD [7] is a syndrome defined by clinical, cognitive and functional criteria, which
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refers to the symptomatic predementia phase of AD. It cannot currently be diagnosed by
a laboratory test or the conventional imaging appearances but requires the judgment of
clinicians. Clinical and cognitive criteria for MCI [7] include: (1) cognitive concern reflecting
a change in cognition reported by the patient, an informant or a clinician, (2) objective
evidence of impairment in one or more cognitive domains, typically including memory,
(3) preservation of independence in functional abilities, (4) not demented. While MCI due
to AD meets the clinical and cognitive criteria of MCI, the etiology of MCI is consistent
with the pathophysiological process of AD [7]. In particular, previous studies [8] found
that if patients are identified and reasonably treated for MCI due to AD, the reversal rates
of MCI patients to normal cognitive function are as high as 30%. Therefore, it is important
to identify patients with MCI due to AD.

With the continuous increase in the global elderly population and in human lifes-
pan [9], medical resources in developing countries such as Asia and Africa are clearly
insufficient [10,11], which has made alerting the community to MCI due to AD a greater
challenge. Currently, early diagnostic methods for MCI due to AD, such as expensive
and invasive cerebrospinal fluid examination (CSF) [12], blood biomarker detection [13],
positron emission tomography (PET) [14] and magnetic resonance imaging [15] are not suit-
able for community alerting, while neuropsychological tests represented by mini-mental
state examination (MMSE) in the form of paper questionnaires are of great utility in the
alert to MCI due to AD in a community [16,17]. However, the application of this approach
is limited to large-scale community alerting due to its strong subjectivity, the need for
professional evaluation, time consumption, low sensitivity to MCI due to AD [18,19] etc.
As a result, it is difficult to meet the needs of large-scale early warning in communities
in developing countries such as Asia and Africa. Given the limited scope of primary
community alerting, a large number of potential AD patients in the community will lose
the opportunity for early intervention. Therefore, it is necessary to find a fast, low-cost and
intelligent method for alerting to MCI due to AD.

In order to shorten the screening time to MCI due to AD and improve the convenience
of the inspection methods, research has focused on digital biomarkers captured by digital
devices during specific tasks designed to alert to MCI due to AD [20,21]. Digital biomarkers
are defined as objective, quantifiable, physiological and behavioral elements that are
collected and measured through digital devices [22]. Poos Jackie M et al. [23] shortened
the test time to 20 min by detecting object position memory and navigation impairment
in patients with mild AD dementia and MCI through the Short Digital Spatial Memory
Test. In addition, Seixas Azizi et al. [24] extracted a digital neuro signature biomarker that
can predict the overall cognitive function and related changes in a 10-min digital cognitive
assessment test based on intelligent electronic devices. Koh Tadokoro et al. [25] proposed a
novel 3-min eye tracking test, which can effectively distinguish the cognitive function of
normal cognitive (NC), MCI and AD subjects. However, the current studies on digital rapid
alerts to MCI due to AD still take more than 3 min, and there are generally shortcomings
due to the high sample age, the low degree of matching between groups, the low alerting
efficacy for MCI due to AD and the need for sensor devices such as eye trackers and
electronic pens. Therefore, the real accomplishment of the detection of MCI due to AD at
the community, clinical and other large-scale levels still require more in-depth research. A
more detailed retrospective analysis is presented in Table 1, including the methodology
and limitations of recent studies on MCI alerts.

Abbreviations: NC, normal cognitive; AD, Alzheimer’s disease; MCI, mild cognitive
impairment; ROC, the receiver operating characteristic; AUC, the area under the ROC
curve. At the same time, the 2.5-min interactive rapid digital human–computer early
warning technology [26] we developed earlier took 2.5 min to identify MCI with the aid
of an eye tracking device; it had good accuracy in distinguishing between NC elderly
and MCI patients, and the area under the receiver operating characteristic (ROC) curve
(AUC) reached 0.824. However, the total sample size of the study was limited, including
only 32 participants with an average age of 84.5 years. In addition, the technology requires
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eye tracking devices and game controllers, which are relatively expensive and poorly
mobile, making its use difficult for large-scale community alerting. In view of the above
shortcomings, we tried to improve the 2.5-min interactive digital human–computer early
warning technology to better adapt it to MCI-due-to-AD alerting in densely populated
areas such as those in Asia and Africa.

Table 1. Recent studies on methods of digital alerting for MCI and their limitations.

Researcher Method Limitation

Li Nan et al. [26]

The 2.5-min interactive rapid digital human–computer
early warning technology was developed to accurately
distinguish elderly NC patients and MCI patients within

2.5 min, with an AUC of 0.824 by means of an eye
tracking device.

(1) The total sample size was limited,
(2) only 32 participants were included,

and the mean age was 84.5 years,
(3) eye tracking equipment and

gamepads were required.

Koh Tadokoro et al. [25]

A high-performance eye tracking device was used to
analyze the subjects’ eye tracking using the novel eye

tracking test and to establish machine learning
classification of NC, MCI and AD subjects.

(1) It took 3 min, (2) an eye movement
meter was needed, which is expensive,

(3) the subjects were old, with an
average age of 75 years, (4) ROC curves

showed that AUC was only 0.75 for
MCI patients.

Kalafatis Chris, et al. [27]

Integrated Cognitive Assessment, a 5-min computerized
cognitive assessment tool based on a rapid visual

categorization task. It is a rapid visual classification test,
which can test the speed of information processing of the
subjects and use artificial intelligence to automatically

calculate the results of a cognitive impairment screening.

(1) The test time was 5 min,
(2) relatively lower recruitment of
young subjects with mild AD and

mild-AD subjects with high education.

Seixas Azizi, et al. [24]

Sensors such as accelerometers, gyroscopes, magnetic
mirrors, cameras, microphones and touch screens

capture digital neural biomarkers that can predict the
overall cognitive function and changes in older adults
with cognitive impairment and cognitive health in a
range of motor function tasks and two augmented

reality tasks.

(1) The test took 20 min, (2) required
multiple sensing devices, (3) there were

sample size differences between
cognitively impaired and control

groups, (4) focused on old adults and
lacked an early age group.

Poos Jackie M, et al. [23]
Objective Location Memory Test and Virtual Tubingen

Test, such as the Short Digital Spatial Memory Test, were
used to examine mild AD dementia and MCI patients.

(1) The test took 20 min, (2) it had a
small sample size and age mismatch

between groups.

Cheah Wen-Ting, et al. [28]

A digital screening system was designed based on the
Rey-Osterrieth Complex Figure neuropsychological test.
A tablet and smart pen were also used for data collection

to differentiate between MCI and AD patients and
healthy controls.

(1) Includes a delayed recall module
with a total completion time of 30 min

or more, (2) large age differences
between sample groups within the

dataset, (3) requires an electronic pen.

Although episodic memory impairment is considered to be a typical feature of AD [29],
recent studies [30–33] have suggested that spatial navigation impairment may be another
promising cognitive marker of MCI due to AD. As a complex cognitive function, the
executive ability of spatial navigation can help individuals design and maintain specific
routes, which is essential to the independence, quality of life and safety of older adults [34].
Moreover, the decline in spatial navigation performance is consistent with amyloid and
tau deposition and the volumetric declines occurring early in brain regions that subserve
navigation [35–37]. In a longitudinal study, Verghese et al. [38] evaluated spatial navigation
performance to predict the 4-year incidence of MCI in older adults. In addition, cross-
sectional studies [39,40] demonstrated the ability of spatial navigation tests to distinguish
between older adults with subjective memory problems, MCI and AD. On the other hand,
more and more scholars are paying attention to research on evaluating cognition through
the executive process. The execution process can be defined as a cognitive mechanism by
which performance can be optimized when operating on complex multitasking streams at
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the same time [41]. Many memory and learning tests involve execution, especially when
actions or responses are constantly changing or becoming more complex [42]. P. Allain
et al. [43] proved that AD patients have some problems in mentally developing logical
strategies and executing complex predetermined plans. These studies on the execution
process promoted the transformation of the existing cognitive static evaluation model to
the dynamic evaluation model of the whole process and provided a new theoretical basis.

Therefore, we believe that there is a kind of capability index, the spatial execution
process (SEP) index, which can dynamically evaluate the task execution process in spatial
navigation task mode. Furthermore, on the basis of this index, this paper proposes the
hypothesis that there are neurobehavioral differences between NC individuals and patients
with MCI due to AD reflected by digital biomarkers that can be captured during the spatial
execution process.

Based on this assumption, a new smart 2-min mobile alerting method was designed
for patients with MCI due to AD in the community. This alerting method is suitable for the
detection of MCI due to AD in a community with basic education (years of education > 9),
and its alerting efficiency can reach 83%, which is higher than that of MMSE (AUC = 0.77).
Compared to our previous work [26], the method replaces the eye movement tracking
device through fingertip interaction and can be used on mobile tablet devices; this can
not only alert faster, but also reduce the economic cost. It can be easily applied for the
detection of MCI due to AD in developing countries with a large population base and
limited economic and medical resources, such as some Asian and African countries. This
method provides a novel intelligent alerting technique based on the paradigm of human–
computer interaction (HCI) for the detection of the preclinical stages of AD in the preclinical
community.

2. Materials and Methods
2.1. Participants

In total, 92 participants between 50 and 85 years of age were recruited for the study at a
large general hospital in Beijing, including 46 normal cognitive (NC) seniors and 46 patients
with MCI due to AD. The study was approved by the ethics committee of Zhejiang Chinese
Medical University. All participants volunteered to participate in the experiment and
signed an informed consent prior to the experiment.

The NC seniors were recruited according to the criteria that (1) there reported no
complaint of cognitive impairment, and their neurological tests were normal, (2) they had
a score on the clinical dementia rating scale = 0.5, (3) their daily living ability was normal.
Meanwhile, patients with MCI due to AD were recruited according to the 2011 NIA-AA
criteria [5,7] i.e., (1) evidence such as CSF or PET showed amyloid β-protein accumulation,
(2) their cognitive test scores of one or more cognitive areas were below the norm of 1–1.5 SD
typical of individuals of the same age and educational level, (3) they had a score on the
clinical dementia rating = 0.5, (4) their capacity for daily living was generally normal.

In addition, exclusion the criteria included: (1) meeting the diagnostic criteria for
Parkinson’s disease, frontotemporal dementia, dementia with Lewy bodies or Huntington’s
disease, (2) other causes of dementia, such as cerebrovascular disease, central nervous sys-
tem trauma, etc., (3) a history of schizophrenia, severe anxiety and depression, (4) aphasia,
disorders of consciousness and other diseases affecting the cognitive evaluation, tumors,
(5) a history of epilepsy or use of antiepileptic drugs, (6) other conditions (e.g., arm disabil-
ity) that might prevent the completion of the experimental paradigm.

2.2. Design of the Paradigm and Experimental Process

Based on the HCI paradigm [26] developed in the previous phase, we designed a
mobile rapid alerting paradigm for use in the community. Initially, we set the test time at
150 s based on previous research. However, in the experiment, we found that all NC seniors
and almost all MCI patients could complete the test in 2 min. As a result, the test time was
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ultimately limited to 120 s to meet the screening needs of a large number of people in a
community.

MMSE is a classic neuropsychological test that is often used to evaluate the cognitive
function of clinical patients and to screen people with cognitive abnormalities in the
community [44]. In this study, all participants performed the smart 2-min mobile alerting
test and the MMSE to better clarify the alerting efficiency of the smart 2-min mobile alerting
method.

Prior to the formal assessment, the participants would complete a training (not re-
peated) to become familiar with the paradigm process and manipulation methods. The
subjects who could not complete the training were excluded from the group. The teaching
level and training process are shown in Figure 1a,b. Spheres, target cubes and obstacles
appeared in the formal evaluation scene. The participants needed to use their fingers to
manipulate the virtual steering wheel on the tablet to control the sphere, with the task of
eliminating all target cubes. The sphere was inert, and the participants needed to predict
the motion of the sphere. During the completion of the HCI task, the tablet computer with
the relevant system would record all objective operational data of the participants. The
2-min rapid alerting paradigm of HCI is shown in Figure 1c.
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Figure 1. Schematic diagram of (a) training level, (b) training process, (c) 2-min rapid alerting
evaluation paradigm of human–computer interaction (HCI), (d) evaluation process, (e) time-related
digital biomarkers selection results, (f) distance-related digital biomarkers selection results.

2.3. Data Acquisition

The device used in this experiment was a tablet computer with a screen resolution of
2560 to 1600 pixels and a size of 10.95 inches. The HCI system, including training module,
evaluation paradigm module, and data acquisition module, was designed based on Unity
architecture. The HCI data such as sphere coordinate position and order of cube elimination
were recorded in the evaluation log file. A schematic diagram of the evaluation process is
shown in Figure 1d.

2.4. Definition and Quantitative Analysis of Digital Biomarkers

Relevant participant data for the entire paradigm process were collected through
digital equipment. Based on the analytic hierarchy process method, eight digital biomarkers
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were selected and extracted from two dimensions: time and distance [45]. The results are
shown in Figure 1e,f. The name and interpretation of the digital biomarkers are shown in
Tables 2 and 3.

Table 2. Time-related digital biomarkers.

Digital Biomarker Abbreviation Unit Interpretation

Total mission execution
time rate METRtotal / Means the ratio of the total execution time of the paradigm to

the maximum evaluation time of the paradigm.
Mission execution time of

the first task METf irst task s Means how long it takes the participants to eliminate the first
target cube.

Execution time of crossing
the transverse obstacle ETcrossing s

Means the total amount of time the subject controls the sphere
to complete the remaining tasks after crossing the horizontal

obstacle in the paradigm scene.
Execution time while
above the transverse

obstacle
ETabove s

Means the total execution time during which the sphere is
above the horizontal obstacle in the paradigm scene when the

subject controls the sphere to perform the task.

Table 3. Distance-related digital biomarkers.

Digital Biomarker Abbreviation Unit Interpretation

Total mission execution
distance MEDtotal px Means the total distance at which the participants manipulate

the movement of the sphere during this paradigm

Mission execution
efficiency of the first task MEE f irst task /

Means the ratio of the distance the subject controls the
movement of the sphere to the shortest distance between the

sphere and the cube during the time of METf irst task

Execution distance of
crossing the transverse

obstacle
EDcrossing px

Means that the subject controls the sum of the distance the
sphere covers after it crosses the horizontal obstacle in the

paradigm scene, i.e., the distance the sphere covers during the
time of ETcrossing

Execution distance above
the transverse obstacle EDabove px

Means the sum of the distances covered by the sphere while
moving over the horizontal obstacle in the paradigm scene

when the subject controls the sphere to perform the task, i.e., the
distance of movement of the sphere during the time of ETabove

In this paradigm, the maximum evaluation time was defined as T (s), the total task
execution time of the subjects was defined as Te (s), the sample rate was defined as SR(Hz),
and the maximum cumulative sampling times was defined as countimax . The countimax

calculation formula is as follows:

countimax = T ∗ SR(T = 120, SR = 60), (1)

When the sampling time point was Ti, the sphere position was (XBalli , YBalli ), the
sphere initial position was (XBall0 , YBall0), and the moving distance of the sphere between
the two adjacent sampling points was di. The calculation formula is as follows:

di =
√

XBi+1 − XBi
2 + YBi+1 −YBi

2(0 ≤ i ≤ countimax − 1, i ∈ N), (2)

The target cubes in the four directions of the sphere were Cubetop, Cubebottom, Cubele f t
and Cuberight. For example, the shortest path distance from Cubele f t to the sphere was
d(Ball0,Cubele f t)

(px). From a data point of view, Cubetop was found not be the first cube
eliminated. Thus, the time taken to eliminate the first cube was defined as Tf irst. The
calculation formulas of METRtotal , MEDtotal , METf irst task and MEE f irst task are showed in
Figure 2d–e.
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Figure 2. The sequence diagram of eliminating target cubes in different situations and related formu-
las. (a) Sequence diagram of the target cube when eliminating Cuberight for the first time, (b) sequence
diagram of the target cube when eliminating Cubebottom for the first time, (c) sequence diagram of
the target cube when eliminating Cubele f t for the first time, (d) calculation formula for METRtotal ,
(e) calculation formula for MEDtotal , (f) calculation formulas for METf irst task, (g) calculation formula
for MEE f irst task.

At Tcrossing seconds, the subjects manipulated the sphere over the horizontal obsta-
cle, whose position was (Xhorizontal obstacle, Yhorizontal obstacle). The calculation formula for
ETcrossing, EDcrossing, ETabove and EDabove are showed in Figure 3b–f.

2.5. Statistical Analysis

We used the SPSS 25.0 software package (IBM, Armonk, NY, USA) for statistical analy-
sis. Continuous variables that are not normally distributed are presented as median and
quartiles (median [P25, P75]) and compared using the Kruskal–Wallis H rank sum test for
differences between groups. Dichotomous variables are expressed as the number of partici-
pants and compared using the chi-square test between groups. The value of p < 0.05 was
considered statistically significant.
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Figure 3. Sequence diagram of the change of the sphere’s Y coordinates and related formulas.
(a) Sequence diagram of the change of the Y coordinate after the sphere crosses the horizontal
obstacle, (b) calculation formula for ETcrossing, (c) calculation formula for EDcrossing, (d) discriminant
of whether to cross a horizontal obstacle or not, (e) calculation formula for ETabove, (f) calculation
formula for EDabove.

3. Results
3.1. Demographic and Differential Analysis of All Participants

Among the participants, there were 46 NC seniors and 46 patients with MCI due to
AD. They were aged 50–85 years. The participants’ demographic data and the results of
the differential analysis of the digital biomarkers and MMSE scores between the NC and
MCI groups are shown in Table 4; the distribution of the MMSE scores and the values of
METRtotal , MEDtotal , ETcrossing, EDcrossing of the two groups are shown in Figure 4. On the
whole, there were no significant differences in age, sex and years of education between the
two groups (p > 0.05). In addition, the MMSE scores of the NC group were significantly
higher than those of the MCI group (p < 0.01), and the METRtotal , MEDtotal , ETcrossing,
EDcrossing values were significantly lower (p < 0.05).

Table 4. Participants’ demographics and differential analysis of digital biomarkers and mini-mental
state examination (MMSE) scores between the NC and MCI groups.

NC n = 46 MCI n = 46 p Value

Age 68.00 (60.75, 79.00) 70.00 (64.75, 80.00) 0.33
Sex (female/male) 29/17 31/15 0.66
Years of education 12.00 (9.00, 15.25) 12.00 (9.00, 14.25) 0.46

MMSE ** 29 (28.00, 29.25) 26.00 (24.00, 29.00) <0.01
METRtotal * 0.26 (0.21, 0.38) 0.31 (0.25, 0.50) 0.02

MEDtotal(px) ** 8676.08 (7406.04, 10,324.11) 10,963.08 (9156.78, 12,672.55) <0.01
METf irst task(s) 1.12 (0.78, 1.75) 1.08 (0.82, 1.96) 0.75

MEE f irst task 1.04 (1.01, 1.06) 1.03 (1.01, 1.10) 0.72
ETcrossing (s) * 25.32 (19.00, 33.52) 32.18 (22.83, 43.30) 0.04

EDcrossing(px) * 7292.46 (5331.37, 8750.32) 8606.23 (6675.84, 10,861.47) 0.04
ETabove(s) 16.51 (12.99, 25.22) 18.27 (13.40, 29.00) 0.54

EDabove(px) 4497.86 (3567.56, 6036.56) 4279.95 (3508.07, 5780.54) 0.82
Note: two-sample rank sum test with significance of * p < 0.05, ** p < 0.01.
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Figure 4. Distribution of (a) MMSE data of the NC and MCI groups, (b) METRtotal values of the
NC and MCI groups, (c) MEDtotal values of the NC and MCI groups, (d) ETcrossing values of the NC
and MCI groups, (e) EDcrossing values of the NC and MCI groups (* indicates a significant difference
between the two groups, at p < 0.05; ** indicates a significant difference between the two groups, at
p < 0.01).

3.2. ROC Curves for Identifying MCI Patients from All Participants

Given the small sample size and high dimensions of the eight digital biomarkers, there
was the possibility of overfitting of the model. Therefore, we used the stepwise regression
method to reduce the dimensions. After dimension reduction, MEDtotal and EDabove were
retained. As shown in Figure 5, ROC curves suggested that the combination of MEDtotal
and EDabove could distinguish between NC and MCI but was slightly inferior to the MMSE
(Combination AUC = 0.74, MMSE AUC = 0.77).
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Figure 5. ROC curves of MMSE, MEDtotal , EDabove and the combination of MEDtotal and EDabove for
the NC and MCI groups.

3.3. Demographic and Differential Analysis of the Participants with Basic Education

Considering the possible impact of the education level on the participants’ use of
electronic devices and the fact that China has a 9-year compulsory education system, 29 NC
seniors and 31 patients with MCI due to AD (representing 65% of the participants) were
included in the NC and MCI groups with basic education. The results from the participants’
demographics and the analysis of the differences in digital biomarkers and MMSE scores
between the NC and MCI groups with basic education are shown in Table 5, and the
distribution of MMSE scores, METRtotal , MEDtotal , ETcrossing, EDcrossing of the participants
in both groups are shown in Figure 6. There were no significant differences in age, sex
and years of education between the two groups (p > 0.05). The MMSE scores for the NC
group with basic education were significantly higher than those of the MCI group with
basic education (p < 0.01), and the values of METRtotal and MEDtotal were significantly
lower (p < 0.05).

Table 5. Participant demographics and differential analysis of digital biomarkers and MMSE scores
between the NC and MCI groups with basic education.

Basic-Educated NC n = 29 Basic-Educated MCI n = 31 p Value

Age 68.00(61.00, 83.00) 72.00 (64.00, 80.00) 0.62
Sex (female/male) 17/12 17/14 0.77
Years of education 12.00 (9.00, 16.00) 12.00 (6.00, 15.00) 0.08

MMSE ** 29 (28.00, 30.00) 27.00 (24.00, 29.00) <0.01
METRtotal * 0.24 (0.20, 0.28) 0.30 (0.26, 0.50) <0.01

MEDtotal(px) ** 8469.29 (7071.54, 9285.65) 10,473.75 (9189.11, 12,848.72) <0.01
METf irst task(s) 0.95 (0.77, 1.56) 1.25 (0.85, 2.30) 0.11

MEE f irst task 1.04 (1.01, 1.08) 1.03 (1.01, 1.09) 0.60
ETcrossing(s) 22.65 (18.37, 28.17) 30.40 (22.98, 43.30) <0.01

EDcrossing (px) 6515.23 (5128.11, 8748.07) 8391.10 (6912.21, 11,023.95) <0.01
ETabove(s) 14.03 (12.45, 17.53) 17.72 (12.75, 29.02) 0.26

EDabove(px) 4040.34 (2928.82, 5167.38) 4260.67 (3579.10, 5640.59) 0.09
Note: two-sample rank sum test with significance of * p < 0.05, ** p < 0.01.
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In Figure 7b, the ROC curves showed that 𝑀𝐸𝐷௧௢௧௔௟ allowed a good discrimination 

(AUC = 0.79) between NC subjects with basic education and patients with MCI due to AD 
with basic education (years of education > 9) and was better than MMSE (AUC = 0.77). In 
addition, the AUC of the combination of 𝑀𝐸𝐷௧௢௧௔௟ and 𝐸𝐷௔௕௢௩௘ was as high as 0.83.  

Figure 6. Distribution of (a) MMSE scores of the NC and MCI groups with basic education,
(b) METRtotal values of the NC and MCI groups with basic education, (c) MEDtotal values of the
NC and MCI groups with basic education, (d) ETcrossing values of the NC and MCI groups with
basic education, (e) EDcrossing values of the NC and MCI groups with basic education; (** indicates a
significant difference between the two groups, at p < 0.01).

3.4. ROC Curves for Identifying Participants with Basic Education

In Figure 7b, the ROC curves showed that MEDtotal allowed a good discrimination
(AUC = 0.79) between NC subjects with basic education and patients with MCI due to AD
with basic education (years of education > 9) and was better than MMSE (AUC = 0.77). In
addition, the AUC of the combination of MEDtotal and EDabove was as high as 0.83.



Brain Sci. 2023, 13, 244 12 of 16Brain Sci. 2022, 12, x FOR PEER REVIEW 12 of 16 
 

 
Figure 7. ROC curves of MMSE, 𝑀𝐸𝐷௧௢௧௔௟, 𝐸𝐷௔௕௢௩௘ and the combination of 𝑀𝐸𝐷௧௢௧௔௟ and 𝐸𝐷௔௕௢௩௘ 
for the NC and MCI groups with basic education. 

4. Discussion 
In this study, four types of digital biomarkers (𝑀𝐸𝑇𝑅௧௢௧௔௟ , 𝑀𝐸𝐷௧௢௧௔௟ , 𝐸𝑇௖௥௢௦௦௜௡௚ , 𝐸𝐷௖௥௢௦௦௜௡௚) measured during the HCI task in patients with MCI due to AD increased sig-

nificantly, which might be due to an impaired ability of patients with MCI due to AD in 
spatial navigation [33] and execution process [43]. Based on the dynamic assessment of 
the cognitive process in the presence of MCI due to AD carried out in this paper, we be-
lieve these results suggest integrative SEP impairment, which could be the result of spatial 
navigation impairment damage to the hippocampus [46,47], or execution processes deficit 
(including full-process optimal decision planning and fingertip executive dynamic abili-
ties) due to damage to the caudate nucleus [41,42]. In this paper, however, a more thor-
ough distinction was not made between these two possible mechanisms in the examined 
subjects. These mechanisms will be explored through molecular PET imaging and func-
tional magnetic resonance imaging. In fact, another of our current studies is focused on 
exploring the mechanisms of the degradation of the HCI execution process caused by 
damage to the caudate nucleus and cognitive impairment. Compared to the evaluation of 
visual space and episodic memory function by traditional neuropsychological scales such 
as the MMSE, the SEP index proposed in this paper focuses more on the objective and 
dynamic evaluation of the whole cognitive process, which can reflect the ability to com-
prehensively process individual information, rather than the rigid ability to divide it into 
different modules. We designed a standardized HCI cognitive evaluation paradigm for 
“elimination target” tasks, which is mainly based on the SEP index proposed in this paper. 
It allows the dynamic evaluation of the whole cognitive process time series of visual spa-
tial navigation, path planning and decision making, memory and learning multi-task fu-
sion processing. 

In fact, 2 min arethe maximum time considered by the mobile smart alarm method 
to detect MCI due to AD in a community. The experimental data showed that 92 
participants requierd 42.5s on average, and 76 participants could complete the test within 
1 min, accounting for 82.6% of the participants. This means that in practical application, 
the time necessary to the mobile smart alerting method will be further shortened. In 
addition, the alerting efficiency of this method also reached a high level (AUC = 0.83) for 
the detection of MCI due to AD in a population with basic education (years of education > 
9). At present, many studies have attempted to use digital testing to achieve early and 

Figure 7. ROC curves of MMSE, MEDtotal , EDabove and the combination of MEDtotal and EDabove for
the NC and MCI groups with basic education.

4. Discussion

In this study, four types of digital biomarkers (METRtotal, MEDtotal, ETcrossing, EDcrossing)
measured during the HCI task in patients with MCI due to AD increased significantly,
which might be due to an impaired ability of patients with MCI due to AD in spatial
navigation [33] and execution process [43]. Based on the dynamic assessment of the cogni-
tive process in the presence of MCI due to AD carried out in this paper, we believe these
results suggest integrative SEP impairment, which could be the result of spatial navigation
impairment damage to the hippocampus [46,47], or execution processes deficit (including
full-process optimal decision planning and fingertip executive dynamic abilities) due to
damage to the caudate nucleus [41,42]. In this paper, however, a more thorough distinction
was not made between these two possible mechanisms in the examined subjects. These
mechanisms will be explored through molecular PET imaging and functional magnetic
resonance imaging. In fact, another of our current studies is focused on exploring the
mechanisms of the degradation of the HCI execution process caused by damage to the
caudate nucleus and cognitive impairment. Compared to the evaluation of visual space
and episodic memory function by traditional neuropsychological scales such as the MMSE,
the SEP index proposed in this paper focuses more on the objective and dynamic evaluation
of the whole cognitive process, which can reflect the ability to comprehensively process
individual information, rather than the rigid ability to divide it into different modules. We
designed a standardized HCI cognitive evaluation paradigm for “elimination target” tasks,
which is mainly based on the SEP index proposed in this paper. It allows the dynamic
evaluation of the whole cognitive process time series of visual spatial navigation, path
planning and decision making, memory and learning multi-task fusion processing.

In fact, 2 min arethe maximum time considered by the mobile smart alarm method to
detect MCI due to AD in a community. The experimental data showed that 92 participants
requierd 42.5s on average, and 76 participants could complete the test within 1 min,
accounting for 82.6% of the participants. This means that in practical application, the time
necessary to the mobile smart alerting method will be further shortened. In addition, the
alerting efficiency of this method also reached a high level (AUC = 0.83) for the detection of
MCI due to AD in a population with basic education (years of education > 9). At present,
many studies have attempted to use digital testing to achieve early and rapid AD warning.
Integrated Cognitive Assessment developed by Kalafatis Chris et al. [27] requires 5 min
to complete the evaluation and showed an alerting efficiency of 81% for MCI. In addition,
the novel eye tracking test developed by Koh Tadokoro et al. [25] took 3 min and was
only 75% effective for MCI. Moreover, the Digital Early Warning Technology we proposed
earlier [26] took only 2.5 min, and its alerting efficiency reached 82.4% in the study that
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involved only 32 old participants (average age of 84.5 years). As a new smart 2-min mobile
alerting method for MCI due to AD aplicable in communities, the new method shows a
significant time cost advantage.

In addition, the smart alerting method only needs a tablet computer for the evaluation,
without other auxiliary equipment. In contrast, the digital neuro signature biomarker
proposed by Seixas Azizi et al. [24] requires the assistance of multiple sensing devices.
In addition, the ROCF developed by Cheah Wen-Ting et al. [28] requires the help of an
electronic pen, and the novel eye tracking test developed by Koh Tadokoro et al. [25]
and the Digital Early Warning Technology developed by our team [26] both required the
assistance of eye tracking devices. In developing countries, such as those in Asia and Africa,
additional assistance equipment undoubtedly increases the financial burden of conducting
large-scale community screening.

There are also some shortcomings in this study. The first is the small sample size. The
number of participants was limited due to the high enrolment requirements. To be enrolled
in this study as participants with MCI due to AD, the patients needed a clear diagnosis of
AD, including evidence of amyloid β-protein accumulation provided by CSF or PET. In the
future, we will conduct research on more people to verify this intelligent alerting method.
In addition, the intelligent alerting method here proposed showed poor alert efficacy in
the population with low education (years of education ≤9). This may be mainly due to
the low familiarity of less educated populations with smart devices, and a simple training
proceeding through training levels still is not sufficient to allow them to perform the test
skillfully, thus affecting the assessment results. In the future, we will improve the training
before the formal evaluation to reduce the impact on the test results of the participants’
different familiarity with the intelligent terminal.

5. Conclusions

In summary, we propose a new capability index, the SEP index, which can dynamically
evaluate the task execution process in space navigation task mode. Furthermore, on the
basis of this index, we hypothesized that there was a neurobehavioral difference between
NC subjects and patients with MCI due to AD reflected by digital biomarkers captured
during the spatial execution task. Based on this assumption, we designed a new smart
2-min mobile alerting method for MCI due to AD applicable at the community level.
Clinical trials have shown that this alerting method is suitable for the detection of MCI
due to AD in a community with basic education (years of education >9), and its alerting
efficiency can reach 83%. The new smart 2-min mobile alerting method for MCI due to AD
for communities has the advantages of fast speed, low cost, high alerting efficiency and
intelligence, which will allow an extensive application for community screening of MCI
due to AD in developing countries. It also provides a new intelligent alerting approach
based on the HCI paradigm for MCI due to AD in community screening.
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