Unilaterally Applied Resistance to Swing Leg Shows a Different Adaptation Pattern Compared to Split-Belt Treadmill in Patients with Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment Protocol
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Gait Symmetry Motor Adaptation and De-adaptation during Split-Belt Treadmill Walking and Unilaterally Applied Resistance to Swing Leg during Walking
3.2. Rates of Adaptation and De-adaptation during Split-Belt Treadmill Walking and Unilaterally Applied Resistance to Swing Leg during Walking
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thrift, A.G.; Cadilhac, D.A.; Thayabaranathan, T.; Howard, G.; Howard, V.J.; Rothwell, P.M.; Donnan, G.A. Global Stroke Statistics. Int. J. Stroke 2014, 9, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Krasovsky, T.; Levin, M.F. Review: Toward a Better Understanding of Coordination in Healthy and Poststroke Gait. Neurorehabilit. Neural Repair 2010, 24, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.; Garrett, M.; Gronley, J.K.; Mulroy, S.J. Classification of Walking Handicap in the Stroke Population. Stroke 1995, 26, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jiang, H.; Wei, H.; Zhou, Y.; Wu, Y.; Zhang, K.; Duan, J.; Meng, R.; Zhou, C.; Ji, X. Risk factors of impaired employability after cerebral venous thrombosis. CNS Neurosci. Ther. 2023. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Koopman, K.; Uyttenboogaart, M.; Vroomen, P.C.; van der Meer, J.; De Keyser, J.; Luijckx, G.-J. Long-Term Sequelae after Cerebral Venous Thrombosis in Functionally Independent Patients. J. Stroke Cerebrovasc. Dis. 2009, 18, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Hiltunen, S.; Putaala, J.; Haapaniemi, E.; Tatlisumak, T. Long-term outcome after cerebral venous thrombosis: Analysis of func-tional and vocational outcome, residual symptoms, and adverse events in 161 patients. J. Neurol. 2016, 263, 477–484. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Andrews, A.W.; Smith, M.B. Rehabilitation goals of patients with hemiplegia. Int. J. Rehabil. Res. 1988, 11, 181–184. [Google Scholar] [CrossRef]
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al. Heart disease and stroke statistics--2013 update: A report from the American Heart Association. Circulation 2013, 127, e6–e245. [Google Scholar] [CrossRef]
- Patterson, K.K.; Parafianowicz, I.; Danells, C.J.; Closson, V.; Verrier, M.C.; Staines, W.R.; Black, S.E.; McIlroy, W.E. Gait Asymmetry in Community-Ambulating Stroke Survivors. Arch. Phys. Med. Rehabilitation 2008, 89, 304–310. [Google Scholar] [CrossRef]
- Roth, E.J.; Merbitz, C.; Mroczek, K.; Dugan, S.A.; Suh, W.W. Hemiplegic gait: Relationships between walking speed and other temporal parameters. Am. J. Phys. Med. Rehabil. 1997, 76, 128–133. [Google Scholar] [CrossRef]
- Schroeder, H.P.; Coutts, R.D.; Lyden, P.D.; Billings Jr, E.; Nickel, V.L. Gait parameters following stroke: A practical assessment. J. Rehabil. Res. Devel. 1995, 32, 25. [Google Scholar]
- De Bujanda, E.; Nadeau, S.; Bourbonnais, D.; Dickstein, R. Associations between lower limb impairments, locomotor capacities and kinematic variables in the frontal plane during walking in adults with chronic stroke. J. Rehabil. Med. 2003, 35, 259–264. [Google Scholar] [CrossRef]
- Balasubramanian, C.K.; Bowden, M.G.; Neptune, R.R.; Kautz, S.A. Relationship between step length asymmetry and walking per-formance in subjects with chronic hemiparesis. Arch. Phys. Med. Rehabil. 2007, 88, 43–49. [Google Scholar] [CrossRef]
- Awad, L.N.; Palmer, J.; Pohlig, R.T.; Binder-Macleod, S.A.; Reisman, D.S. Walking Speed and Step Length Asymmetry Modify the Energy Cost of Walking After Stroke. Neurorehabilit. Neural Repair 2015, 29, 416–423. [Google Scholar] [CrossRef]
- Lewek, M.D.; Bradley, C.E.; Wutzke, C.J.; Zinder, S.M. The Relationship Between Spatiotemporal Gait Asymmetry and Balance in Individuals with Chronic Stroke. J. Appl. Biomech. 2014, 30, 31–36. [Google Scholar] [CrossRef]
- Helm, E.E.; Reisman, D.S. The Split-Belt Walking Paradigm: Exploring motor learning and spatiotemporal asymmetry post-stroke. Phys. Med. Rehabil. Clin. North Am. 2015, 26, 703–713. [Google Scholar] [CrossRef]
- Titianova, E.B.; Pitkänen, K.; Pääkkönen, A.; Sivenius, J.; Tarkka, I.M. Gait Characteristics and Functional Ambulation Profile in Patients with Chronic Unilateral Stroke. Am. J. Phys. Med. Rehabil. 2003, 82, 778–786. [Google Scholar] [CrossRef]
- Beaman, C.; Peterson, C.; Neptune, R.; Kautz, S. Differences in self-selected and fastest-comfortable walking in post-stroke hemiparetic persons. Gait Posture 2010, 31, 311–316. [Google Scholar] [CrossRef]
- Tanaka, N.; Saitou, H.; Takao, T.; Iizuka, N.; Okuno, J.; Yano, H.; Tamaoka, A.; Yanagi, H. Effects of gait rehabilitation with a footpad-type locomotion interface in patients with chronic post-stroke hemiparesis: A pilot study. Clin. Rehabil. 2012, 26, 686–695. [Google Scholar] [CrossRef]
- Reisman, D.S.; Wityk, R.; Silver, K.; Bastian, A.J. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain 2007, 130, 1861–1872. [Google Scholar] [CrossRef]
- Reisman, D.S.; Wityk, R.; Silver, K.; Bastian, A.J. Split-Belt Treadmill Adaptation Transfers to Overground Walking in Persons Poststroke. Neurorehabilit. Neural Repair 2009, 23, 735–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reisman, D.S.; McLean, H.; Keller, J.; Danks, K.A.; Bastian, A.J. Repeated Split-Belt Treadmill Training Improves Poststroke Step Length Asymmetry. Neurorehabilit. Neural Repair 2013, 27, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Savin, D.N.; Morton, S.M.; Whitall, J. Generalization of improved step length symmetry from treadmill to overground walking in persons with stroke and hemiparesis. Clin. Neurophysiol. 2014, 125, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.A.; Keating, J.G.; Goodkin, H.P.; Bastian, A.J.; Thach, W.T. Throwing while looking through prisms. II. specificity and storage of multiple gaze-throw calibrations. Brain 1996, 119, 1199–1211. [Google Scholar] [CrossRef]
- Tseng, Y.W.; Diedrichsen, J.; Krakauer, J.W.; Shadmehr, R.; Bastian, A.J. Sensory prediction errors drive cerebellum-dependent ad-aptation of reaching. J. Neurophysiol. 2007, 98, 54–62. [Google Scholar] [CrossRef]
- Weiner, M.J.; Hallett, M.; Funkenstein, H.H. Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology 1983, 33, 766. [Google Scholar] [CrossRef]
- Shadmehr, R.; Mussa-Ivaldi, F. Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 1994, 14, 3208–3224. [Google Scholar] [CrossRef]
- Bastian, A.J. Understanding sensorimotor adaptation and learning for rehabilitation. Curr. Opin. Neurol. 2008, 21, 628–633. [Google Scholar] [CrossRef]
- Savin, D.N.; Tseng, S.-C.; Morton, S.M. Bilateral Adaptation During Locomotion Following a Unilaterally Applied Resistance to Swing in Nondisabled Adults. J. Neurophysiol. 2010, 104, 3600–3611. [Google Scholar] [CrossRef]
- Mawase, F.; Haizler, T.; Bar-Haim, S.; Karniel, A. Kinetic adaptation during locomotion on a split-belt treadmill. J. Neurophysiol. 2013, 109, 2216–2227. [Google Scholar] [CrossRef]
- Reisman, D.S.; Block, H.J.; Bastian, A.J. Interlimb coordination during locomotion: What can be adapted and stored? J. Neurophysiol. 2005, 94, 2403–2415. [Google Scholar] [CrossRef] [Green Version]
- Malone, L.A.; Bastian, A.J. Spatial and Temporal Asymmetries in Gait Predict Split-Belt Adaptation Behavior in Stroke. Neurorehabilit. Neural Repair 2014, 28, 230–240. [Google Scholar] [CrossRef]
- Mawase, F.; Bar-Haim, S.; Joubran, K.; Rubin, L.; Karniel, A.; Shmuelof, L. Increased Adaptation Rates and Reduction in Trial-by-Trial Variability in Subjects with Cerebral Palsy Following a Multi-session Locomotor Adaptation Training. Front. Hum. Neurosci. 2016, 10, 203. [Google Scholar] [CrossRef]
- Mizrachi, N.; Triger, I.; Melzer, I. Effects of Mechanical Perturbation Gait Training on Gait and Balance Function in Patients with Stroke: A Pre-Post Research Study. J. Clin. Neurosci. 2020, 78, 301–306. [Google Scholar] [CrossRef]
- Noble, J.W.; Prentice, S.D. Adaptation to unilateral change in lower limb mechanical properties during human walking. Exp. Brain Res. 2006, 169, 482–495. [Google Scholar] [CrossRef]
- Lang, C.; Bastian, A.J. Cerebellar Subjects Show Impaired Adaptation of Anticipatory EMG During Catching. J. Neurophysiol. 1999, 82, 2108–2119. [Google Scholar] [CrossRef]
- Sing, G.; Joiner, W.M.; Nanayakkara, T.; Brayanov, J.B.; Smith, M.A. Primitives for Motor Adaptation Reflect Correlated Neural Tuning to Position and Velocity. Neuron 2009, 64, 575–589. [Google Scholar] [CrossRef]
- Wei, K.; Wert, D.; Kording, K. The Nervous System Uses Nonspecific Motor Learning in Response to Random Perturbations of Varying Nature. J. Neurophysiol. 2010, 104, 3053–3063. [Google Scholar] [CrossRef]
- Krakauer, J.W.; Ghilardi, M.-F.; Ghez, C. Independent learning of internal models for kinematic and dynamic control of reaching. Nat. Neurosci. 1999, 2, 1026–1031. [Google Scholar] [CrossRef]
- Savin, D.N.; Tseng, S.; Whitall, J.; Morton, S.M. Poststroke hemiparesis impairs the rate but not magnitude of adaptation of spa-tial and temporal locomotor features. Neurorehabil. Neural. Repair. 2013, 27, 24–34. [Google Scholar] [CrossRef]
- Yen, S.-C.; Schmit, B.D.; Wu, M. Using swing resistance and assistance to improve gait symmetry in individuals post-stroke. Hum. Mov. Sci. 2015, 42, 212–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hausdorff, J.M. Gait dynamics, fractals and falls: Finding meaning in the stride-to-stride fluctuations of human walking. Hum. Mov. Sci. 2007, 26, 555–589. [Google Scholar] [CrossRef] [PubMed]
- Chia, F.S.; Kuys, S.; Low Choy, N. Sensory retraining of the leg after stroke: Systematic review and me-ta-analysis. Clin. Rehabil. 2019, 33, 964–979. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.; Ghilardi, M.F.; Ghez, C. Impairments of reaching movements in patients without proprioception. I. Spatial errors. J. Neurophysiol. 1995, 73, 347–360. [Google Scholar] [CrossRef] [Green Version]
1. Split-Belt Treadmill | Baseline | Early-Adaptation | Late-Adaptation | Early De-adaptation | Late De-adaptation | Friedman Test | Post Hoc |
---|---|---|---|---|---|---|---|
Step length symmetry | −0.031 ± 0.10 | −0.049 ± 0.17 | −0.067 ± 0.20 | −0.026 ± 0.21 | −0.047 ± 0.12 | χ2 = 1.38 p = 0.84 | |
Swing duration symmetry | −0.047 ± 0.18 | −0.096 ± 0.24 | −0.067 ± 0.19 | −0.024 ± 0.19 | −0.05 ± 0.19 | χ2 = 4.72 p = 0.31 | |
Double-support duration symmetry | 0.008 ± 0.07 | −0.047 ± 0.13 | 0.006 ± 0.08 | 0.07 ± 0.10 | 0.028 ± 0.099 | χ2 = 6.74 p = 0.004 | Baseline vs. early de-adaptation, p = 0.07 |
Early de-adaptation vs. late de-adaptation, p = 0.12 | |||||||
Late-adaptation vs. early de-adaptation, p = 0.09 | |||||||
Early de-adaptation vs. late de-adaptation, p = 0.22 | |||||||
Late de-adaptation vs. baseline, p = 0.79 | |||||||
2. Unilaterally applied resistance to swing leg | |||||||
Step length symmetry | −0.01 ± 0.09 | 0.012 ± 0.14 | −0.016 ± 0.10 | −0.004 ± 0.05 | −0.02 ± 0.10 | χ2 = 3.67 p = 0.452 | |
Swing duration symmetry | −0.039 ± 0.16 | −0.041 ± 0.17 | −0.038 ± 0.19 | −0.04 ± 0.18 | −0.048 ± 0.17 | χ2 = 1.6 p = 0.809 | |
Double-support duration symmetry | 0.022 ± 0.07 | 0.05 ± 0.08 | 0.03 ± 0.09 | 0.019 ± 0.08 | 0.035 ± 0.08 | χ2 = 0.36 p = 0.773 |
1. Split-Belt Treadmill | Baseline | Adaptation | De-adaptation | Friedman Test | Post Hoc |
---|---|---|---|---|---|
Step length CV | 724.0 ± 1693.9 | 183.6 ± 286.1 | 210.8 ± 163.2 | χ2 = 5.52 p = 0.062 | |
Swing duration CV | 250.7 ± 350.7 | 329.7 ± 117.4 | 210.2 ± 401.4 | χ2 = 5.18 p = 0.075 | |
Double-support duration CV | 755.6 ± 216.3 | 233.6 ± 235.3 | 256.2 ± 299.9 | χ2 = 1.18 p = 0.55 | |
2. Unilaterally applied resistance to swing leg | |||||
Step length CV | 209.2 ± 248.0 | 278.57 ± 451.72 | 299.0 ± 609.7 | χ2 = 3.273 p = 0.195 | |
Swing phase duration CV | 142.8 ± 199.5 | 63.59 ± 43.82 | 93.0 ± 72.4 | χ2 = 12.091 p = 0.002 | Baseline vs. adaptation: p = 0.006 Adaptation vs. de-adaptation, p = 0.099 |
Double-support duration CV | 256.4 ± 264.8 | 274.33 ± 563.7 | 308.7 ± 397.5 | χ2 = 8.273 p = 0.016 | Baseline vs. adaptation: p = 0.15 |
Adaptation vs. de-adaptation: p = 0.084 | |||||
de-adaptation vs. baseline: p = 0.758 |
Adaptation | Learning Rate (Mean ± SD) | z | p-Value | De-Adaptation | Learning Rate (Mean ± SD) | z | p-Value | ||
---|---|---|---|---|---|---|---|---|---|
Split-Belt | Unilaterally Applied Resistance to Swing Leg | Split-Belt | Unilaterally Applied Resistance to Swing Leg | ||||||
Step length | 18.4 ± 18.2 | 18.9 ± 18.1 | −0.379 | 0.705 | Step length | 24.8 ± 16.1 | 21.2 ± 17.6 | −0.785 | 0.432 |
Swing duration | 18.3 ± 17.7 | 16.7 ± 16.7 | −0.262 | 0.794 | Swing duration | 23.9 ± 17.1 | 22 ± 17.6 | −0.593 | 0.553 |
Double-support duration | 27.3 ± 15.9 | 20.3 ± 16.2 | −1.326 | 0.185 | Double-support duration | 22.0 ± 17.2 | 22.3 ± 17.9 | −0.161 | 0.872 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizrachi, N.; Bar-Haim, S.; Treger, I.; Melzer, I. Unilaterally Applied Resistance to Swing Leg Shows a Different Adaptation Pattern Compared to Split-Belt Treadmill in Patients with Stroke. Brain Sci. 2023, 13, 264. https://doi.org/10.3390/brainsci13020264
Mizrachi N, Bar-Haim S, Treger I, Melzer I. Unilaterally Applied Resistance to Swing Leg Shows a Different Adaptation Pattern Compared to Split-Belt Treadmill in Patients with Stroke. Brain Sciences. 2023; 13(2):264. https://doi.org/10.3390/brainsci13020264
Chicago/Turabian StyleMizrachi, Nama, Simona Bar-Haim, Iuly Treger, and Itshak Melzer. 2023. "Unilaterally Applied Resistance to Swing Leg Shows a Different Adaptation Pattern Compared to Split-Belt Treadmill in Patients with Stroke" Brain Sciences 13, no. 2: 264. https://doi.org/10.3390/brainsci13020264
APA StyleMizrachi, N., Bar-Haim, S., Treger, I., & Melzer, I. (2023). Unilaterally Applied Resistance to Swing Leg Shows a Different Adaptation Pattern Compared to Split-Belt Treadmill in Patients with Stroke. Brain Sciences, 13(2), 264. https://doi.org/10.3390/brainsci13020264