Investigating White Matter Abnormalities Associated with Schizophrenia Using Deep Learning Model and Voxel-Based Morphometry
Abstract
:1. Introduction
- Using Statistical Parametric Mapping (SPM), version 12 i.e., SPM12 software, we incorporated preprocessing of the data to increase the model’s learning efficiency and accuracy.
- A Generative Adversarial Network (GAN) is employed to increase the size of the dataset.
- ResNet-50 is used to extract robust features from high-dimensional images.
- The edRVFL classifier is employed to classify the extracted features, and results are acquired using majority voting to obtain efficient outcomes.
- VBM analysis is performed to evaluate the structural changes related to GM, WM, and CSF volumes.
- Finally, structural abnormalities related to the brain volumes are investigated and concluded by combining the results obtained from the edRVFL model and VBM analysis.
2. Methodology
2.1. Data Preparation
2.2. Preprocessing
2.3. GAN Architecture
2.4. Ensemble Deep Random Vector Functional Link Network (edRVFL)
2.5. Voxel-Based Morphometry (VBM)
3. Performance Evaluation of the edRVFL Model and VBM Analysis
3.1. Implementation Detail
3.2. Performance Metrics
3.3. Computational Complexity and Model Parameter Sensitivity Analysis
3.4. Comparison of Different Regions of the Brain
3.5. Comparison with Different State-of-the-Art Classifiers
3.6. Voxel-Based Morphometry Analysis
4. Discussion
Remarks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antonius, D.; Prudent, V.; Rebani, Y.; D’Angelo, D.; Ardekani, B.A.; Malaspina, D.; Hoptman, M.J. White matter integrity and lack of insight in schizophrenia and schizoaffective disorder. Schizophr. Res. 2011, 128, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Guan, F.; Ni, T.; Zhu, W.; Williams, L.; Cui, L.B.; Li, M.; Tubbs, J.; Sham, P.C.; Gui, H. Integrative omics of schizophrenia: From genetic determinants to clinical classification and risk prediction. Mol. Psychiatry 2022, 27, 113–126. [Google Scholar] [CrossRef] [PubMed]
- McGurk, S.R.; Twamley, E.W.; Sitzer, D.I.; McHugo, G.J.; Mueser, K.T. A meta-analysis of cognitive remediation in schizophrenia. Am. J. Psychiatry 2007, 164, 1791–1802. [Google Scholar] [CrossRef]
- Shenton, M.E.; Dickey, C.C.; Frumin, M.; McCarley, R.W. A review of MRI findings in schizophrenia. Schizophr. Res. 2001, 49, 1–52. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, D.; Shoeibi, A.; Ghassemi, N.; Moridian, P.; Khadem, A.; Alizadehsani, R.; Teshnehlab, M.; Gorriz, J.M.; Khozeimeh, F.; Zhang, Y.D.; et al. An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works. Comput. Biol. Med. 2022, 146, 105554. [Google Scholar] [CrossRef] [PubMed]
- Vita, A.; De Peri, L.; Deste, G.; Sacchetti, E. Progressive loss of cortical gray matter in schizophrenia: A meta-analysis and meta-regression of longitudinal MRI studies. Transl. Psychiatry 2012, 2, e190. [Google Scholar] [CrossRef]
- Kubicki, M.; Westin, C.F.; McCarley, R.W.; Shenton, M.E. The application of DTI to investigate white matter abnormalities in schizophrenia. Ann. N. Y. Acad. Sci. 2005, 1064, 134–148. [Google Scholar] [CrossRef]
- Van Os, J.; Kenis, G.; Rutten, B.P. The environment and schizophrenia. Nature 2010, 468, 203–212. [Google Scholar] [CrossRef]
- Walterfang, M.; Wood, S.J.; Velakoulis, D.; Pantelis, C. Neuropathological, neurogenetic and neuroimaging evidence for white matter pathology in schizophrenia. Neurosci. Biobehav. Rev. 2006, 30, 918–948. [Google Scholar] [CrossRef]
- Logothetis, N.K.; Wandell, B.A. Interpreting the BOLD signal. Annu. Rev. Physiol. 2004, 66, 735–769. [Google Scholar] [CrossRef]
- Viher, P.V.; Stegmayer, K.; Bracht, T.; Federspiel, A.; Bohlhalter, S.; Strik, W.; Wiest, R.; Walther, S. Neurological soft signs are associated with altered white matter in patients with schizophrenia. Schizophr. Bull. 2022, 48, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Schlösser, R.G.; Nenadic, I.; Wagner, G.; Güllmar, D.; von Consbruch, K.; Köhler, S.; Schultz, C.C.; Koch, K.; Fitzek, C.; Matthews, P.M.; et al. White matter abnormalities and brain activation in schizophrenia: A combined DTI and fMRI study. Schizophr. Res. 2007, 89, 1–11. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, C.; Li, X.; Li, Y.; Yang, H.; Li, J.; Chang, X.; Li, H.; Yang, H.; Wang, J.; et al. White-matter functional networks changes in patients with schizophrenia. Neuroimage 2019, 190, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Goyal, S.; Modi, S.; Kumar, P.; Singh, N.; Bhatia, T.; Deshpande, S.N.; Khushu, S. Motor function deficits in schizophrenia: An fMRI and VBM study. Neuroradiology 2014, 56, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Goel, T.; Tanveer, M.; Ding, W.; Sharma, R.; Murugan, R. Machine learning techniques for the Schizophrenia diagnosis: A comprehensive review and future research directions. arXiv 2023, arXiv:2301.07496. [Google Scholar]
- de Filippis, R.; Carbone, E.A.; Gaetano, R.; Bruni, A.; Pugliese, V.; Segura-Garcia, C.; De Fazio, P. Machine learning techniques in a structural and functional MRI diagnostic approach in schizophrenia: A systematic review. Neuropsychiatr. Dis. Treat. 2019, 15, 1605. [Google Scholar] [CrossRef]
- Yağ, İ.; Altan, A. Artificial Intelligence-Based Robust Hybrid Algorithm Design and Implementation for Real-Time Detection of Plant Diseases in Agricultural Environments. Biology 2022, 11, 1732. [Google Scholar] [CrossRef]
- Altan, A.; Karasu, S. Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique. Chaos Solitons Fractals 2020, 140, 110071. [Google Scholar] [CrossRef]
- Ciompi, F.; Chung, K.; Van Riel, S.J.; Setio, A.A.A.; Gerke, P.K.; Jacobs, C.; Scholten, E.T.; Schaefer-Prokop, C.; Wille, M.M.; Marchiano, A.; et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci. Rep. 2017, 7, 46479. [Google Scholar] [CrossRef]
- Sharma, R.; Goel, T.; Tanveer, M.; Murugan, R. FDN-ADNet: Fuzzy LS-TWSVM based deep learning network for prognosis of the Alzheimer’s disease using the sagittal plane of MRI scans. Appl. Soft Comput. 2022, 115, 108099. [Google Scholar] [CrossRef]
- Nagula, J.M.; Murugan, R.; Goel, T. Role of Machine and Deep Learning Techniques in Diabetic Retinopathy Detection. In Multidisciplinary Applications of Deep Learning-Based Artificial Emotional Intelligence; IGI Global: Hershey, PA, USA, 2023; pp. 32–46. [Google Scholar]
- Bengio, Y.; LeCun, Y. Scaling learning algorithms towards AI. Large-Scale Kernel Mach. 2007, 34, 1–41. [Google Scholar]
- Durstewitz, D.; Koppe, G.; Meyer-Lindenberg, A. Deep neural networks in psychiatry. Mol. Psychiatry 2019, 24, 1583–1598. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Goel, T.; Tanveer, M.; Suganthan, P.; Razzak, I.; Murugan, R. Conv-ERVFL: Convolutional Neural Network Based Ensemble RVFL Classifier for Alzheimer’s Disease Diagnosis. IEEE J. Biomed. Health Inform. 2022. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Goel, T.; Tanveer, M.; Dwivedi, S.; Murugan, R. FAF-DRVFL: Fuzzy activation function based deep random vector functional links network for early diagnosis of Alzheimer disease. Appl. Soft Comput. 2021, 106, 107371. [Google Scholar] [CrossRef]
- Schmidt, W.F.; Kraaijveld, M.A.; Duin, R.P. Feed forward neural networks with random weights. In Proceedings of the International Conference on Pattern Recognition, The Hague, The Netherlands, 30 August–3 September 1992; IEEE Computer Society Press: Piscataway, NJ, USA, 1992. [Google Scholar]
- Pao, Y.H.; Takefuji, Y. Functional-link net computing: Theory, system architecture, and functionalities. Computer 1992, 25, 76–79. [Google Scholar] [CrossRef]
- Igelnik, B.; Pao, Y.H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans. Neural Netw. 1995, 6, 1320–1329. [Google Scholar] [CrossRef]
- Shi, Q.; Katuwal, R.; Suganthan, P.N.; Tanveer, M. Random vector functional link neural network based ensemble deep learning. Pattern Recognit. 2021, 117, 107978. [Google Scholar] [CrossRef]
- Malik, A.K.; Ganaie, M.; Tanveer, M.; Suganthan, P.N. Extended features based random vector functional link network for classification problem. IEEE Trans. Comput. Soc. Syst. 2022. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Mechelli, A.; Price, C.J.; Friston, K.J.; Ashburner, J. Voxel-based morphometry of the human brain: Methods and applications. Curr. Med Imaging 2005, 1, 105–113. [Google Scholar] [CrossRef]
- Goel, T.; Murugan, R.; Mirjalili, S.; Chakrabartty, D.K. Automatic screening of covid-19 using an optimized generative adversarial network. Cogn. Comput. 2021, 1–16. [Google Scholar] [CrossRef]
- Malik, A.K.; Tanveer, M. Graph embedded ensemble deep randomized network for diagnosis of Alzheimer’s disease. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022. [Google Scholar] [CrossRef] [PubMed]
- Hendler, T.; Raz, G.; Shimrit, S.; Jacob, Y.; Lin, T.; Roseman, L.; Wahid, W.M.; Kremer, I.; Kupchik, M.; Kotler, M.; et al. Social affective context reveals altered network dynamics in schizophrenia patients. Transl. Psychiatry 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Chon, M.W.; Kim, H.; Rathi, Y.; Bouix, S.; Shenton, M.E.; Kubicki, M. Diagnostic value of structural and diffusion imaging measures in schizophrenia. NeuroImage: Clin. 2018, 18, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; He, Y.; Wang, J.; Shi, C.; Niu, Q.; Yu, H.; Ji, J.; Yu, X. Differential diagnosis of schizophrenia using decision tree analysis based on cognitive testing. Eur. J. Psychiatry 2022, 36, 246–251. [Google Scholar] [CrossRef]
- Lin, E.; Lin, C.H.; Lane, H.Y. Applying a bagging ensemble machine learning approach to predict functional outcome of schizophrenia with clinical symptoms and cognitive functions. Sci. Rep. 2021, 11, 6922. [Google Scholar] [CrossRef]
- Kadry, S.; Taniar, D.; Damaševičius, R.; Rajinikanth, V. Automated detection of schizophrenia from brain MRI slices using optimized deep-features. In Proceedings of the 2021 Seventh International Conference on Bio Signals, Images, and Instrumentation (ICBSII), Chennai, India, 25–27 March 2021; pp. 1–5. [Google Scholar]
- Steardo, L., Jr.; Carbone, E.A.; De Filippis, R.; Pisanu, C.; Segura-Garcia, C.; Squassina, A.; De Fazio, P.; Steardo, L. Application of support vector machine on fMRI data as biomarkers in schizophrenia diagnosis: A systematic review. Front. Psychiatry 2020, 11, 588. [Google Scholar] [CrossRef] [PubMed]
- Chyzhyk, D.; Savio, A.; Graña, M. Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM. Neural Netw. 2015, 68, 23–33. [Google Scholar] [CrossRef]
- Sobahi, N.; Ari, B.; Cakar, H.; Alcin, O.F.; Sengur, A. A New Signal to Image Mapping Procedure and Convolutional Neural Networks for Efficient Schizophrenia Detection in EEG Recordings. IEEE Sens. J. 2022, 22, 7913–7919. [Google Scholar] [CrossRef]
- Tanveer, M.; Jangir, J.; Ganaie, M.; Beheshti, I.; Tabish, M.; Chhabra, N. Diagnosis of Schizophrenia: A comprehensive evaluation. IEEE J. Biomed. Health Inform. 2022. [Google Scholar] [CrossRef]
- Lu, X.; Yang, Y.; Wu, F.; Gao, M.; Xu, Y.; Zhang, Y.; Yao, Y.; Du, X.; Li, C.; Wu, L.; et al. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine 2016, 95, e3973. [Google Scholar] [CrossRef]
- Pinaya, W.H.; Gadelha, A.; Doyle, O.M.; Noto, C.; Zugman, A.; Cordeiro, Q.; Jackowski, A.P.; Bressan, R.A.; Sato, J.R. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci. Rep. 2016, 6, 38897. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Oh, B.L.; Lee, K.U.; Chae, J.H.; Yun, K. Identifying schizophrenia using structural MRI with a deep learning algorithm. Front. Psychiatry 2020, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- SupriyaPatro, P.; Goel, T.; VaraPrasad, S.; Tanveer, M.; Murugan, R. Lightweight 3D Convolutional Neural Network for Schizophrenia Diagnosis Using MRI Images and Ensemble Bagging Classifier. Cogn. Comput. 2022, 1–17. [Google Scholar] [CrossRef]
- Li, Q.; Liu, S.; Cao, X.; Li, Z.; Fan, Y.; Wang, Y.; Wang, J.; Xu, Y. Disassociated and concurrent structural and functional abnormalities in the drug-naive first-episode early onset schizophrenia. Brain Imaging Behav. 2022, 16, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Lau, W.K.; Wang, C.; Yan, H.; Zhang, C.; Lin, K.; Qiu, S.; Huang, R.; Zhang, R. A Comparative Multimodal Meta-analysis of Anisotropy and Volume Abnormalities in White Matter in People Suffering From Bipolar Disorder or Schizophrenia. Schizophr. Bull. 2022, 48, 69–79. [Google Scholar] [CrossRef]
- Li, C.; Liu, W.; Guo, F.; Wang, X.; Kang, X.; Xu, Y.; Xi, Y.; Wang, H.; Zhu, Y.; Yin, H. Voxel-based morphometry results in first-episode schizophrenia: A comparison of publicly available software packages. Brain Imaging Behav. 2020, 14, 2224–2231. [Google Scholar] [CrossRef]
- Lee, D.K.; Lee, H.; Park, K.; Joh, E.; Kim, C.E.; Ryu, S. Common gray and white matter abnormalities in schizophrenia and bipolar disorder. PLoS ONE 2020, 15, e0232826. [Google Scholar] [CrossRef]
Region of Interest | Acc | Sens | Spec | Prec | Recall | F-Score | G-Mean |
---|---|---|---|---|---|---|---|
Cerebrospinal Fluid | 89.17 | 87.67 | 90.67 | 90.38 | 87.67 | 89 | 89.15 |
Gray Matter | 88.17 | 89.67 | 86.67 | 87.06 | 89.67 | 88.34 | 88.15 |
White Matter | 96.50 | 95.33 | 97.67 | 97.61 | 95.33 | 96.46 | 96.49 |
Classifier | Acc | Sens | Spec | Prec | Rec | F-Score | G-Mean |
---|---|---|---|---|---|---|---|
KNN [35] | 94.25 | 93.50 | 95 | 94.92 | 93.50 | 94.21 | 94.25 |
RF [36] | 94.50 | 93 | 96 | 95.88 | 93 | 94.42 | 94.49 |
DT [37] | 94.25 | 93.50 | 95 | 94.92 | 93.50 | 94.21 | 94.25 |
EB [38] | 94.75 | 93.50 | 96 | 95.90 | 93.50 | 94.68 | 94.74 |
Softmax [39] | 94 | 93.50 | 94.50 | 94.44 | 93.50 | 93.97 | 94 |
SVM [40] | 93.50 | 92.50 | 94.50 | 94.39 | 92.50 | 93.43 | 93.49 |
ELM [41] | 93.33 | 92.67 | 94 | 93.92 | 92.67 | 93.29 | 93.33 |
KRR [42] | 94.33 | 92 | 96.67 | 96.50 | 92 | 94.20 | 94.30 |
RVFL [43] | 89.67 | 95.67 | 83.67 | 85.42 | 95.67 | 90.25 | 89.47 |
dRVFL [29] | 91.17 | 91.67 | 90.67 | 90.76 | 91.67 | 91.21 | 91.17 |
Proposed Algorithm | 96.50 | 95.33 | 97.67 | 97.61 | 95.33 | 96.46 | 96.49 |
Region of Interest | Anatomical Region | Voxels | T-Value | Z-Value |
---|---|---|---|---|
WM | Left cerebrum Internal Ventricle | 1363 | 6.90 | 6.21 |
Right cerebrum Insula | 340 | 4.83 | 4.56 | |
Right cerebrum Temporal lobe | 41 | 3.70 | 3.57 | |
GM | Left cerebrum Extra -Nuclear | 12 | 4.82 | 4.56 |
Right cerebrum Temporal lobe | 27 | 4.64 | 4.40 | |
Left cerebrum claustrum | 6 | 3.47 | 3.36 | |
CSF | No Clusters are identified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goel, T.; Varaprasad, S.A.; Tanveer, M.; Pilli, R. Investigating White Matter Abnormalities Associated with Schizophrenia Using Deep Learning Model and Voxel-Based Morphometry. Brain Sci. 2023, 13, 267. https://doi.org/10.3390/brainsci13020267
Goel T, Varaprasad SA, Tanveer M, Pilli R. Investigating White Matter Abnormalities Associated with Schizophrenia Using Deep Learning Model and Voxel-Based Morphometry. Brain Sciences. 2023; 13(2):267. https://doi.org/10.3390/brainsci13020267
Chicago/Turabian StyleGoel, Tripti, Sirigineedi A. Varaprasad, M. Tanveer, and Raveendra Pilli. 2023. "Investigating White Matter Abnormalities Associated with Schizophrenia Using Deep Learning Model and Voxel-Based Morphometry" Brain Sciences 13, no. 2: 267. https://doi.org/10.3390/brainsci13020267
APA StyleGoel, T., Varaprasad, S. A., Tanveer, M., & Pilli, R. (2023). Investigating White Matter Abnormalities Associated with Schizophrenia Using Deep Learning Model and Voxel-Based Morphometry. Brain Sciences, 13(2), 267. https://doi.org/10.3390/brainsci13020267