Application of Proteomics Analysis and Animal Models in Optic Nerve Injury Diseases
Abstract
:1. Introduction
2. Introduction of Optic Nerve Injury Ophthalmopathy and Animal Models of Optic Nerve Injury
2.1. Research Progress in Optic Nerve Injury Ophthalmopathy
2.1.1. Types of Nontraumatic Optic Nerve Injury
2.1.2. Diagnosis of Nontraumatic Optic Nerve Injury
2.1.3. Treatment of Nontraumatic Optic Nerve Injury
2.2. Establishment of an Animal Model of Optic Nerve Injury
2.2.1. Glaucoma Model
- (1)
- Episcleral vein injection: a commonly used method for establishing glaucoma models for scientific research purposes is by injecting hypertonic saline into the scleral surface blood vessels of adult mice to establish an intraocular hypertension model [67]. The advantages of this method are that the test materials are easy to obtain, the test method is simple, and the method can be used to model high intraocular pressure to evaluate the effect of ocular hypotensive drugs [68].
- (2)
- Superficial scleral vein-burning method: as above, this modeling method is also a way of increasing intraocular pressure, and the change of intraocular pressure depends on the number of cauterized episcleral veins on the sclera. When the number of cauterized veins equals 4, the intraocular pressure can be increased to 60 mmHg, which can be maintained for several weeks to induce the death of RGCs. Compared with episcleral intravenous injections to establish an intraocular hypertension model (as above), its operation is simpler and more reproducible, the intraocular pressure can be maintained for a stable time, and it can induce the degeneration and apoptosis of RGCs in a way that more closely resembles human chronic glaucoma [69,70].
- (3)
- Microsphere injection: the microsphere injection method uses 10 μm sized latex microspheres to inject into the anterior chamber to prevent the outflow of the aqueous humor and preserve the complete anatomical structure. This method can reduce the inflammatory response. The period whereby high intraocular pressure is maintained is different depending on the size and material of the microspheres. Microspheres of 5–15 μm can raise the intraocular pressure by 5–10 mmHg for 2 weeks [71]. The microsphere method is simple and easy to operate, and the reproducibility is high. At present, the microsphere ocular hypertension model has been widely used in experimental research pertaining to the evaluation of glaucoma drug treatments.
2.2.2. Traumatic Optic Nerve Injury
- (1)
- Direct optic nerve injury models
- (2)
- Indirect optic nerve injury models
2.2.3. Ischemia/Ischemia-Reperfusion Optic Nerve Injury
3. Application of Proteomics in Optic Nerve Injury Diseases
3.1. Application of Proteomics in Diabetic Retinopathy (DR) Research
3.2. Application of Proteomics in the Study of Traumatic Optic Nerve Injury
3.3. Application of Proteomics in Retinal Ischemia/Reperfusion Injury Research
3.4. Pathogenesis of Optic Nerve Injury Diseases
4. The Future of Proteomics in Optic Nerve Injury Diseases
4.1. Shortcomings of Proteomics in the Study of Optic Nerve Injury Diseases
4.2. Future Development
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zupanc, G.K.; Hinsch, K.; Gage, F.H. Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. J. Comp. Neurol. 2005, 488, 290–319. [Google Scholar] [CrossRef] [PubMed]
- Zwimpfer, T.J.; Aguayo, A.J.; Bray, G.M. Synapse formation and preferential distribution in the granule cell layer by regenerating retinal ganglion cell axons guided to the cerebellum of adult hamsters. J. Neurosci. 1992, 12, 1144–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zueva, M.V. Maturation and plasticity of visual system: Neurogenesis, synaptogenesis, and myelogenesis. Report 2. Visual cortex and optic radiations. Vestn. Oftalmol. 2012, 128, 70–74. (In Russian) [Google Scholar] [PubMed]
- Zotter, S.; Pircher, M.; Götzinger, E.; Torzicky, T.; Yoshida, H.; Hirose, F.; Holzer, S.; Kroisamer, J.; Vass, C.; Schmidt-Erfurth, U.; et al. Measuring Retinal Nerve Fiber Layer Birefringence, Retardation, and Thickness Using Wide-Field, High-Speed Polarization Sensitive Spectral Domain OCT. Investig. Ophthalmol. Vis. Sci. 2013, 54, 72–84. [Google Scholar] [CrossRef]
- Tao, W.; Dvoriantchikova, G.; Tse, B.C.; Pappas, S.; Chou, T.-H.; Tapia, M.; Porciatti, V.; Ivanov, D.; Tse, D.T.; Pelaez, D. A Novel Mouse Model of Traumatic Optic Neuropathy Using External Ultrasound Energy to Achieve Focal, Indirect Optic Nerve Injury. Sci. Rep. 2017, 7, 11779. [Google Scholar] [CrossRef]
- Lamkin-Kennard, K.A.; Popovic, M.B. Molecular and Cellular Level—Applications in Biotechnology and Medicine Addressing Molecular and Cellular Level. In Biomechatronics; Popovic, M.B., Ed.; Elsevier: San Diego, CA, USA, 2019; pp. 201–233. [Google Scholar]
- Zou, W.; Zhang, Z.; Luo, S.; Cheng, L.; Huang, X.; Ding, N.; Yu, J.; Pan, Y.; Wu, Z. p38 promoted retinal micro-angiogenesis through up-regulated RUNX1 expression in diabetic retinopathy. Biosci. Rep. 2020, 40, BSR20193256. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.Y.; Meng, Y.A.; Yan, B.; Luo, J. Effect of anti-VEGF treatment on nonperfusion areas in ischemic retinopathy. Int. J. Ophthalmol. 2021, 14, 1647–1652. [Google Scholar] [CrossRef]
- Zhang, P.; Kirby, D.; Dufresne, C.; Chen, Y.; Turner, R.; Ferri, S.; Edward, D.P.; Van Eyk, J.E.; Semba, R.D. Defining the proteome of human iris, ciliary body, retinal pigment epithelium, and choroid. Proteomics 2016, 16, 1146–1153. [Google Scholar] [CrossRef]
- Youngblood, H.; Robinson, R.; Sharma, A.; Sharma, S. Proteomic Biomarkers of Retinal Inflammation in Diabetic Retinopathy. Int. J. Mol. Sci. 2019, 20, 4755. [Google Scholar] [CrossRef] [Green Version]
- Sundstrom, J.M.; Hernández, C.; Weber, S.R.; Zhao, Y.; Dunklebarger, M.; Tiberti, N.; Laremore, T.; Simó-Servat, O.; Garcia-Ramirez, M.; Barber, A.J.; et al. Proteomic Analysis of Early Diabetic Retinopathy Reveals Mediators of Neurodegenerative Brain Diseases. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2264–2274. [Google Scholar] [CrossRef] [Green Version]
- Loukovaara, S.; Nurkkala, H.; Tamene, F.; Gucciardo, E.; Liu, X.; Repo, P.; Lehti, K.; Varjosalo, M. Quantitative Proteomics Analysis of Vitreous Humor from Diabetic Retinopathy Patients. J. Proteome Res. 2015, 14, 5131–5143. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Migallón, M.C.; Valiente-Soriano, F.J.; Nadal-Nicolás, F.M.; Vidal-Sanz, M.; Agudo-Barriuso, M. Apoptotic Retinal Ganglion Cell Death After Optic Nerve Transection or Crush in Mice: Delayed RGC Loss With BDNF or a Caspase 3 Inhibitor. Investig. Ophthalmol. Vis. Sci. 2016, 57, 81–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Ramsey, K.E.; Stephan, D.A.; Russell, P. Gene and Protein Expression Changes in Human Trabecular Meshwork Cells Treated with Transforming Growth Factor-β. Investig. Ophthalmol. Vis. Sci. 2004, 45, 4023–4034. [Google Scholar] [CrossRef]
- Li, Y.; Wen, Y.; Liu, X.; Li, Z.; Lin, B.; Deng, C.; Yu, Z.; Zhu, Y.; Zhao, L.; Su, W.; et al. Single-cell RNA sequencing reveals a landscape and targeted treatment of ferroptosis in retinal ischemia/reperfusion injury. J. Neuroinflamm. 2022, 19, 261. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-J.; Braun, T.A.; Wordinger, R.J.; Clark, A.F. Progressive morphological changes and impaired retinal function associated with temporal regulation of gene expression after retinal ischemia/reperfusion injury in mice. Mol. Neurodegener. 2013, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Renner, M.; Stute, G.; Alzureiqi, M.; Reinhard, J.; Wiemann, S.; Schmid, H.; Faissner, A.; Dick, H.B.; Joachim, S.C. Optic Nerve Degeneration after Retinal Ischemia/Reperfusion in a Rodent Model. Front. Cell Neurosci. 2017, 11, 254. [Google Scholar] [CrossRef] [Green Version]
- Solomon, A.S.; Lavie, V.; Hauben, U.; Monsonego, A.; Yoles, E.; Schwartz, M. Complete transection of rat optic nerve while sparing the meninges and the vasculature: An experimental model for optic nerve neuropathy and trauma. J. Neurosci. Methods 1996, 70, 21–25. [Google Scholar] [CrossRef]
- Hines-Beard, J.; Marchetta, J.; Gordon, S.; Chaum, E.; Geisert, E.E.; Rex, T.S. A mouse model of ocular blast injury that induces closed globe anterior and posterior pole damage. Exp. Eye Res. 2012, 99, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Chierzi, S.; Strettoi, E.; Cenni, M.C.; Maffei, L. Optic Nerve Crush: Axonal Responses in Wild-Type and bcl-2 Transgenic Mice. J. Neurosci. 1999, 19, 8367–8376. [Google Scholar] [CrossRef] [Green Version]
- World Health Statistics 2022. Available online: https://www.who.int/data/gho/publications/world-health-statistics (accessed on 4 April 2023).
- Swain, T.; McGwin, G., Jr. The Prevalence of Eye Injury in the United States, Estimates from a Meta-Analysis. Ophthalmic Epidemiol. 2019, 27, 186–193. [Google Scholar] [CrossRef]
- McCarty, C.A.; Fu, C.L.; Taylor, H.R. Epidemiology of ocular trauma in Australia. Ophthalmology 1999, 106, 1847–1852. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.D.; Xu, L.; Wang, Y.X.; You, Q.S.; Zhang, J.S.; Jonas, J.B. Prevalence and incidence of ocular trauma in North China: The Beijing Eye Study. Acta Ophthalmol. 2011, 90, e61–e67. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.Y.; Man, R.E.; Gupta, P.; Sabanayagam, C.; Wong, T.Y.; Cheng, C.-Y.; Lamoureux, E.L. Prevalence, subtypes, severity and determinants of ocular trauma: The Singapore Chinese Eye Study. Br. J. Ophthalmol. 2017, 102, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Shah, A.A.; Umair, M.; Wu, Y.; Khan, A. Recalling the pathology of Parkinson’s disease; lacking exact figure of prevalence and genetic evidence in Asia with an alarming outcome: A time to step-up. Clin. Genet. 2021, 100, 659–677. [Google Scholar] [CrossRef] [PubMed]
- Salazar, J.J.; Ramírez, A.I.; De Hoz, R.; Salobrar-Garcia, E.; Rojas, P.; Fernández-Albarral, J.A.; López-Cuenca, I.; Rojas, B.; Triviño, A.; Ramírez, J.M. Anatomy of the Human Optic Nerve: Structure and Function. Optic Nerve [Internet]. 13 February 2019. Available online: https://www.intechopen.com/chapters/62850 (accessed on 3 February 2023).
- Kim, U.S.; Mahroo, O.A.; Mollon, J.D.; Yu-Wai-Man, P. Retinal Ganglion Cells—Diversity of Cell Types and Clinical Relevance. Front. Neurol. 2021, 12, 661938. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Gupta, V.K.; Li, J.C.; Klistorner, A.; Graham, S.L. Optic Neuropathies: Characteristic Features and Mechanisms of Retinal Ganglion Cell Loss. Rev. Neurosci. 2013, 24, 301–321. [Google Scholar] [CrossRef] [PubMed]
- Sharif, N.A. Neuropathology and Therapeutics Addressing Glaucoma, a Prevalent Retina-Optic Nerve-Brain Disease that Causes Eyesight Impairment and Blindness. OBM Neurobiol. 2022, 6, 116. [Google Scholar] [CrossRef]
- You, M.; Rong, R.; Zeng, Z.; Xia, X.; Ji, D. Transneuronal Degeneration in the Brain During Glaucoma. Front. Aging Neurosci. 2021, 13, 643685. [Google Scholar] [CrossRef]
- Calkins, D.J. Adaptive responses to neurodegenerative stress in glaucoma. Prog. Retin. Eye Res. 2021, 84, 100953. [Google Scholar] [CrossRef]
- Almasieh, M.; Wilson, A.M.; Morquette, B.; Vargas, J.L.C.; Di Polo, A. The molecular basis of retinal ganglion cell death in glaucoma. Prog. Retin. Eye Res. 2012, 31, 152–181. [Google Scholar] [CrossRef]
- Aiello, L.P.; Avery, R.L.; Arrigg, P.G.; Keyt, B.A.; Jampel, H.D.; Shah, S.T.; Pasquale, L.R.; Thieme, H.; Iwamoto, M.A.; Park, J.E.; et al. Vascular endothelial growth factor in ocular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 1994, 331, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Bourne, R.R.A.; Flaxman, S.R.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; Leasher, J.; Limburg, H.; et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e888–e897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwierko, T.; Jedziniak, W.; Florkiewicz, B.; Lesiakowski, P.; Śliwiak, M.; Kirkiewicz, M.; Lubiński, W. Physical Activity Is Associated with Improved Visuomotor Processing in Older Adults with Moderate and Advanced Glaucomatous Visual Field Defect: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 1760. [Google Scholar] [CrossRef] [PubMed]
- Allison, K.; Patel, D.; Alabi, O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. Cureus 2020, 12, e11686. [Google Scholar] [CrossRef]
- Foster, P.J.; Buhrmann, R.; Quigley, H.A.; Johnson, G.J. The definition and classification of glaucoma in prevalence surveys. Br. J. Ophthalmol. 2002, 86, 238–242. [Google Scholar] [CrossRef] [Green Version]
- Wax, M.B.; Tezel, G. Immunoregulation of retinal ganglion cell fate in glaucoma. Exp. Eye Res. 2009, 88, 825–830. [Google Scholar] [CrossRef]
- Weinreb, R.N.; Leung, C.K.S.; Crowston, J.G.; Medeiros, F.A.; Friedman, D.S.; Wiggs, J.L.; Martin, K.R. Primary Open-Angle Glaucoma. Nat. Rev. Dis. Primers 2016, 2, 16067. [Google Scholar] [CrossRef]
- Zirtiloglu, S.; Osmanbasoglu, O.A.; Akcetin, T.A.; Acar, Y.; Alikma, M.S.; Unsal, E.; Eltutar, K. Anterior Segment Optic Coherence Tomography Changes Before and After Phacoemulsification in Primary Open-Angle Glaucoma. Beyoglu Eye J. 2019, 4, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.C. Spectral domain optical coherence tomography in glaucoma: Qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (an AOS thesis). Am. J. Ophthalmol. 2009, 107, 254–281. [Google Scholar]
- Enders, P.; Bremen, A.; Schaub, F.; Hermann, M.M.; Diestelhorst, M.; Dietlein, T.; Cursiefen, C.; Heindl, L.M. Intraday Repeatability of Bruch’s Membrane Opening-Based Neuroretinal Rim Measurements. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5195–5200. [Google Scholar] [CrossRef] [Green Version]
- Garas, A.; Vargha, P.; Holló, G. Reproducibility of Retinal Nerve Fiber Layer and Macular Thickness Measurement with the RTVue-100 Optical Coherence Tomograph. Ophthalmology 2010, 117, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Kim, J.; Lee, J. Reproducibility of Bruch’s Membrane Opening-Minimum Rim Width Measurements with Spectral Domain Optical Coherence Tomography. J. Glaucoma 2017, 6, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Zygulska-Mach, H.; Bryk, E. Retinopatia cukrzycowa [Diabetic retinopathy]. Folia Med. Cracov. 1981, 23, 47–66. (In Polish) [Google Scholar] [PubMed]
- Zvershanovskiĭ, F.A.; Zhulkevich, I.V.; Danilishina, V.S.; Zhulkevich, G.D. Pokazateli lipidnogo obmena i ikh sviaz’ s narusheniiami mikrotsirkuliatsii pri sakharnom diabete [Indicators of lipid metabolism and their relation to disorders of microcirculation in diabetes mellitus]. Probl. Endokrinol. 1987, 33, 15–18. (In Russian) [Google Scholar]
- Zureik, A.; Julla, J.-B.; Erginay, A.; Vidal-Trecan, T.; Juddoo, V.; Gautier, J.-F.; Massin, P.; Tadayoni, R.; Riveline, J.-P.; Couturier, A. Prevalence, severity stages, and risk factors of diabetic retinopathy in 1464 adult patients with type 1 diabetes. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 3613–3623. [Google Scholar] [CrossRef] [PubMed]
- Zur, D.; Iglicki, M.; Busch, C.; Invernizzi, A.; Mariussi, M.; Loewenstein, A.; Cebeci, Z.; Chhablani, J.K.; Chaikitmongkol, V.; Couturier, A.; et al. OCT Biomarkers as Functional Outcome Predictors in Diabetic Macular Edema Treated with Dexamethasone Implant. Ophthalmology 2018, 125, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Zvorničanin, J.; Zvorničanin, E. Imaging in Diabetic Retinopathy. Middle East Afr. J. Ophthalmol. 2015, 22, 531. [Google Scholar] [CrossRef]
- Jampol, L.M.; Glassman, A.R.; Sun, J. Evaluation and Care of Patients with Diabetic Retinopathy. N. Engl. J. Med. 2020, 382, 1629–1637. [Google Scholar] [CrossRef]
- Mieno, H.; Yoneda, K.; Yamazaki, M.; Sakai, R.; Sotozono, C.; Fukui, M. The Efficacy of Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors for the treatment of chronic diabetic macular oedema in vitrectomised eyes: A retrospective study. BMJ Open Ophthalmol. 2018, 3, e000130. [Google Scholar] [CrossRef] [Green Version]
- Zweers, M.M.; De Waart, D.R.; Smit, W.; Struijk, D.G.; Krediet, R.T. Growth factors VEGF and TGF-β1 in peritoneal dialysis. J. Lab. Clin. Med. 1999, 134, 124–132. [Google Scholar] [CrossRef]
- Cioffi, G.A. Ischemic model of optic nerve injury. Trans. Am. Ophthalmol. Soc. 2005, 103, 592–613. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Singman, E.; McCulley, T.; Wu, C.; Daphalapurkar, N. The Biomechanics of Indirect Traumatic Optic Neuropathy Using a Computational Head Model With a Biofidelic Orbit. Front. Neurol. 2020, 11, 346. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zheng, Y.; Li, Y.; Cao, P.; Zhou, T.; Wang, J.; Li, A. Early diagnostic value of optical coherence tomography in the clinical prediction model for optic nerve injury in saddle space occupying patients. Saudi J. Biol. Sci. 2020, 27, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, F.; Mandarà, E.; Brocca, D. Should “Retro-ocular Pain, Photophobia and Visual Acuity Loss” Be Recognised as a Distinct Entity? The ROPPVAL Syndrome. Neuro Ophthalmol. 2021, 45, 253–260. [Google Scholar] [CrossRef]
- Zweifel, S.A.; Foa, N.; Wiest, M.R.J.; Carnevali, A.; Zaluska-Ogryzek, K.; Rejdak, R.; Toro, M.D. Differences between Mycobacterium chimaera and tuberculosis Using Ocular Multimodal Imaging: A Systematic Review. J. Clin. Med. 2021, 10, 4880. [Google Scholar] [CrossRef]
- Zuo, C.; Wen, F.; Huang, S.; Luo, G.; Guan, T.; Liu, C. Fundus analysis of autofluorescence of stale fundus haemorrhage in indocyanine green angiography. Yan Ke Xue Bao. 2008, 24, 58–61. (In Chinese) [Google Scholar]
- Zvorničanin, J.; Zvorničanin, E. Can emergency physicians accurately distinguish retinal detachment from posterior vitreous detachment with point-of-care ocular ultrasound? Am. J. Emerg. Med. 2018, 36, 1498–1499. [Google Scholar] [CrossRef]
- Day, R.M.; Carroll, F.D. Corticosteroids in the Treatment of Optic Nerve Involvement: Associated With Thyroid Dysfunction. Arch. Ophthalmol. 1968, 79, 279–282. [Google Scholar] [CrossRef]
- Beck, R.W.; Cleary, P.A.; Anderson, M.M., Jr.; Keltner, J.L.; Shults, W.T.; Kaufman, D.I.; Buckley, E.G.; Corbett, J.J.; Kupersmith, M.J.; Miller, N.R.; et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. N. Engl. J. Med. 1992, 326, 581–588. [Google Scholar] [CrossRef]
- Vishwaraj, C.R.; Kavitha, S.; Venkatesh, R.; Shukla, A.G.; Chandran, P.; Tripathi, S. Neuroprotection in glaucoma. Indian J Ophthalmol. 2022, 70, 380–385. [Google Scholar] [CrossRef]
- Yan, H.; Li, F.; Zhang, L. A New and Reliable Animal Model for Optic Nerve Injury. Curr. Eye Res. 2012, 37, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; He, Y.; Liang, H.-S.; Liu, E.-Z. A Novel Animal Model of Partial Optic Nerve Transection Established Using an Optic Nerve Quantitative Amputator. PLoS ONE 2012, 7, e44360. [Google Scholar] [CrossRef] [PubMed]
- Bouhenni, R.A.; Dunmire, J.; Sewell, A.; Edward, D.P. Animal Models of Glaucoma. J. Biomed. Biotechnol. 2012, 2012, 692609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, B.C.; Pan, J.; Archibald, M.L.; LeVatte, T.L.; Kelly, M.E.; Tremblay, F. Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage. Investig. Ophthalmol. Vis Sci. 2002, 43, 2969–2976. [Google Scholar]
- Liu, H.; Perumal, N.; Manicam, C.; Mercieca, K.; Prokosch, V. Proteomics Reveals the Potential Protective Mechanism of Hydrogen Sulfide on Retinal Ganglion Cells in an Ischemia/Reperfusion Injury Animal Model. Pharmaceuticals 2020, 13, 213. [Google Scholar] [CrossRef]
- Kipfer-Kauer, A.; McKinnon, S.J.; Frueh, B.E.; Goldblum, D. Distribution of Amyloid Precursor Protein and Amyloid-β in Ocular Hypertensive C57BL/6 Mouse Eyes. Curr. Eye Res. 2010, 35, 828–834. [Google Scholar] [CrossRef]
- Shareef, S.; Garcia-Valenzuela, E.; Salierno, A.; Walsh, J.; Sharma, S. Chronic ocular hypertension following episcleral venous occlusion in rats. Exp. Eye Res. 1995, 61, 379–382. [Google Scholar] [CrossRef]
- Sappington, R.; Carlson, B.J.; Crish, S.D.; Calkins, D.J. The Microbead Occlusion Model: A Paradigm for Induced Ocular Hypertension in Rats and Mice. Investig. Ophthalmol. Vis. Sci. 2010, 51, 207–216. [Google Scholar] [CrossRef]
- Ai-Ourainy, I.A.; Dutton, G.N.; Stassen LF, A.; Moos, K.F.; EI-Attar, A. The characteristics of midfacial fractures and the association with ocular injury: A prospective study. Br. J. Oral Maxillofac. Surg. 1991, 29, 291–301. [Google Scholar] [CrossRef]
- Singman, E.L.; Daphalapurkar, N.; White, H.; Nguyen, T.D.; Panghat, L.; Chang, J.; McCulley, T. Indirect traumatic optic neuropathy. Mil. Med. Res. 2016, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Kline, L.B.; Morawetz, R.B.; Swaid, S.N. Indirect Injury of the Optic Nerve. Neurosurgery 1984, 14, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Guo, S.; Chai, Y.; Zhang, L.; Liu, K.; Lu, Q.; Wang, N.; Li, S. Partial Optic Nerve Transection in Rats: A Model Established with a New Operative Approach to Assess Secondary Degeneration of Retinal Ganglion Cells. J. Vis. Exp. 2017, e56272. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Moss, S.E.; Alexander, R.A.; Ali, R.; Fitzke, F.W.; Cordeiro, M.F. Retinal Ganglion Cell Apoptosis in Glaucoma Is Related to Intraocular Pressure and IOP-Induced Effects on Extracellular Matrix. Investig. Ophthalmol. Vis. Sci. 2005, 46, 175–182. [Google Scholar] [CrossRef]
- Yap, T.E.; Donna, P.; Almonte, M.T.; Cordeiro, M.F. Real-Time Imaging of Retinal Ganglion Cell Apoptosis. Cells 2018, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.-S.; Yang, L.; Lu, B.; Ma, H.F.; Huang, X.; Pekny, M.; Chen, D.F. Re-establishing the regenerativepotential of central nervous system axons in postnatal mice. J. Cell Sci. 2005, 118, 863–872. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Hu, W.; Wu, Q.; Yi, J.; Liu, Z.; Zhou, G.; Ma, F.; Zhang, J.; Yan, W. Analysis of prognostic factors for theindirect traumatic optic neuropathy underwent endoscopictransnasal optic canal decompression. J. Craniofac. Surg 2020, 31, 1266–1269. [Google Scholar]
- Zygulska-Mach, H.; Kostka-Trabka, E.; Niton, A.; Gryglewski, R. PROSTACYCLIN IN CENTRAL RETINAL VEIN OCCLUSION. Lancet 1980, 316, 1075. [Google Scholar] [CrossRef]
- Minhas, G.; Morishita, R.; Shimamura, M.; Bansal, R.; Anand, A. Modeling transient retinal ischemia in mouse by ligation of pterygopalatine artery. Ann. Neurosci. 2015, 22, 222–225. [Google Scholar] [CrossRef] [Green Version]
- Weber, S.R.; Zhao, Y.; Ma, J.; Gates, C.; Leprevost, F.D.V.; Basrur, V.; Nesvizhskii, A.I.; Gardner, T.W.; Sundstrom, J.M. A validated analysis pipeline for mass spectrometry-based vitreous proteomics: New insights into proliferative diabetic retinopathy. Clin. Proteom. 2021, 18, 28. [Google Scholar] [CrossRef]
- Gao, B.-B.; Clermont, A.; Rook, S.; Fonda, S.J.; Srinivasan, V.J.; Wojtkowski, M.; Fujimoto, J.G.; Avery, R.L.; Arrigg, P.G.; Bursell, S.-E.; et al. Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nat. Med. 2007, 13, 181–188. [Google Scholar] [CrossRef]
- Zou, C.; Han, C.; Zhao, M.; Yu, J.; Bai, L.; Yao, Y.; Gao, S.; Cao, H.; Zheng, Z. Change of ranibizumab-induced human vitreous protein profile in patients with proliferative diabetic retinopathy based on proteomics analysis. Clin. Proteom. 2018, 15, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Feng, L.; Hu, J.; Xie, C.; Wang, F. Differentiating vitreous proteomes in proliferative diabetic retinopathy using high-performance liquid chromatography coupled to tandem mass spectrometry. Exp. Eye Res. 2013, 108, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Li, B.Y.; Li, X.L.; Cheng, M.; Cai, Q.; Yu, F.; Wang, W.D.; Tan, M.; Yan, G.; Hu, S.L.; et al. Effects of phlorizin on diabetic retinopathy according to isobaric tags for relative and absolute quantification-based proteomics in db/db mice. Mol. Vis. 2013, 19, 812–821. [Google Scholar] [PubMed]
- Yan, F.; Wang, X.; Jiang, X.; Chai, Y.; Zhang, J.; Liu, Q.; Wu, S.; Wang, Y.; Wang, N.; Li, S. Proteomic profiles of the retina in an experimental unilateral optic nerve transection: Roles of Müller cell activation. Clin. Transl. Med. 2022, 12, e631. [Google Scholar] [CrossRef]
- Hollander, A.; D’Onofrio, P.M.; Magharious, M.M.; Lysko, M.D.; Koeberle, P.D. Quantitative Retinal Protein Analysis after Optic Nerve Transection Reveals a Neuroprotective Role for Hepatoma-Derived Growth Factor on Injured Retinal Ganglion Cells. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3973–3989. [Google Scholar] [CrossRef] [Green Version]
- Kwong, J.; Caprioli, J.; Sze, Y.; Yu, F.; Li, K.; To, C.; Lam, T. Differential Retinal Protein Expression in Primary and Secondary Retinal Ganglion Cell Degeneration Identified by Integrated SWATH and Target-Based Proteomics. Int. J. Mol. Sci. 2021, 22, 8592. [Google Scholar] [CrossRef]
- Lam, C.; Li, K.K.; Do, C.W.; Chan, H.H.; To, C.H.; Kwong, J.M.K. Quantitative profiling of regional protein expression in rat retina after partial optic nerve transection using fluorescence difference two-dimensional gel electrophoresis. Mol. Med. Rep. 2019, 20, 2734–2742. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Wang, L.; Cai, R.; Zheng, L.; Guo, L. Identification of Protein Network Alterations upon Retinal Ischemia-Reperfusion Injury by Quantitative Proteomics Using a Rattus norvegicus Model. PLoS ONE 2014, 9, e116453. [Google Scholar] [CrossRef]
- Suo, L.; Dai, W.; Chen, X.; Qin, X.; Li, G.; Song, S.; Zhang, D.; Zhang, C. Proteomics analysis of N-methyl-d-aspartate-induced cell death in retinal and optic nerves. J. Proteom. 2021, 252, 104427. [Google Scholar] [CrossRef]
- Wu, H.; Wang, D.; Zheng, Q.; Xu, Z. Integrating SWATH-MS proteomics and transcriptome analysis to preliminarily identify three DEGs as biomarkers for proliferative diabetic retinopathy. Proteom. –Clin. Appl. 2021, 16, e2100016. [Google Scholar] [CrossRef]
- Winiarczyk, D.; Winiarczyk, M.; Winiarczyk, S.; Michalak, K.; Adaszek, Ł. Proteomic Analysis of Tear Film Obtained from Diabetic Dogs. Animals 2020, 10, 2416. [Google Scholar] [CrossRef] [PubMed]
- Nagai, N.; Yamamoto, T.; Mitamura, K.; Taga, A. Proteomic profile of the lens in a streptozotocin-induced diabetic rat model using shotgun proteomics. Biomed. Rep. 2017, 7, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Sidoli, S.; Wang, L.; Wang, W.; Guo, L.; Jensen, O.N.; Zheng, L. Comparative Proteomic Analysis of Histone Post-translational Modifications upon Ischemia/Reperfusion-Induced Retinal Injury. J. Proteome Res. 2014, 13, 2175–2186. [Google Scholar] [CrossRef]
- Vähätupa, M.; Järvinen, T.A.H.; Uusitalo-Järvinen, H. Exploration of Oxygen-Induced Retinopathy Model to Discover New Therapeutic Drug Targets in Retinopathies. Front. Pharmacol. 2020, 11, 873. [Google Scholar] [CrossRef] [PubMed]
- Romero-Aroca, P.; Baget-Bernaldiz, M.; Pareja-Rios, A.; Lopez-Galvez, M.; Navarro-Gil, R.; Verges, R. Diabetic macular edema pathophysiology: Vasogenic versus inflammatory. J. Diabetes Res. 2016, 2016, 2156273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, J.M.; Trivino, A.; Ramirez, A.I.; Salazar, J.J.; Garcia-Sanchez, J. Immunohistochemical study of human retinal astroglia. Vis. Res. 1994, 34, 1935–1946. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.W.; Adamis, A.P.; Shima, D.T.; D’Amore, P.A.; Moulton, R.S.; O’Reilly, M.S.; Folkman, J.; Dvorak, H.F.; Brown, L.F.; Berse, B.; et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am. J. Pathol. 1994, 145, 574–584. [Google Scholar] [CrossRef] [Green Version]
- Serhan, C.N.; Brain, S.D.; Buckley, C.D.; Gilroy, D.W.; Haslett, C.; O’Neill, L.A.J.; Perretti, M.; Rossi, A.G.; Wallace, J.L. Resolution of in flammation: State of the art, definitions and terms. FASEB J. 2007, 21, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Gariano, R.F.; Gardner, T.W. Retinal angiogenesis in development and disease. Nature 2005, 438, 960–966. [Google Scholar] [CrossRef]
- Zippel, N.; Kenny, C.H.; Wu, H.; Garneau, M.; Kroe-Barrett, R.; Gupta, P.; Low, S.; Bakker, R.A.; Thomas, L. Sema3A Antibody BI-X Prevents Cell Permeability and Cytoskeletal Collapse in HRMECs and Increases Tip Cell Density in Mouse Oxygen-Induced Retinopathy. Trans. Vis. Sci. Technol. 2022, 11, 17. [Google Scholar] [CrossRef]
- Guo, S.; Ren, J.; Li, Z.; Fan, X.; Qin, L.; Li, J. Aqueous semaphorin 3A level correlates with retinal macular oedema and ganglion cell degeneration in patients with retinal vein occlusion. Acta Ophthalmol. 2019, 97, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Oubaha, M.; Miloudi, K.; Dejda, A.; Guber, V.; Mawambo, G.; Germain, M.-A.; Bourdel, G.; Popovic, N.; Rezende, F.A.; Kaufman, R.J.; et al. Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Sci. Transl. Med. 2016, 8, 362ra144. [Google Scholar] [CrossRef] [PubMed]
- Weise, J.; Isenmann, S.; Bähr, M. Increased expression and activation of poly(ADP-ribose) polymerase (PARP) contribute to retinal ganglion cell death following rat optic nerve transection. Cell Death Differ. 2001, 8, 801–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zlobin, I.V.; Zhukova, S.I.; Shchuko, A.G.; Iureva, T.N. Complex assessment of retinal ischemic damage in patients with retinal vein occlusion. Vestnik Oftal’mologii 2019, 135, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Levkovitch-Verbin, H. Animal models of optic nerve diseases. Eye 2004, 18, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- Almuslehi, M.S.M.; Sen, M.K.; Shortland, P.J.; Mahns, D.A.; Coorssen, J.R. Histological and Top-Down Proteomic Analyses of the Visual Pathway in the Cuprizone Demyelination Model. J. Mol. Neurosci. 2022, 72, 1374–1401. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, M.R.; Sanchez, J.-C.; Gooley, A.A.; Appel, R.D.; Humphery-Smith, I.; Hochstrasser, D.F.; Williams, K.L. Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 1996, 13, 19–50. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Z.; You, R.; Mahmood, A.; Yan, F.; Wang, Y. Application of Proteomics Analysis and Animal Models in Optic Nerve Injury Diseases. Brain Sci. 2023, 13, 404. https://doi.org/10.3390/brainsci13030404
Meng Z, You R, Mahmood A, Yan F, Wang Y. Application of Proteomics Analysis and Animal Models in Optic Nerve Injury Diseases. Brain Sciences. 2023; 13(3):404. https://doi.org/10.3390/brainsci13030404
Chicago/Turabian StyleMeng, Zhaoyang, Ran You, Arif Mahmood, Fancheng Yan, and Yanling Wang. 2023. "Application of Proteomics Analysis and Animal Models in Optic Nerve Injury Diseases" Brain Sciences 13, no. 3: 404. https://doi.org/10.3390/brainsci13030404
APA StyleMeng, Z., You, R., Mahmood, A., Yan, F., & Wang, Y. (2023). Application of Proteomics Analysis and Animal Models in Optic Nerve Injury Diseases. Brain Sciences, 13(3), 404. https://doi.org/10.3390/brainsci13030404