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Abstract: Glioma is the primary tumor with the highest incidence and the worst prognosis in the
human central nervous system. Epithelial–mesenchymal transition (EMT) and immune responses
are two crucial processes that contribute to it having the worst prognosis. However, a comprehen-
sive correlation between these two processes remains elusive. The mRNA expression profiles and
corresponding clinical data of patients with glioma were downloaded from public databases. EMT-
related genes were collected and provided in the dbEMT database. Risk scores, Lasso regression, and
enrichment analysis were conducted for functional validation. In our study, we used unsupervised
clustering of EMT gene expression profiles to classify gliomas into two subtypes. We assessed the
reliability of this classification system by testing it in three independent cohorts. Each subtype had
different clinical and immune system characteristics. The study suggests a possible link between
EMT and immune responses in gliomas.
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1. Introduction

Gliomas, representing 81% of malignant brain tumors, are the most common tumors
in the central nervous system [1]. The age-adjusted overall incidence of gliomas ranges
from 4.67 to 5.73 cases per 100,000 persons (the study data are from the United States in
2014), and the overall survival (OS) time is short [2]. The 10-year survival rate for low-
grade glioma is 47% with a median survival time of 11.6 years. For high-grade glioma,
the median OS time of patients with grade 3 glioma is approximately 3 years, whereas
those with grade 4 glioma have a poor median OS time of 15 months [3]. According to
the latest Stupp protocol, the current treatment for glioma is safe and maximal tumor
resection while preserving the patient’s neurological function, supplemented by concurrent
chemoradiotherapy, followed by adjuvant temozolomide chemotherapy, and a series of
new frontier treatment trials, such as tumor treating fields (TT fields) [4]. However, despite
this detailed treatment protocol, glioma patients inevitably experience tumor recurrence or
tumor progression, resulting in a poor prognosis that only further research may stand a
chance of improving.

The poor prognosis for gliomas results from a combination of reasons, especially tumor
heterogeneity. The heterogeneity of gliomas, encompassing intertumoral and intratumoral
heterogeneity, refers to the variety of stemness renewal, angiogenesis, and metabolism
capacity among patients or even within a tumor, which can result in resistance to chemora-
diation therapy, leading to worse outcomes [5]. Glioma epigenetic-mediated intertumoral
heterogeneity or heterogenous mutation of genes may cause the trans-differentiation from
epithelial-like glioma cells into mesenchymal-like cells, leading to treatment resistance
and a higher risk of recurrence [6]. This process is now widely accepted and termed
epithelial–mesenchymal transition (EMT).
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The development of the embryo, tissue fibrosis, wound healing, tumorigenesis, and
metastasis are all significantly influenced by EMT [7,8]. The process may be triggered in a
variety of cancerous tumor cells, leading to the loss of epithelial (Epi) cell characteristics
such as cell–cell junctions and apical–basal polarity, and the acquisition of mesenchymal
(Mes) cell characteristics that facilitate migration and finish the invasion–metastasis cas-
cade [9]. Recent research showed that EMT transcription factors (EMT-TFs) mediate other
essential and specific functions in addition to promoting cancer cell motility and dissemina-
tion [10]. EMT-TFs are important regulators of tumorigenesis, therapeutic resistance, tumor
cell stemness, and tumor immune responses [11]. For instance, Snail, a typical EMT-TF,
causes immunotherapy resistance in melanoma and speeds up cancer metastasis through
immunosuppression by Treg cells and DCs. In addition, Twist, another important EMT-TF,
can downregulate TNFα and NF-KB to mediate inflammatory suppression through type I
interferons (IFNs) [6,9]. Furthermore, the Mes subtype has a dramatically greater immune
cell recruitment capacity compared to its Epi counterparts [12]. These previous findings
demonstrate the pivotal role of EMT in immune evasion and immunosuppression during
the progression of tumors, including gliomas. However, there is currently no comprehen-
sive evidence to systematically prove the correlation between EMT and immune responses
in gliomas.

Our research involved dividing gliomas into two EMT subtypes using unsupervised
clustering of EMT gene expression profiles. We then tested the reproducibility and stability
of this classification system in three independent cohorts. Our analysis revealed that each
of the EMT subtypes had unique clinical characteristics and tumor immune infiltration
patterns. Findings from the study highlight the EMT heterogeneity of gliomas and provide
a potential theoretic bridge connecting EMT and tumor immune responses, which could be
a promising target for future treatment of gliomas.

2. Materials and Methods
2.1. Patients and Datasets

For our research, we analyzed gliomas using data obtained from two publicly available
databases: the Chinese Glioma Genome Atlas (CGGA) and the Glioma Longitudinal
Analysis (GLASS) (Supplementary Table S1). The CGGA database provided two RNA-
seq datasets, as well as relevant clinical information (http://www.cgga.org.cn (accessed
on 3 April 2022)). Similarly, the GLASS database contributed RNA-seq data and clinical
information from 51 patients who had both initial and recurrent tumor samples available for
analysis (http://synapse.org/glass (accessed on 3 January 2019)). The study was conducted
according to the Helsinki Declaration and received approval from the ethics committee of
Sanbo Brain Hospital. Patients’ informed consent was ensured in both public databases.

2.2. Identification and Validation of EMT Subtypes

To cluster EMT-related genes, we retrieved 1184 genes from the dbEMT database
(dbEMT, http://dbemt.bioinfo-minzhao.org/ (accessed on 25 January 2022)). We per-
formed Cox regression analysis on the CGGA 325 cohort to identify genes linked to overall
survival (OS). We selected candidate genes with a median absolute deviation (MAD) value
of at least 0.5 for consensus clustering using the “consensusClusterplus” package. We eval-
uated the optimal K value using the cumulative distribution function (CDF) and consensus
heat map on all discovery group samples.

2.3. Identification of EMT-Related Signature

To identify the differentially expressed EMT genes between the two subtypes, we
utilized the significance analysis of microarrays (SAM) technique through the “samr”
function in R. We then used the least absolute shrinkage and selection operator (Lasso)
method to identify signature genes and determine their respective coefficient (Coeff) values.

http://www.cgga.org.cn
http://synapse.org/glass
http://dbemt.bioinfo-minzhao.org/
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Finally, we calculated the risk score for each patient in the training and validation cohorts
using the following formula:

Risk score = ∑n
i=1 expr gene(i) ∗ Co f f gene(i) .

2.4. Bioinformatic Analysis

To annotate the differential genes between EMT subtypes, we utilized gene ontology
(GO) analysis for functional annotation. Additionally, we conducted gene set enrichment
analysis (GSEA) to identify gene sets with statistical significance. For predicting overall
survival (OS), we employed ROC curve analysis using the “pROC” R package.

2.5. Statistical Analysis

The statistical analyses were carried out using R language version 4.0.3 (https://cran.
r-project.org/bin/windows/base/old/4.0.3/) (accessed on 25 January 2022), GraphPad
Prism version 6.0 (GraphPad Inc., San Diego, CA, USA), and SPSS version 16.0 (IBM,
Chicago, IL, USA). To assess the survival differences between subtypes, Kaplan–Meier
analysis with a log-rank test was performed. Chi-squared tests were conducted to evaluate
the differences in clinical and molecular characteristics between EMT subtypes. One-way
ANOVA was used to compare the three groups. Univariate and multivariate Cox regression
analyses were performed to identify prognostic factors. A p value less than 0.05 was
considered statistically significant.

3. Results
3.1. Identification of Two Distinct EMT Subtypes

To investigate the heterogeneity of EMT in gliomas, the researchers collected 1184
EMT-related genes from a public database (dbEMT) and performed clustering analysis.
A flowchart of the data resources and experimental design is shown in Figure 1A, and
clinical data from the three cohorts are provided in Supplementary Table S1. Firstly, cohort1
from CGGA (CGGA cohort 325) was used as the discovery set. Cox regression analysis
to identify genes associated with OS revealed 962 overlapping candidate genes between
the discovery group and EMT-related genes. Then, we applied consensus clustering to
the expression profiles of these candidate genes and defined two EMT subtypes, M1 and
M2 (Figure 1B and Supplementary Figure S1). We screened for EMT-related differentially
expressed genes in CGGA cohort1. When comparing M2 to M1, 134 DEGs were obtained
based on p < 0.05 and |Fold change| > 2 (Figure 1C, Supplementary Dataset). There was a
significant prognostic difference between these two EMT subtypes (p < 0.001): a shorter
OS was observed in M1 compared with M2 (Figure 1D). Similar grouping results were
obtained with the validation groups, which were cohort2 from CGGA (CGGA cohort 693)
and the GLASS cohort (Figure 1B, Supplementary Figures S2 and S3).

https://cran.r-project.org/bin/windows/base/old/4.0.3/
https://cran.r-project.org/bin/windows/base/old/4.0.3/
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Figure 1. Identification of distinct epithelial–mesenchymal transition subtypes in gliomas through
EMT gene profiling. (A) Flow chart shows the data resources and total experimental design. CGGA
cohort2 and GLASS cohort were collected as validation sets. MAD, median absolute deviation.
(B) Heatmap of two EMT subtypes defined in three cohorts. (C) Volcano plot of the differentially
expressed genes (DEGs) by comparing M1 to M2 from CGGA cohort1. Venn diagram for the
EMT−related differentially genes. p < 0.05, |FC| > 2. (D) In three different groups, survival analyses
revealed notable distinctions between the two EMT subtypes. To determine the statistical significance
between the subtypes, the log-rank test was used to calculate the p value.

3.2. Correlation of the EMT Subtypes with Clinical Features in CGGA Cohorts

Several genomic, transcriptomic, and methylation molecular features are widely ac-
cepted as basic clinical and prognostic characteristics in gliomas. A series of correlation
analyses were performed using these clinical features to determine the prognostic sensi-
tivity of the two EMT subtypes (M1 and M2) discovered in the current study. Statistical
analysis (chi-squared test) revealed that in both cohorts of CGGA, a high histologic grade
(WHO grade III, IV), older patients (≥42 years), and IDH wildtype were significantly
associated with the M1 subtype (p < 0.001), while a lower histologic grade (WHO grade II),
relatively younger patients (<42 years old), and IDH mutant were significantly associated
with the M2 subtype (p < 0.001) (Figure 2). Moreover, in cohort2 of CGGA only, significant
association of 1p/19q non-codeletion and recurrence were observed with the M1 subtype,
while in the M2 subtype grouping, there were significantly more 1p/19q codeletion events
and primary gliomas (p < 0.001). In addition, although not statistically different, there
were more MGMT promoter unmethylated gliomas in the M1 subtype compared to the
M2 subtype (p = 0.381 (CGGA cohort1) and 0.714 (CGGA cohort 2)). Furthermore, we
also observed correlations between EMT subtypes and clinicopathological features in the
GLASS cohorts (Supplementary Figure S4).
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Figure 2. Clinical characteristics of EMT subtypes in CGGA cohorts. (A,B) Correlation of our
classification with clinical characteristics and previous subclasses in CGGA cohorts.

3.3. Functional Enrichment Analysis of the EMT Subtypes

To further analyze the potential function and pathways of the obtained candidate
genes, function enrichment analysis using GO and GSEA methods was performed. As
shown in Figure 3A–D, GO enrichment analysis revealed top enrichment functions and
pathways, including “cell activation”, “positive regulation of cytokine production”, “im-
mune effector process”, “inflammatory response”, “regulation of defense response”, “innate
immune response”, “regulation of cell activation”, “NABA MATRISOME ASSOCIATED”,
“cytokine signaling in immune system”, and “neutrophil degranulation” in CGGA co-
hort1, and “cell activation”, “positive regulation of cytokine production”, “inflammatory
response”, “innate immune response”, “positive regulation of immune response”, “reg-
ulation of cell activation”, “NABA MATRISOME ASSOCIATED”, “cytokine signaling in
immune system”, “neutrophil degranulation”, and “network map of SARS-CoV-2 signaling
pathway” in CGGA cohort2. GSEA analysis is another widely used enrichment method
that provides accurate enrichment pathways. GSEA revealed that besides significant en-
richment in function of “epithelial–mesenchymal transition”, the candidate genes were
significantly enriched in pathways including “interferon GAMMA response” (NES = 3.25),
“TNFA signaling via NFKB” (NES = 3.18), “KEGG lysosome” (NES = 2.80), and “cytokine–
cytokine receptor interaction” (NES = 2.79) in CGGA cohort1, and “interferon GAMMA
response” (NES = 2.22), “TNFA signaling via NFKB” (NES = 2.10), “KEGG lysosome”
(NES = 2.09), and “antigen processing and presentation” (NES = 1.99) in CGGA cohort2.
Similar results were observed in the GLASS cohort (Supplementary Figure S5). To further
analyze the correlation between the level of EMT and immune cells, EMT scoring was
conducted to quantify the level of EMT. Most immune cells were significantly associated
with the EMT score (Figure 3E). A lower EMT-scored group was enriched with a larger
proportion of B cells, Tfh cells, Tgd cells, NK CD56 bright cells, DC, and mast cells, while a
higher EMT-scored group had a larger proportion of Th cells, Tcm cells, Th2 cells, Th17 cells,
Treg cells, CD8 T cells, NK cells, NK CD56 dim cells, iDC, aDC, eosinophils, macrophages,
neutrophils, and microglia. There was no significant difference in T cells and Tem between
the two EMT groups.
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Figure 3. A detailed correlation between EMT and glioma immune responses. (A–D) Enrichment
pathways generated by GO and GSEA method using the overlapped genes showed the top potential
functions in cohort1 and cohort2 of CGGA. GO analysis of upregulated genes in M1 subtype (CGGA
cohort1 (A), CGGA cohort2 (C)). Enriched functions of M1 subtype identified through GSEA (CGGA
cohort1 (B), CGGA cohort2 (D)). (E) Correlation analysis shows the association between immune
cells and EMT levels.

3.4. Immune Infiltration of Two EMT Subtypes Using CGGA Cohorts

The analyses above demonstrated that the candidate genes could function through
active binary roles in EMT and immune-related pathways. This prompted further explo-
ration of the potential immune activities of the candidate genes. Stromal and immune
scores were calculated between subtypes using the ESTIMATE method (Figure 4A). The M1
subtype was found to have higher immune and stromal scores but lower purity compared
to M2. Additionally, enrichment levels of immune cells and functions were evaluated
using ssGSEA scores. As shown in Figure 4B, the M1 EMT subtype tended to have an
increased level of immune cells, especially T cells, Th2 cells, Th17 cells, Treg, cytotoxic
cells, NK cells, NK CD56 dim cells, iDC, aDC, eosinophils, macrophages, neutrophils,
and microglia, which showed significantly different enrichment in the two CGGA co-
horts. In contrast, only Tfh, Tgd, Th2, and Tem cells were enriched in the M2 EMT
subtype. To validate these findings, the immune infiltration of each EMT subtype in
the GLASS cohort was dissected and consistent results were obtained (Supplementary
Figure S6). The most enriched pathways of these genes were further evaluated. We
discovered similar results in CGGA cohort2. To further explore the EMT pathway char-
acteristics of each subtype, a total of 19 EMT-related pathways were obtained, and gene
set variation analysis (GSVA) was used to quantify the enrichment of pathways. Differ-
ential analysis showed that most of the EMT pathways were enriched in the M1 subtype,
such as APOPTOSIS, AXON_GUIDANCE, CHEMOKINE_SIGNALING_PATHWAY, CY-
TOKINE_CYTOKINE_RECEPTOR_INTERACTION, ENDOCYTOSIS, GAP_JUNCTION,
etc., while the M2 subtype showed high enrichment levels of the pathways CALCIUM
_SIGNALING_PATHWAY and NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION
(Figure 4C).
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Figure 4. Functional enrichment analysis of the EMT subtypes showed close correlation between
EMT and immune−related responses. (A) Violin plots showing scores for immune, stromal, and
tumor purity in various EMT subtypes in the CGGA cohorts (ANOVA test). (B) Heatmaps show
differential enrichments of immune−related cells between two EMT subtypes. (C) Heatmap showing
the EMT−related pathways differentially enriched in the m1 versus m2. ANOVA test was used for
statistical analysis, and the p values were labeled.

3.5. Identification of Immune Signature Associated with OS Using a Cox Proportional Hazards
Model

Based on the EMT classification developed in this study, a prognostic signature was
constructed with a Cox proportional hazards model (using R package “glmnet”). Firstly,
the SAM method was used to identify 585 differentially expressed genes among CGGA
cohort1 and cohort2 and the GLASS cohort, and a gene set with the best prognostic value
was generated through Cox proportional hazards modeling (Figure 5A). Coefficient values
and univariate Cox regression results of 11 genes were then calculated (Figure 5B,C).
An analysis using the Kaplan–Meier method indicated that patients with high scores
experienced notably longer overall survival (Figure 5D, p < 0.001). In addition, time ROC
curve analyses were used to predict 1-, 3-, and 5-year OS according to risk score in CGGA
cohort1, and the area under the curve (AUC) values were 0.76, 0.86, and 0.89, respectively
(Figure 5E). Moreover, high scores were enriched in M2 subtype, low-grade, or IDH-mutant
tumors (**** p < 0.0001), while no significant difference was observed between primary
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and recurrent gliomas (p = 0.0578) (Figure 5F). These observations were verified in CGGA
cohort1 and the GLASS cohort and consistent results were obtained, thus validating the
findings.

Figure 5. The Cox proportional hazards model was used to identify an EMT signature that is corre-
lated with overall survival. (A) Cross-validation for tuning parameter selection in the proportional
hazards model. (B) Forrest map shows the expression levels of 11 signature genes. (C) Distribution of
the risk score, overall survival (OS), and expression level of 11 genes in the risk signature. (D) Kaplan–
Meier survival analysis of the EMT signature in patients with gliomas. The p value was calculated
using the log-rank test. (E) Time receiver operating characteristic (ROC) curve analyses to predict 1−,
3−, and 5−year OS according to risk score in CGGA cohort1 datasets. (F) Distribution of the risk
score in glioma patients stratified by primary/recurrence, IDH mutant/wildtype, or WHO grade.

3.6. Risk Signature Is Associated with ICB Response and Immune Checkpoint

According to previous studies, combination therapy with ICB has demonstrated
efficacy in preclinical models of glioma. However, the effectiveness of this therapy in
patients requires further validation. To investigate the relationship between a patient’s
response to ICB and their risk score, we used the Tumor Immune Dysfunction and Exclusion
(TIDE) method on data from CGGA cohort1. Our analysis showed that patients in the
low-risk score group (98 out of 163 or 60.1%) were more likely to respond to ICB therapy
compared to those in the high-risk score group (61 out of 162 or 37.7%) (Fisher p < 0.0001),
as demonstrated in Figure 6A. We obtained similar results when we validated the findings
using CGGA cohort2 (Figure 6B) and the GLASS cohort (Supplementary Figure S7) datasets.
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Additionally, we examined the relationship between the risk score of signatures and well-
studied checkpoints. Our analysis revealed that CD276 and HAVCR2 were positively
correlated with the risk score (Figure 6C). This relationship was also observed in CGGA
cohort2 (Figure 6D) and the GLASS cohort (Supplementary Figure S8).

Figure 6. The risk signature is associated with the ICB response and immune checkpoint. (A,B) The
TIDE score and response results to immunotherapy of patients with glioma. (C,D) The correlation
coefficient between risk score and immune checkpoints.

4. Discussion

EMT is a complex process among cancers, especially gliomas [13]. EMT is closely
linked to the malignancy, progression, and invasion process of gliomas, thus leading to a
worse prognosis for patients [13,14]. Multiple genetic alternations and molecular events are
actively involved in EMT processes. For example, ZEB-, SNAI-, MMP-, and TWIST-family
members, which are key regulators of cytoskeleton rearrangement, extracellular matrix
remodeling, cell adhesion contact and degradation, etc., are among the most influential
activators of EMT. Master transcription factors such as β-catenin or epigenetic regulators
such as miR-21, one of the major EMT-activators, can enhance extracellular matrix cleavage,
subsequentially invading the surrounding microenvironment to promote glioblastoma
(GBM) progression and tumor multifocality [15,16]. However, the heterogeneity of GBM
means there are differences in the EMT level between different patients, and even between
different cell clusters in the same patient [17,18]. This phenomenon is now considered to be
one of the most important parts of tumor heterogeneity.

To date, few studies have provided comprehensive evidence regarding the problem of
EMT variation in gliomas. However, advances in bioinformatic methods as well as com-
prehensive data collected in databases such as the Cancer Genome Atlas (TCGA), CGGA,
etc., have now facilitated a thorough investigation of EMT diversity. In the current study,
we first defined two subtypes of gliomas with different EMT properties and prognoses
using data from the CGGA and GLASS databases, as well as genes significantly involved
in the EMT pathway, as proven by research collected in the EMT database (dbEMT 2.0). We
discovered that these two subgroups also presented significant differences in molecular
event characteristics such as IDH mutant/wildtype and 1p/19q codeletion/non-codeletion,
and significantly different clinical features such as age and WHO tumor grade. It is widely
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accepted that patients with lower-grade gliomas, 1p/19q codeletion, and IDH mutant
gliomas have a significantly better prognosis compared with their counterparts [19,20],
which is consistent with the better prognosis in the M2 subtype in the current study. Ag-
ing is another important factor in cancer prognosis, including gliomas. Clinical evidence
from the Surveillance, Epidemiology, and End Results (SEER) Program showed that older
glioma patients (>42 years old, consistent with our findings) had a trend of relatively
worse prognosis compared with younger patients [21,22], which was not only caused by
comparatively worse health conditions, but was also a result of the characteristics of the
tumors themselves.

Further investigations were conducted in the current study to identify the potential
characteristic(s) responsible for this prognostic diversity. We found that the differentially
expressed genes between the two subgroups, which were supposed to play vital roles
in EMT, were also enriched in various tumor immune-related pathways. In addition,
significantly distinct immune cell enrichment capacity was observed between the two
subtypes, which was consistent with the findings of the distinct distribution of immune
cells between EMT scoring levels. Different EMT scoring systems have been established
in previous studies as promising and convincing tools with which to monitor the role
of EMT in cancer progression and therapeutic resistance. In the present study, most of
the immune cells exhibited distributional differences between the M1 and M2 subgroups,
as well as according to EMT levels. For instance, the M1 subgroup had significantly
higher stromal and immune scores and lower tumor purity compared to the M2 subgroup.
Furthermore, Th cells, Tcm cells, Th2 cells, Th17 cells, Treg cells, CD8 T cells, NK cells, NK
CD56 dim cells, iDC, aDC, eosinophils, macrophages, neutrophils, and microglia tended
to be positively associated with EMT levels, while, conversely, B cells, Tfh cells, Tgd cells,
NK CD56 bright cells, DC, mast cells, Tfh, Tgd, Th2, and Tem were relatively negatively
enriched in accordance with EMT levels. Tumor-associated immune cells, which have
crucial roles within the tumor microenvironment (TME), were discovered to function as
key regulators and effectors of EMT [23,24]. Within the tumor microenvironment (TME),
immune cells can secrete various factors, such as cytokines and chemokines, which can
influence the epithelial–mesenchymal transition (EMT) process in cancer cells through
multiple pathways. Cancer cells, in turn, can communicate with immune cells, leading
to cell plasticity and the release of immunosuppressive substances. This interaction can
create an immunosuppressive microenvironment that promotes the EMT process and
contributes to tumor invasion and metastasis [12,25]. For example, stromal cells in the TME,
including macrophages, fibroblasts, myeloid-derived suppressor cells (MDSCs), T cells, B
cells, adipocytes, mast cells, and other stromal cells, act like “partners in crime” in cancer
progression [13,26]. However, until now, there has been very limited research that could
provide evidence to quantify this correlation between the immune response and EMT in
gliomas. Our results present a very detailed and comprehensive correlation between EMT
and immune cells. However, the results do not necessarily mean that these immune cells
directly promote or inhibit the EMT process, though they indicate that these cells should
actively affect EMT. These intriguing results need to be further elucidated.

The treatment of glioma has currently reached an obvious bottleneck. Alkylating
agents such as temozolomide are still commonly used in the adjuvant treatment of glioma.
Immunotherapies targeting PD1/PD-L1, etc., which are recognized in research on other
tumors, have not shown marked effectiveness in the field of gliomas [27]. Therefore, there
is an urgent need to identify effective new therapeutic drugs in glioma-related research.
Targeting EMT is a potential new treatment method that is also believed to be closely
related to tumor immunity. However, the precise molecular mechanisms that could be
actively involved in both the EMT process and tumor immune escape remain elusive. In
the current study, we developed a risk model using a Lasso regression method. Eleven
candidate genes were also listed that may represent the molecular bridge connecting EMT
and the immune response.
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5. Conclusions

In conclusion, our study identified two EMT subtypes that exhibited unique immune
characteristics. The results suggest that EMT plays a crucial role in immune evasion and
immunosuppression in glioma progression, and our findings may serve as novel predictors
and potential therapeutic targets for the treatment of tumors.
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infiltration of two subtypes in the GLASS cohort: Figure Identification and analysis of the EMT
related signature: title; Figure S7: Identification and analysis of the EMT related signature; Figure S8:
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