Caloric Restriction Can Ameliorate Postoperative Cognitive Dysfunction by Upregulating the Expression of Sirt1, MeCP2 and BDNF in the Hippocampal CA1 Region of Aged C57BL/6 Mice
Abstract
:1. Introduction
2. Methods
2.1. Animals and CR Model
2.2. Tail Vein Blood Glucose Test
2.3. POCD Model
2.4. Morris Water Maze Test
2.5. Tissue Sampling
2.6. Western Blot
2.7. Immunofluorescence
2.8. Statistical Analysis
3. Results
3.1. Changes in Food Intake, Body Weight, Calorie Consumption and Blood Glucose in Aged Mice
3.2. Learning and Memory Ability in Aged Mice
3.3. Expression of Related Proteins in the Hippocampus
3.4. Expression of Related Proteins in Hippocampal CA1 Region
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evered, L.A.; Silbert, B.S. Postoperative cognitive dysfunction and noncardiac surgery. Obstet. Anesth. Dig. 2018, 127, 496–505. [Google Scholar] [CrossRef]
- Liu, J.; Huang, K.; Zhu, B.; Zhou, B.; Ahmad Harb, A.K.; Liu, L.; Wu, X. Neuropsychological tests in post-operative cognitive dysfunction: Methods and applications. Front. Psychol. 2021, 12, 684307. [Google Scholar] [CrossRef] [PubMed]
- Rickenbacher, M.; Reinbold, C.S.; Herms, S.; Hoffmann, P.; Cichon, S.; Wueest, A.S.; Monsch, A.U.; Steiner, L.A.; Goettel, N. Genome-wide association study of postoperative cognitive dysfunction in older surgical patients. J. Neurosurg. Anesthesiol. 2020, 34, 248–250. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Huang, X.; Li, M.; Jiang, Y.; Zhang, H. Identification of individuals at risk for postoperative cognitive dysfunction (POCD). Ther Adv. Neurol. Disord. 2022, 15, 17562864221114356. [Google Scholar] [CrossRef] [PubMed]
- Ida, M.; Kawaguchi, M. Postoperative cognitive dysfunction after non-cardiac surgery. Masui. Jpn. J. Anesthesiol. 2014, 63, 1228–1234. [Google Scholar]
- Davidson, T.L.; Hargrave, S.L.; Swithers, S.E.; Sample, C.H.; Fu, X.; Kinzig, K.P.; Zheng, W. Inter-relationships among diet, obesity and hippocampal-dependent cognitive function. Neuroscience 2013, 253, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Bo, L.; Wang, J.; Zhao, Z.; Xu, Z.; Deng, X.; Zhu, W. Risk factors for early postoperative cognitive dysfunction after non-coronary bypass surgery in Chinese population. J. Cardiothorac. Surg. 2013, 8, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, Y.J.; Wu, Q.H.; Zhang, R.Q. Effect of propofol, sevoflurane, and isoflurane on postoperative cognitive dysfunction following laparoscopic cholecystectomy in elderly patients: A randomized controlled trial. J. Clin. Anesth. 2017, 38, 165. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L. The effects of caloric restriction and its mimetics in Alzheimer’s disease through autophagy pathways. Food Funct. 2020, 11, 1211–1224. [Google Scholar] [CrossRef]
- McCay, C.; Crowell, M.F.; Maynard, L.A. The effect of retarded growth upon the length of life span and upon the ultimate body size. J. Nutr. 1935, 10, 63–79. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xu, H.; Ding, N.; Li, X.; Chen, X.; Chen, Z. Beneficial effects on brain micro-environment by caloric restriction in alleviating neurodegenerative diseases and brain aging. Front. Physiol. 2021, 12, 715443. [Google Scholar] [CrossRef] [PubMed]
- Gillette-Guyonnet, S.; Vellas, B. Caloric restriction and brain function. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Prehn, K.; von Schwartzenberg, R.J.; Mai, K.; Zeitz, U.; Witte, A.V.; Hampel, D.; Szela, A.-M.; Fabian, S.; Grittner, U.; Spranger, J.; et al. Caloric restriction in older adults—Differential effects of weight loss and reduced weight on brain structure and function. Cereb. Cortex 2016, 27, 1765–1778. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, I. The hippocampus and learning. Prog. Neurobiol. 1975, 5, 37–75. [Google Scholar] [CrossRef]
- Opitz, B. Memory function and the hippocampus. Front. Neurol. Neurosci. 2014, 34, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Poulose, S.M.; Miller, M.G.; Scott, T.; Shukitt Hale, B. Nutritional factors affecting adult neurogenesis and cognitive function. Adv. Nutr. 2017, 8, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, Y.; Zhao, J.; Yu, J.; Zhang, Q.; Xu, F.; Zhang, Y.; Zhou, Q.; Yin, C.; Hou, Z.; et al. Activation of astrocyte Gq pathway in hippocampal CA1 region attenuates anesthesia/surgery induced cognitive dysfunction in aged mice. Front. Aging Neurosci. 2022, 14, 1040569. [Google Scholar] [CrossRef]
- Ginsberg, S.D.; Malek-Ahmadi, M.H.; Alldred, M.J.; Che, S.; Elarova, I.; Chen, Y.; Jeanneteau, F.; Kranz, T.M.; Chao, M.V.; Counts, S.E.; et al. Selective decline of neurotrophin and neurotrophin receptor genes within CA1 pyramidal neurons and hippocampus proper: Correlation with cognitive performance and neuropathology in mild cognitive impairment and Alzheimer’s disease. Hippocampus 2019, 29, 422–439. [Google Scholar] [CrossRef]
- Gu, H.; Li, N.; Tang, Y.; Yan, C.; Shi, Z.; Yi, S.; Zhou, H.; Liao, D.; OuYang, X. Nicotinate curcumin ameliorates cognitive impairment in diabetic rats by rescuing autophagic flux in CA1 hippocampus. CNS Neurosci. Ther. 2018, 25, 430–441. [Google Scholar] [CrossRef] [Green Version]
- Hofer, S.J.; Carmona-Gutierrez, D.; Mueller, I.; Madeo, M. The ups and downs of caloric restriction and fasting: From molecular effects to clinical application. EMBO Mol. Med. 2021, 14, e14418. [Google Scholar] [CrossRef]
- Mitchell, S.J.; Madrigal-Matute, J.; Scheibye-Knudsen, M.; Fang, E.; Aon, M.; González-Reyes, J.A.; Cortassa, S.; Kaushik, S.; Gonzalez-Freire, M.; Patel, B.; et al. Effects of sex, strain, and energy intake on hallmarks of aging in mice. Cell Metab. 2016, 23, 1093–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta-Rodríguez, V.A.; de Groot, M.H.; Rijo-Ferreira, F.; Green, C.B.; Takahashi, J.S. Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab. 2017, 26, 267–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michán, S.; Li, Y.; Chou, M.M.; Parrella, E.; Ge, H.; Long, J.M.; Allard, J.S.; Lewis, K.; Miller, M.; Xu, W.; et al. SIRT1 is essential for nor-mal cognitive function and synaptic plasticity. J. Neurosci. 2010, 30, 9695–9707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Zhao, S.; Suo, X.; Dou, Y. Sirt1 protects against hippocampal atrophy and its induced cognitive impairment in middle-aged mice. BMC Neurosci. 2022, 23, 33. [Google Scholar] [CrossRef]
- Ma, L.; Dong, W.; Wang, R.; Li, Y.; Xu, B.; Zhang, J.; Zhao, Z.; Wang, Y. Effect of caloric restriction on the SIRT1/mTOR signaling pathways in senile mice. Brain Res. Bull. 2015, 116, 67–72. [Google Scholar] [CrossRef]
- Sánchez-Lafuente, C.L.; Kalynchuk, L.E.; Caruncho, H.J.; Ausió, J. The role of MeCP2 in regulating synaptic plasticity in the context of stress and depression. Cells 2022, 11, 748. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, F.; Su, M.; Li, J.; Yi, W.; Hou, L.; Yang, S.; Liu, J.; Zhang, H.; Ma, T.; et al. MeCP2 prevents age-associated cognitive decline via restoring synaptic plasticity in a senescence-accelerated mouse model. Aging Cell 2021, 20, e13451. [Google Scholar] [CrossRef]
- Notaras, M.; van den Buuse, M. Brain-derived neurotrophic factor (BDNF): Novel insights into regulation and genetic variation. Neuroscientist 2019, 25, 434–454. [Google Scholar] [CrossRef]
- Lu, B.; Nagappan, G.; Lu, Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Neurotrophic Factors 2014, 220, 223–250. [Google Scholar] [CrossRef]
- Seidler, K.; Barrow, M. Intermittent fasting and cognitive performance—Targeting BDNF as potential strategy to optimise brain health. Front. Neuroendocr. 2021, 65, 100971. [Google Scholar] [CrossRef]
- Wang, Y. Molecular Links between Caloric Restriction and Sir2/SIRT1 Activation. Diabetes Metab. J. 2014, 38, 321–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araya, A.V.; Orellana, X.; Espinoza, J. Evaluation of the effect of caloric restriction on serum BDNF in overweight and obese subjects: Preliminary evidences. Endocrine 2008, 33, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Zocchi, L.; Sassone-Corsi, P. SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics 2012, 7, 695–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veyrat-Durebex, C.; Quirion, R.; Ferland, G.; Dumont, Y.; Gaudreau, P. Aging and long-term caloric restriction regulate neuropeptide Y receptor subtype densities in the rat brain. Neuropeptides 2013, 47, 163–169. [Google Scholar] [CrossRef]
- Cesarovic, N.; Nicholls, F.; Rettich, A.; Kronen, P.; Hässig, M.; Jirkof, P.; Arras, M. Isoflurane and sevoflurane provide equally effective anaesthesia in laboratory mice. Lab. Anim. 2010, 44, 329–336. [Google Scholar] [CrossRef]
- Terrando, N.; Monaco, C.; Ma, D.; Foxwell, B.M.; Feldmann, M.; Maze, M. Tumor necrosis factor alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc. Natl. Acad. Sci. USA 2010, 107, 20518–20522. [Google Scholar] [CrossRef] [Green Version]
- Quintas, A.; de Solís, A.J.; Díez-Guerra, F.J.; Carrascosa, J.M.; Bogónez, E. Age-associated decrease of SIRT1 expression in rat hippocampus: Prevention by late onset caloric restriction. Exp. Gerontol. 2012, 47, 198. [Google Scholar] [CrossRef]
- Wang, C.-M.; Chen, W.-C.; Zhang, Y.; Lin, S.; He, H.-F. Update on the mechanism and treatment of sevoflurane-induced postoperative cognitive dysfunction. Front. Aging Neurosci. 2021, 13, 702231. [Google Scholar] [CrossRef]
- Ju, H.; Wang, Y.; Shi, Q.; Zhou, Y.; Ma, R.; Wu, P.; Fang, H. Inhibition of connexin 43 hemichannels improves postoperative cognitive function in aged mice. Am. J. Transl. Res. 2019, 11, 2280–2287. [Google Scholar]
- Sun, L.; Dong, R.; Xu, X.; Yang, X.; Peng, M. Activation of cannabinoid receptor type 2 attenuates surgery-induced cognitive impairment in mice through anti-inflammatory activity. J. Neuroinflammation 2017, 14, 138. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Wang, R.; Ma, L.-N.; Xu, B.-L.; Zhang, J.-S.; Zhao, Z.-W.; Wang, Y.-L.; Zhang, X. Autophagy involving age-related cognitive behavior and hippocampus injury is modulated by different caloric intake in mice. Int. J. Clin. Exp. Med. 2015, 8, 11843–11853. [Google Scholar] [PubMed]
- Ma, L.; Wang, R.; Dong, W.; Zhao, Z. Caloric restriction can improve learning and memory in C57/BL mice probably via regulation of the AMPK signaling pathway. Exp. Gerontol. 2018, 102, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Zeier, Z.; Madorsky, I.; Xu, Y.; Ogle, W.O.; Notterpek, L.; Foster, T.C. Gene expression in the hippocampus: Regionally specific effects of aging and caloric restriction. Mech. Ageing Dev. 2011, 132, 8–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corpas, R.; Revilla, S.; Ursulet, S.; Castro-Freire, M.; Kaliman, P.; Petegnief, V.; Giménez-Llort, L.; Sarkis, C.; Pallàs, M.; Sanfeliu, C. SIRT1 overexpression in mouse hippocampus induces cognitive enhancement through proteo-static and neurotrophic mechanisms. Mol. Neurobiol. 2017, 54, 5604–5619. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, J.; Zheng, Y.; Zhang, Y.; Zhang, X.J.; Wang, H.; Du, Y.; Guan, J.; Wang, X.; Fu, J. NAD+ improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway. J. Neuroinflammation. 2021, 18, 207. [Google Scholar] [CrossRef]
- Tang, X.L.; Wang, X.; Fang, G.; Zhao, Y.L.; Yan, J.; Zhou, Z.; Sun, R.; Luo, A.L.; Li, S.Y. Resveratrol ameliorates sevoflurane-induced cognitive impairment by activating the SIRT1/NF-κB pathway in neonatal mice. J. Nutr. Biochem. 2021, 90, 108579. [Google Scholar] [CrossRef]
- Wahl, D.; Solon-Biet, S.M.; Wang, Q.-P.; Wali, J.A.; Pulpitel, T.; Clark, X.; Raubenheimer, D.; Senior, A.M.; Sinclair, D.A.; Cooney, G.J.; et al. Comparing the effects of low-protein and high-carbohydrate diets and caloric restriction on brain aging in mice. Cell Rep. 2018, 25, 2234–2243.e6. [Google Scholar] [CrossRef] [Green Version]
- Gulmez Karaca, K.; Brito, D.V.C.; Zeuch, B.; Oliveira, A.M.M. Adult hippocampal MeCP2 preserves the genomic responsiveness to learning required for long-term memory formation. Neurobiol. Learn. Mem. 2018, 149, 84–97. [Google Scholar] [CrossRef]
- Im, H.I.; Hollander, J.A.; Bali, P.; Kenny, P.J. MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat. Neurosci. 2010, 13, 1120–1127. [Google Scholar] [CrossRef] [Green Version]
- Su, M.; Hong, J.; Zhao, Y.; Liu, S.; Xue, X. MeCP2 controls hippocampal brain-derived neurotrophic factor expression via homeostatic interactions with microRNA-132 in rats with depression. Mol. Med. Rep. 2015, 12, 5399–5406. [Google Scholar] [CrossRef] [Green Version]
- Na, E.S.; Nelson, E.D.; Kavalali, E.T.; Monteggia, L.M. The impact of MeCP2 loss or gain of function on synaptic plasticity. Neuropsychopharmacology 2013, 38, 212–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Kwon, H.; Kim, Y.K.; Han, P.L. Extracellular vesicles from gram-positive and gram-negative probiotics re-mediate stress-induced depressive behavior in mice. Mol. Neurobiol. 2022, 59, 2715–2728. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.L.; Abel, T.; Deuel, T.A.; Martin, K.C.; Rose, J.C.; Kandel, E.R. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 1996, 16, 1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, B.; Nagappan, G.; Guan, X.; Nathan, P.J.; Wren, P. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat. Rev. Neurosci. 2013, 14, 401. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.J.; Zhang, L.; Shi, L.Y.; Wang, Y.Y.; Yang, Y.B.; Ke, B.; Zhang, T.Y.; Qin, J. Caloric restriction ameliorates acrole-in-induced neurotoxicity in rats. Neurotoxicology 2018, 65, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sands, L.P.; Vaurio, L.; Mullen, E.A.; Leung, J.M. The effects of postoperative pain and its management on postoperative cognitive dysfunction. Am. J. Geriatr. Psychiatry 2007, 15, 50–59. [Google Scholar] [CrossRef]
- Guo, Y.; Li, P.; Ma, X.; Huang, X.; Liu, Z.; Ren, X.; Yang, Y.; Halm-Lutterodt, N.V.; Yuan, L. Association of circulating cholesterol level with cognitive function and mild cognitive impairment in the elderly: A community-based population study. Curr. Alzheimer Res. 2020, 17, 556–565. [Google Scholar] [CrossRef]
Ingredient | Normal (g/100 g) | Low-Calorie Food (g/79.2 g) |
---|---|---|
Fish meal | 4 | 4 |
Soybean meal | 22 | 22 |
Corn starch | 24 | 12.96 |
Wheat | 34 | 18.36 |
Soybean | 2 | 2 |
Soybean oil | 2 | 2 |
Yeast | 2 | 2 |
Bran | 4 | 4 |
Grass flour | 0.5 | 0.5 |
Premix | 4.8 | 4.8 |
Choline | 0.2 | 0.2 |
Maltodextrin | 0.5 | 0.5 |
Total calories (KJ) | 397 | 395 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Tao, Q.; Yao, M.; Zhao, Z.; Ge, S. Caloric Restriction Can Ameliorate Postoperative Cognitive Dysfunction by Upregulating the Expression of Sirt1, MeCP2 and BDNF in the Hippocampal CA1 Region of Aged C57BL/6 Mice. Brain Sci. 2023, 13, 462. https://doi.org/10.3390/brainsci13030462
Wei L, Tao Q, Yao M, Zhao Z, Ge S. Caloric Restriction Can Ameliorate Postoperative Cognitive Dysfunction by Upregulating the Expression of Sirt1, MeCP2 and BDNF in the Hippocampal CA1 Region of Aged C57BL/6 Mice. Brain Sciences. 2023; 13(3):462. https://doi.org/10.3390/brainsci13030462
Chicago/Turabian StyleWei, Lan, Qiang Tao, Minmin Yao, Zhimeng Zhao, and Shengjin Ge. 2023. "Caloric Restriction Can Ameliorate Postoperative Cognitive Dysfunction by Upregulating the Expression of Sirt1, MeCP2 and BDNF in the Hippocampal CA1 Region of Aged C57BL/6 Mice" Brain Sciences 13, no. 3: 462. https://doi.org/10.3390/brainsci13030462
APA StyleWei, L., Tao, Q., Yao, M., Zhao, Z., & Ge, S. (2023). Caloric Restriction Can Ameliorate Postoperative Cognitive Dysfunction by Upregulating the Expression of Sirt1, MeCP2 and BDNF in the Hippocampal CA1 Region of Aged C57BL/6 Mice. Brain Sciences, 13(3), 462. https://doi.org/10.3390/brainsci13030462