The Role of the Dorsolateral Prefrontal Cortex in the Production and Comprehension of Phonologically and Semantically Related Words
Abstract
:1. Introduction
1.1. Effects of Semantic Relatedness on Word Production
1.2. Semantic Relatedness during Word Comprehension
1.3. Effects of Phonological Relatedness on Word Production
1.4. The Role of Executive Function
1.5. Rationale for fNIRS Imaging
1.6. Current Study
2. Methods
2.1. Participants
2.2. Task Design and Procedures
2.2.1. Blocked Cyclic Picture Naming Task
2.2.2. Blocked Cyclic Picture–Word Matching Task
2.3. NIRS System and Acquisition
2.4. Probe
2.5. NIRS Data Processing
3. Results
3.1. Blocked Cyclic Picture Naming
3.2. Blocked Cyclic Picture–Word Matching
4. Discussion
5. Limitations
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADHD | Attention deficit hyperactivity disorder |
DLPFC | Dorsolateral prefrontal cortex |
EEG | Electroencephalography |
ERP | Event-related potential |
fMRI | Functional magnetic resonance imaging |
fNIRS | Functional near-infrared spectroscopy |
GLM | General linear model |
HbO | Oxygenated hemoglobin |
HbR | Deoxygentated hemoglobin |
HRF | Hemodynamic response function |
IFG | Inferior frontal gyrus |
Iz | Inion |
LPA | Left preauricular |
Nz | Nasion |
OD | Optical density |
PFC | Prefrontal cortex |
RPA | Right preauricular |
SD | Standard deviation |
SNR | Signal-to-noise ratio |
Appendix A
References
- Kemmerer, D. From blueprints to brain maps: The status of the Lemma Model in cognitive neuroscience. Lang. Cogn. Neurosci. 2019, 34, 1085–1116. [Google Scholar] [CrossRef]
- Friederici, A.D. The cortical language circuit: From auditory perception to sentence comprehension. Trends Cogn. Sci. 2012, 16, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Hagoort, P. The core and beyond in the language-ready brain. Neurosci. Biobehav. Rev. 2017, 81, 194–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertrich, I.; Dietrich, S.; Ackermann, H. The Margins of the Language Network in the Brain. Front. Commun. 2020, 5, 519955. [Google Scholar] [CrossRef]
- Belke, E.; Meyer, A.S.; Damian, M.F. Refractory effects in picture naming as assessed in a semantic blocking paradigm. Q. J. Exp. Psychol. 2005, 58, 667–692. [Google Scholar] [CrossRef] [Green Version]
- Abdel Rahman, R.; Melinger, A. Semantic context effects in language production: A swinging lexical network proposal and a review. Lang. Cogn. Process. 2009, 24, 713–734. [Google Scholar] [CrossRef]
- Damian, M.F.; Vigliocco, G.; Levelt, W.J.M. Effects of semantic context in the naming of pictures and words. Cognition 2001, 81, B77–B86. [Google Scholar] [CrossRef] [Green Version]
- Damian, M.F.; Als, L.C. Long-lasting semantic context effects in the spoken production of object names. J. Exp. Psychol. Learn. Mem. Cogn. 2005, 31, 1372–1384. [Google Scholar] [CrossRef]
- Roelofs, A. Phonological segments and features as planning units in speech production. Lang. Cogn. Process. 1999, 14, 173–200. [Google Scholar] [CrossRef] [Green Version]
- Navarrete, E.; Del Prato, P.; Peressotti, F.; Mahon, B.Z. Lexical selection is not by competition: Evidence from the blocked naming paradigm. J. Mem. Lang. 2014, 76, 253–272. [Google Scholar] [CrossRef] [Green Version]
- Damian, M.F.; Dumay, N. Exploring phonological encoding through repeated segments. Lang. Cogn. Process. 2009, 24, 685–712. [Google Scholar] [CrossRef]
- Harvey, D.Y.; Schnur, T.T. Different loci of semantic interference in picture naming vs. word-picture matching tasks. Front. Psychol. 2016, 7, 710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnur, T.T.; Schwartz, M.F.; Kimberg, D.Y.; Hirshorn, E.; Coslett, H.B.; Thompson-Schill, S.L. Localizing interference during naming: Convergent neuroimaging and neuropsychological evidence for the function of Broca’s area. Proc. Natl. Acad. Sci. USA 2009, 106, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Breining, B.; Nozari, N.; Rapp, B. Does segmental overlap help or hurt? Evidence from blocked cyclic naming in spoken and written production. Psychon. Bull. Rev. 2016, 23, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Biegler, K.; Crowther, J.; Martin, R. Consequences of an inhibition deficit for word production and comprehension: Evidence from the semantic blocking paradigm. Cogn. Neuropsychol. 2008, 25, 493–527. [Google Scholar] [CrossRef]
- Campanella, F.; Shallice, T. Refractoriness and the healthy brain: A behavioural study on semantic access. Cognition 2011, 118, 417–431. [Google Scholar] [CrossRef]
- Wang, M.; Shao, Z.; Chen, Y.; Schiller, N.O. Neural correlates of spoken word production in semantic and phonological blocked cyclic naming. Lang. Cogn. Neurosci. 2018, 33, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.; Damian, M.F.; Qu, Q. Parallel Processing of Semantics and Phonology in Spoken Production: Evidence from Blocked Cyclic Picture Naming and EEG. J. Cogn. Neurosci. 2021, 33, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Indefrey, P. The Spatial and Temporal Signatures of Word Production Components: A Critical Update. Front. Psychol. 2011, 2, 255. [Google Scholar] [CrossRef] [Green Version]
- Indefrey, P.; Levelt, W.J.M. The spatial and temporal signatures of word production components. Cognition 2004, 92, 101–144. [Google Scholar] [CrossRef] [Green Version]
- Friedman, N.P.; Robbins, T.W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 2022, 47, 72–89. [Google Scholar] [CrossRef]
- Hoshi, E. Functional specialization within the dorsolateral prefrontal cortex: A review of anatomical and physiological studies of non-human primates. Neurosci. Res. 2006, 54, 73–84. [Google Scholar] [CrossRef]
- Mylius, V.; Ayache, S.; Ahdab, R.; Farhat, W.; Zouari, H.; Belke, M.; Brugières, P.; Wehrmann, E.; Krakow, K.; Timmesfeld, N.; et al. Definition of DLPFC and M1 according to anatomical landmarks for navigated brain stimulation: Inter-rater reliability, accuracy, and influence of gender and age. NeuroImage 2013, 78, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Badre, D.; Wagner, A.D. Selection, integration, and conflict monitoring: Assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron 2004, 41, 473–487. [Google Scholar] [CrossRef] [Green Version]
- Hart, H.; Radua, J.; Nakao, T.; Mataix-Cols, D.; Rubia, K. Meta-analysis of Functional Magnetic Resonance Imaging Studies of Inhibition and Attention in Attention-deficit/Hyperactivity Disorder: Exploring Task-Specific, Stimulant Medication, and Age Effects. JAMA Psychiatry 2013, 70, 185–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunoni, A.R.; Vanderhasselt, M.A. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. Brain Cogn. 2014, 86, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nozari, N.; Freund, M.; Breining, B.; Rapp, B.; Gordon, B. Cognitive control during selection and repair in word production. Lang. Cogn. Neurosci. 2016, 31, 886–903. [Google Scholar] [CrossRef] [Green Version]
- Hentrich, I.; Dietrich, S.; Blum, C.; Ackermann, H. The Role of the Dorsolateral Prefrontal Cortex for Speech and Language Processing. Front. Hum. Neurosci. 2021, 15, 645209. [Google Scholar] [CrossRef]
- Shao, Z.; Roelofs, A.; Acheson, D.J.; Meyer, A.S. Electrophysiological evidence that inhibition supports lexical selection in picture naming. Brain Res. 2014, 1586, 130–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiger, L.S.; Moessnang, C.; Schäfer, A.; Zang, Z.; Zangl, M.; Cao, H.; van Raalten, T.R.; Meyer-Lindenberg, A.; Tost, H. Novelty modulates human striatal activation and prefrontal-striatal effective connectivity during working memory encoding. Brain Struct. Funct. 2018, 223, 3121–3132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, F.; Tang, S.; Sun, P.; Luo, J. Neural correlates of novelty and appropriateness processing in externally induced constraint relaxation. NeuroImage 2018, 172, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Oehrn, C.R.; Hanslmayr, S.; Fell, J.; Deuker, L.; Kremers, N.A.; Lam, A.T.D.; Elger, C.E.; Axmacher, N. Neural Communication Patterns Underlying Conflict Detection, Resolution, and Adaptation. J. Neurosci. 2014, 34, 10438–10452. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, Z.; Huo, Y.; Davidson, S.M.; Klahr, K.; Herder, C.L.; Sikora, C.O.; Peterson, B.S. A Functional Imaging Study of Self-Regulatory Capacities in Persons Who Stutter. PLoS ONE 2014, 9, e89891. [Google Scholar] [CrossRef] [Green Version]
- Butler, L.K.; Kiran, S.; Tager-Flusberg, H. Functional near-infrared spectroscopy in the study of speech and language impairment across the lifespan. Am. J. Speech-Lang. Pathol. 2020, 29, 1674–1701. [Google Scholar] [CrossRef]
- Dieler, A.C.; Tupak, S.V.; Fallgatter, A.J. Functional near-infrared spectroscopy for the assessment of speech related tasks. Brain Lang. 2012, 121, 90–109. [Google Scholar] [CrossRef]
- Keenan, R.P.; Kim, D.; Maki, A.; Koizumi, H.; Constable, R.T. Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI. Hum. Brain Mapp. 2002, 16, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Peirce, J.W. Generating stimuli for neuroscience using PsychoPy. Front. Neuroinform. 2009, 2, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodeur, M.B.; Dionne-Dostie, E.; Montreuil, T.; Lepage, M. The Bank of Standardized Stimuli (BOSS), a New Set of 480 Normative Photos of Objects to Be Used as Visual Stimuli in Cognitive Research. PLoS ONE 2010, 5, e10773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aasted, C.M.; Yücel, M.A.; Cooper, R.J.a.D.; Tsuzuki, D.; Becerra, L.; Petkov, M.P.; Borsook, C.; Dan, I.; Boas, D.A. Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial. Neurophotonics 2015, 2, 020801. [Google Scholar] [CrossRef] [Green Version]
- Huppert, T.J.; Diamond, S.G.; Franceschini, M.A.; Boas, D.A. HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl. Opt. 2009, 48, D280–D298. [Google Scholar] [CrossRef] [Green Version]
- Yücel, M.A.; Lühmann, A.v.; Scholkmann, F.; Gervain, J.; Dan, I.; Ayaz, H.; Boas, D.; Cooper, R.J.; Culver, J.; Elwell, C.E.; et al. Best practices for fNIRS publications. Neurophotonics 2021, 8, 12101. [Google Scholar] [CrossRef]
- Jahani, S.; Setarehdan, S.K.; Boas, D.A.; Yücel, M.A. Motion artifact detection and correction in functional near-infrared spectroscopy: A new hybrid method based on spline interpolation method and Savitzky–Golay filtering. Neurophotonics 2018, 5, 015003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boas, D.A.; Dale, A.M.; Franceschini, M.A. Diffuse optical imaging of brain activation: Approaches to optimizing image sensitivity, resolution, and accuracy. NeuroImage 2004, 23, s275–s288. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, L.; Cooper, R.J.; Yücel, M.A.; Perdue, K.L.; Greve, D.N.; Boas, D.A. Short separation channel location impacts the performance of short channel regression in NIRS. NeuroImage 2012, 59, 2518–2528. [Google Scholar] [CrossRef] [Green Version]
- Girolamo, T.; Butler, L.K.; Canale, R.; Aslin, R.; Eigsti, I. fNIRS Studies of Individuals with Speech and Language Impairment Underreport Sociodemographics: A Systematic Review. PsyArXiv, 2023; Manuscript under review. [Google Scholar]
- Kwasa, J.; Peterson, H.M.; Karrobi, K.; Jones, L.; Parker, T.; Nickerson, N.; Wood, S. Demographic reporting and phenotypic exclusion in fNIRS. Front. Neurosci. 2023, 17, 1086208. [Google Scholar] [CrossRef]
- McCall, J.; van der Stelt, C.M.; DeMarco, A.; Dickens, J.V.; Dvorak, E.; Lacey, E.; Snider, S.; Friedman, R.; Turkeltaub, P. Distinguishing semantic control and phonological control and their role in aphasic deficits: A task switching investigation. Neuropsychologia 2022, 173, 108302. [Google Scholar] [CrossRef] [PubMed]
- Jacquemot, C.; Bachoud-Lévi, A.C. A case-study of language-specific executive disorder. Cogn. Neuropsychol. 2021, 38, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Fedorenko, E. The role of domain-general cognitive control in language comprehension. Front. Psychol. 2014, 5, 335. [Google Scholar] [CrossRef] [PubMed]
- Novick, J.M.; Trueswell, J.C.; Thompson-Schill, S.L. Broca’s Area and Language Processing: Evidence for the Cognitive Control Connection. Lang. Linguist. Compass 2010, 4, 906–924. [Google Scholar] [CrossRef]
- Nozari, N.; Novick, J. Monitoring and Control in Language Production. Curr. Dir. Psychol. Sci. 2017, 26, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Miyake, A.; Emerson, M.J.; Padilla, F.; chan Ahn, J. Inner speech as a retrieval aid for task goals: The effects of cue type and articulatory suppression in the random task cuing paradigm. Acta Psychol. 2004, 115, 123–142. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Number (%) | |||
---|---|---|---|---|
Race and Ethnicity | Not Hispanic or Latino | Hispanic or Latino | Not Reported | Total |
Asian | 4 (21%) | 0 | 0 | 4 (19%) |
Black or African American | 1 (5.3%) | 0 | 0 | 1 (4.8%) |
White | 12 (63.2%) | 2 (100%) | 0 | 14 (66.7%) |
More than one race | 2 (10.5%) | 0 | 0 | 2 (9.5%) |
Total | 19 (90.5%) | 2 (9.5%) | 0 | 21 (100%) |
Ch. | M (SD) Phonological | M (SD) Semantic | Cohen’s d |
---|---|---|---|
1 | 0.49 | ||
2 | 0.37 | ||
3 | 0.88 | ||
4 | 0.39 | ||
6 | 0.12 | ||
7 | 0.26 | ||
8 | 0.02 | ||
9 | 0.19 | ||
10 | 0.68 | ||
11 | 0.40 | ||
12 | 0.55 | ||
13 | 0.32 | ||
15 | 0.12 | ||
16 | 0.41 | ||
17 | 0.14 | ||
18 | 0.06 | ||
19 | 1.22 | ||
20 | 0.59 | ||
21 | 0.65 | ||
22 | 0.42 | ||
24 | 0.17 | ||
25 | 0.29 | ||
26 | 0.21 | ||
27 | 0.18 | ||
28 | 0.06 | ||
29 | 0.22 | ||
30 | 0.19 | ||
31 | 0.05 | ||
33 | 0.28 | ||
34 | 0.35 | ||
35 | 0.27 | ||
36 | 0.06 |
Ch. | M (SD) Phonological | M (SD) Semantic | Cohen’s d |
---|---|---|---|
1 | 0.03 | ||
2 | 0.06 | ||
3 | 0.05 | ||
4 | 0.02 | ||
6 | 0.16 | ||
7 | 0.05 | ||
8 | 0.09 | ||
9 | 0.32 | ||
10 | 0.14 | ||
11 | 0.03 | ||
12 | 0.04 | ||
13 | 0.31 | ||
15 | 0.15 | ||
16 | 0.16 | ||
17 | 0.45 | ||
18 | 0.44 | ||
19 | 0.07 | ||
20 | 0.23 | ||
21 | 0.46 | ||
22 | 0.06 | ||
24 | 0.22 | ||
25 | 0.11 | ||
26 | 0.10 | ||
27 | 0.45 | ||
28 | 0.14 | ||
29 | 0.15 | ||
30 | 0.31 | ||
31 | 0.3 | ||
33 | 0.4 | ||
34 | 0.84 | ||
35 | 0.64 | ||
36 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butler, L.K.; Pecukonis, M.; Rogers, D.; Boas, D.A.; Tager-Flusberg, H.; Yücel, M.A. The Role of the Dorsolateral Prefrontal Cortex in the Production and Comprehension of Phonologically and Semantically Related Words. Brain Sci. 2023, 13, 1113. https://doi.org/10.3390/brainsci13071113
Butler LK, Pecukonis M, Rogers D, Boas DA, Tager-Flusberg H, Yücel MA. The Role of the Dorsolateral Prefrontal Cortex in the Production and Comprehension of Phonologically and Semantically Related Words. Brain Sciences. 2023; 13(7):1113. https://doi.org/10.3390/brainsci13071113
Chicago/Turabian StyleButler, Lindsay K., Meredith Pecukonis, De’Ja Rogers, David A. Boas, Helen Tager-Flusberg, and Meryem A. Yücel. 2023. "The Role of the Dorsolateral Prefrontal Cortex in the Production and Comprehension of Phonologically and Semantically Related Words" Brain Sciences 13, no. 7: 1113. https://doi.org/10.3390/brainsci13071113
APA StyleButler, L. K., Pecukonis, M., Rogers, D., Boas, D. A., Tager-Flusberg, H., & Yücel, M. A. (2023). The Role of the Dorsolateral Prefrontal Cortex in the Production and Comprehension of Phonologically and Semantically Related Words. Brain Sciences, 13(7), 1113. https://doi.org/10.3390/brainsci13071113