Executive Attentional Dyscontrol as a Core Cognitive and Behavioral Feature of Individuals with Obesity and Cardiovascular Disease: A Cross-Sectional Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Psychological Measures
2.2.2. Neuropsychological Measures
2.3. Statistical Analysis
3. Results
3.1. Demographic and Clinical Information
3.2. Differences among Groups in Psychological Measures and Neuropsychological Measures
3.3. Correlations between Psychological Dimension and Neuropsychological Measures across the Different Levels of Body Mass Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saglietto, A.; Manfredi, R.; Elia, E.; D’ascenzo, F.; DE Ferrari, G.M.; Biondi-Zoccai, G.; Munzel, T. Cardiovascular disease burden: Italian and global perspectives. Minerva Cardioangiol. 2021, 69, 231–240. [Google Scholar]
- Cortesi, P.A.; Fornari, C.; Madotto, F.; Conti, S.; Naghavi, M.; Bikbov, B.; Briant, P.S.; Caso, V.; Crotti, G.; Johnson, C.; et al. Trends in cardiovascular diseases burden and vascular risk factors in Italy: The Global Burden of Disease study 1990–2017. Eur. J. Prev. Cardiol. 2021, 28, 385–396. [Google Scholar] [PubMed]
- McMurray, J.J.; Stewart, S. Epidemiology, aetiology, and prognosis of heart failure. Heart 2000, 83, 596–602. [Google Scholar] [PubMed] [Green Version]
- Rahimi, K.; Lam, C.S.P.; Steinhubl, S. Cardiovascular disease and multimorbidity: A call for interdisciplinary research and personalized cardiovascular care. PLoS Med. 2018, 15, e1002545. [Google Scholar]
- Rapelli, G.; Donato, S.; Parise, M.; Pagani, A.F.; Castelnuovo, G.; Pietrabissa, G.; Giusti, E.; Bertoni, A. Yes, I can (with you)! Dyadic coping and self-management outcomes in cardiovascular disease: The mediating role of health self-efficacy. Healthc. Soc. Care Community 2022, 30, e2604–e2617. [Google Scholar]
- Halloway, S.; Schoeny, M.E.; Barnes, L.L.; Arvanitakis, Z.; Pressler, S.J.; Braun, L.T.; Volgman, A.S.; Gamboa, C.; Wilbur, J. A study protocol for MindMoves: A lifestyle physical activity and cognitive training intervention to prevent cognitive impairment in older women with cardiovascular disease. Contemp. Clin. Trials 2021, 101, 106254. [Google Scholar]
- Ishihara, K.; Izawa, K.P.; Kitamura, M.; Shimogai, T.; Kanejima, Y.; Morisawa, T.; Shimizu, I. Influence of mild cognitive impairment on activities of daily living in patients with cardiovascular disease. Heart Vessel. 2019, 34, 1944–1951. [Google Scholar]
- Zhang, H.; Jie, Y.; Sun, Y.; Wang, X.; Gong, D.; Fan, Y. Association of Cognitive Impairment With Mortality and Readmission in Patients With Heart Failure: A Meta-analysis. Curr. Probl. Cardiol. 2022, 47, 101354. [Google Scholar]
- Frey, A.; Sell, R.; Homola, G.A.; Malsch, C.; Kraft, P.; Gunreben, I.; Morbach, C.; Alkonyi, B.; Schmid, E.; Colonna, I.; et al. Cognitive Deficits and Related Brain Lesions in Patients With Chronic Heart Failure. JACC Heart Fail. 2018, 6, 583–592. [Google Scholar]
- Cardiogenic Dementia. Lancet 1977, 1, 27–28.
- de la Torre, J.C. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc. Psychiatry Neurol. 2012, 2012, 367516. [Google Scholar]
- Kaffashian, S.; Dugravot, A.; Elbaz, A.; Shipley, M.J.; Sabia, S.; Kivimäki, M.; Singh-Manoux, A. Predicting cognitive decline: A dementia risk score vs the Framingham vascular risk scores. Neurology 2013, 80, 1300–1306. [Google Scholar] [PubMed] [Green Version]
- Krishnamurthy, V.; Spir, I.P.; Mammino, K.M.; Nocera, J.R.; McGregor, K.M.; Crosson, B.A.; Krishnamurthy, L.C. The Relationship Between Resting Cerebral Blood Flow, Neurometabolites, Cardio-Respiratory Fitness and Aging-Related Cognitive Decline. Front. Psychiatry 2022, 13, 923076. [Google Scholar]
- Gharacholou, S.M.; Reid, K.J.; Arnold, S.V.; Spertus, J.; Rich, M.W.; Pellikka, P.A.; Singh, M.; Holsinger, T.; Krumholz, H.M.; Peterson, E.D.; et al. Cognitive impairment and outcomes in older adult survivors of acute myocardial infarction: Findings from the Translational Research Investigating Underlying disparities in acute Myocardial infarction Patients’ Health Status registry. Am. Heart J. 2011, 162, 860–869.e1. [Google Scholar] [PubMed] [Green Version]
- Dodson, J.A.; Truong, T.-T.N.; Towle, V.R.; Kerins, G.; Chaudhry, S.I. Cognitive Impairment in Older Adults with Heart Failure: Prevalence, Documentation, and Impact on Outcomes. Am. J. Med. 2013, 126, 120–126. [Google Scholar] [PubMed] [Green Version]
- Gure, T.R.; Blaum, C.S.; Giordani, B.; Koelling, T.M.; Galecki, A.; Pressler, S.J.; Hummel, S.L.; Langa, K.M. Prevalence of Cognitive Impairment in Older Adults with Heart Failure. J. Am. Geriatr. Soc. 2012, 60, 1724–1729. [Google Scholar]
- Yap, N.L.X.; Kor, Q.; Teo, N.Y.; Teo, Y.H.; Syn, N.L.; Evangelista, L.K.M.; Tan, B.Y.; Lin, W.; Yeo, L.L.; Kong, W.K.; et al. Prevalence and incidence of cognitive impairment and dementia in heart failure—A systematic review, meta-analysis and meta-regression. Hell. J. Cardiol. 2022, 67, 48–58. [Google Scholar]
- Yang, M.; Sun, D.; Wang, Y.; Yan, M.; Zheng, J.; Ren, J. Cognitive Impairment in Heart Failure: Landscape, Challenges, and Future Directions. Front. Cardiovasc. Med. 2022, 7, 831734. [Google Scholar]
- Deckers, K.; Schievink, S.H.J.; Rodriquez, M.M.F.; van Oostenbrugge, R.J.; van Boxtel, M.P.J.; Verhey, F.R.J.; Köhler, S. Coronary heart disease and risk for cognitive impairment or dementia: Systematic review and meta-analysis. PLoS ONE 2017, 12, e0184244. [Google Scholar]
- Papanastasiou, C.A.; Theochari, C.A.; Zareifopoulos, N.; Arfaras-Melainis, A.; Giannakoulas, G.; Karamitsos, T.D.; Palaiodimos, L.; Ntaios, G.; Avgerinos, K.I.; Kapogiannis, D.; et al. Atrial Fibrillation Is Associated with Cognitive Impairment, All-Cause Dementia, Vascular Dementia, and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Gen. Intern. Med. 2021, 36, 3122–3135. [Google Scholar]
- Ottens, T.H.; Hendrikse, J.; Nathoe, H.M.; Biessels, G.J.; van Dijk, D. Brain volume and cognitive function in patients with revascularized coronary artery disease. Int. J. Cardiol. 2017, 230, 80–84. [Google Scholar]
- Santiago, C.; Herrmann, N.; Swardfager, W.; Saleem, M.; Oh, P.I.; Black, S.E.; Lanctôt, K.L. White Matter Microstructural Integrity Is Associated with Executive Function and Processing Speed in Older Adults with Coronary Artery Disease. Am. J. Geriatr. Psychiatry 2015, 27, 754–763. [Google Scholar]
- Zheng, L.; Mack, W.J.; Chui, H.C.; Heflin, L.; Mungas, D.; Reed, B.; DeCarli, C.; Weiner, M.W.; Kramer, J.H. Coronary Artery Disease Is Associated with Cognitive Decline Independent of Changes on Magnetic Resonance Imaging in Cognitively Normal Elderly Adults. J. Am. Geriatr. Soc. 2012, 60, 499–504. [Google Scholar] [PubMed] [Green Version]
- Liori, S.; Arfaras-Melainis, A.; Bistola, V.; Polyzogopoulou, E.; Parissis, J. Cognitive impairment in heart failure: Clinical implications, tools of assessment, and therapeutic considerations. Heart Fail. Rev. 2022, 27, 993–999. [Google Scholar]
- Agarwal, K.S.; Bhimaraj, A.M.; Xu, J.; Bionat, S.D.; Pudlo, M.A.; Miranda, D.; Campbell, C.; Taffet, G.E. Decreasing Heart Failure Readmissions Among Older Patients With Cognitive Impairment by Engaging Caregivers. J. Cardiovasc. Nurs. 2020, 35, 253–261. [Google Scholar]
- Salzwedel, A.; Heidler, M.-D.; Haubold, K.; Schikora, M.; Reibis, R.; Wegscheider, K.; Jobges, M.; Völler, H. Prevalence of mild cognitive impairment in employable patients after acute coronary event in cardiac rehabilitation. Vasc. Health Risk Manag. 2017, 13, 55–60. [Google Scholar]
- Angermann, C.E.; Ertl, G. Depression, Anxiety, and Cognitive Impairment: Comorbid Mental Health Disorders in Heart Failure. Curr. Heart Fail. Rep. 2018, 15, 398–410. [Google Scholar] [PubMed]
- Favoccia, C.; Pietrabissa, G.; Castelnuovo, G.; Manzoni, G.M.; Montano, M.; Bertone, G.; Titon, A.; Nibbio, F.; Gondoni, L. Psychosocial Risk Factors in Cardiovascular Disease in Myocardial Infarctions: Risk Factors, Emergency Management and Long-Term Health Outcomes; Wilkonson, P., Ed.; Nova Science Publishers, Inc: New York, NY, USA, 2014. [Google Scholar]
- Smith, T.W.; Gallo, L.C. Personality traits as risk factors for physical illness. In Handbook of Health Psychology; Baum, T.R.A., Singer, J., Eds.; Erlbaum: Hillsdale, NJ, USA, 2001; pp. 139–172. [Google Scholar]
- Rosenham, R.H. Do environmental effects on human emotions cause cardiovascular disorders? Acta Physiol. Scand. Suppl. 1997, 640, 133–136. [Google Scholar]
- Friedman, M.; Ulmer, D. Treating Type A Behavior and Your Heart; Michael Joseph: London, UK, 1985. [Google Scholar]
- Mommersteeg, P.M.; Pouwer, F. Personality as a risk factor for the metabolic syndrome: A systematic review. J. Psychosom. Res. 2012, 73, 326–333. [Google Scholar]
- Steca, P.; D’addario, M.; Magrin, M.E.; Miglioretti, M.; Monzani, D.; Pancani, L.; Sarini, M.; Scrignaro, M.; Vecchio, L.; Fattirolli, F.; et al. A Type A and Type D Combined Personality Typology in Essential Hypertension and Acute Coronary Syndrome Patients: Associations with Demographic, Psychological, Clinical, and Lifestyle Indicators. PLoS ONE 2016, 11, e0161840. [Google Scholar]
- Rababah, J.A.; Al-Hammouri, M.M.; Tawalbeh, L.; Alhawatmeh, H.; Hasan, M. Self-care among persons with heart failure: Examining the impact of mindfulness and impulsivity using conditional process analysis. Nurs. Forum 2022, 57, 558–567. [Google Scholar] [PubMed]
- Wainwright, K.; Romanowich, P.; Crabtree, M.A. Associations between impulsivity and self-care adherence in individuals diagnosed with Type 2 or prediabetes. PLoS ONE 2022, 17, e0263961. [Google Scholar]
- Al-Hammouri, M.M.; Rababah, J.A.; Hall, L.A.; Moser, D.K.; Dawood, Z.; Jawhar, W.; Alawawdeh, A. Self-care behavior: A new insight of the role of impulsivity into decision making process in persons with heart failure. BMC Cardiovasc. Disord. 2020, 20, 349. [Google Scholar]
- Moeller, F.G.; Barratt, E.S.; Dougherty, D.M.; Schmitz, J.M.; Swann, A.C. Psychiatric Aspects of Impulsivity. Am. J. Psychiatry 2001, 158, 1783–1793. [Google Scholar]
- Wei, J.; Xu, H.; Liese, A.D.; Merchant, A.T.; Wang, L.; Yang, C.; Lohman, M.C.; Brown, M.J.; Wang, T.; Friedman, D.B. Ten-Year Cardiovascular Disease Risk Score and Cognitive Function Among Older Adults: The National Health and Nutrition Examination Survey 2011 to 2014. J. Am. Heart Assoc. 2023, 12, e028527. [Google Scholar]
- Jung, W.; Jang, K.-I.; Lee, S.-H. Heart and Brain Interaction of Psychiatric Illness: A Review Focused on Heart Rate Variability, Cognitive Function, and Quantitative Electroencephalography. Clin. Psychopharmacol. Neurosci. 2019, 17, 459–474. [Google Scholar]
- Forte, G.; Favieri, F.; Casagrande, M. Heart Rate Variability and Cognitive Function: A Systematic Review. Front. Neurosci. 2019, 13, 710. [Google Scholar]
- Myserlis, P.G.; Malli, A.; Kalaitzoglou, D.K.; Kalaitzidis, G.; Miligkos, M.; Kokkinidis, D.G.; Kalogeropoulos, A.P. Atrial fibrillation and cognitive function in patients with heart failure: A systematic review and meta-analysis. Heart Fail. Rev. 2017, 22, 1–11. [Google Scholar]
- Kang, W.; Malvaso, A. Personality Traits Predict Self-Rated Health (SRH) in Coronary Heart Disease (CHD) Patients and Healthy Controls. Healthcare 2023, 11, 1645. [Google Scholar]
- Park, C.; Won, M.H.; Son, Y. Mediating effects of social support between Type D personality and self-care behaviours among heart failure patients. J. Adv. Nurs. 2021, 77, 1315–1324. [Google Scholar]
- Pushkarev, G.S.; Kuznetsov, V.A.; Fisher, Y.A. Type D personality in patients with coronary heart disease underwent coronary stenting: A prospective study. Kardiologiia 2019, 59, 18–24. [Google Scholar]
- Kupper, N.; Denollet, J. Type D Personality as a Risk Factor in Coronary Heart Disease: A Review of Current Evidence. Curr. Cardiol. Rep. 2018, 20, 104. [Google Scholar] [PubMed] [Green Version]
- Sahoo, S.; Padhy, S.K.; Padhee, B.; Singla, N.; Sarkar, S. Role of personality in cardiovascular diseases: An issue that needs to be focused too! Indian Heart J. 2018, 70, S471–S477. [Google Scholar] [PubMed]
- Armstrong, N.M.; Carlson, M.C.; Schrack, J.; Xue, Q.-L.; Carnethon, M.R.; Rosano, C.; Chaves, P.H.; Gross, A.L. Late-Life Depressive Symptoms as Partial Mediators in the Associations between Subclinical Cardiovascular Disease with Onset of Mild Cognitive Impairment and Dementia. Am. J. Geriatr. Psychiatry 2018, 26, 559–568. [Google Scholar] [PubMed]
- Abiri, B.; Koohi, F.; Ebadinejad, A.; Valizadeh, M.; Hosseinpanah, F. Transition from metabolically healthy to unhealthy overweight/obesity and risk of cardiovascular disease incidence: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2041–2051. [Google Scholar]
- Opio, J.; Opio, J.; Croker, E.; Odongo, G.S.; Attia, J.; Wynne, K.; McEvoy, M. Metabolically healthy overweight/obesity are associated with increased risk of cardiovascular disease in adults, even in the absence of metabolic risk factors: A systematic review and meta-analysis of prospective cohort studies. Obes. Rev. 2020, 21, e13127. [Google Scholar]
- Gunstad, J.; Lhotsky, A.; Wendell, C.R.; Ferrucci, L.; Zonderman, A.B. Longitudinal Examination of Obesity and Cognitive Function: Results from the Baltimore Longitudinal Study of Aging. Neuroepidemiology 2010, 34, 222–229. [Google Scholar]
- Guo, J.; Wang, J.; Dove, A.; Chen, H.; Yuan, C.; Bennett, D.A.; Xu, W. Body Mass Index Trajectories Preceding Incident Mild Cognitive Impairment and Dementia. JAMA Psychiatry 2022, 79, 1180–1187. [Google Scholar] [PubMed]
- Wu, S.; Lv, X.; Shen, J.; Chen, H.; Ma, Y.; Jin, X.; Yang, J.; Cao, Y.; Zong, G.; Wang, H.; et al. Association between body mass index, its change and cognitive impairment among Chinese older adults: A community-based, 9-year prospective cohort study. Eur. J. Epidemiol. 2021, 36, 1043–1054. [Google Scholar]
- Qu, Y.; Hu, H.-Y.; Ou, Y.-N.; Shen, X.-N.; Xu, W.; Wang, Z.-T.; Dong, Q.; Tan, L.; Yu, J.-T. Association of body mass index with risk of cognitive impairment and dementia: A systematic review and meta-analysis of prospective studies. Neurosci. Biobehav. Rev. 2020, 115, 189–198. [Google Scholar]
- Xing, Z.; Long, C.; Hu, X.; Chai, X. Obesity is associated with greater cognitive function in patients with type 2 diabetes mellitus. Front. Endocrinol. 2022, 13, 953826. [Google Scholar]
- Kim, G.; Choi, S.; Lyu, J. Body mass index and trajectories of cognitive decline among older Korean adults. Aging Ment. Health 2019, 24, 758–764. [Google Scholar] [PubMed]
- Dahl, A.K.; Hassing, L.B.; Fransson, E.I.; Gatz, M.; Reynolds, C.A.; Pedersen, N.L. Body mass index across midlife and cognitive change in late life. Int. J. Obes. 2013, 37, 296–302. [Google Scholar]
- Elias, M.F.; Elias, P.K.; Sullivan, L.M.; Wolf, P.A.; D’Agostino, R.B. Lower cognitive function in the presence of obesity and hypertension: The Framingham heart study. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 260–268. [Google Scholar] [PubMed] [Green Version]
- Alosco, M.L.; Spitznagel, M.B.; Cohen, R.; Sweet, L.H.; Josephson, R.; Hughes, J.; Rosneck, J.; Gunstad, J. Obesity and cognitive dysfunction in heart failure: The role of hypertension, type 2 diabetes, and physical fitness. Eur. J. Cardiovasc. Nurs. 2015, 14, 334–341. [Google Scholar]
- Stanek, K.M.; Gunstad, J.; Spitznagel, M.B.; Waechter, D.; Hughes, J.W.; Luyster, F.; Josephson, R.; Rosneck, J. Improvements in Cognitive Function Following Cardiac Rehabilitation for Older Adults with Cardiovascular Disease. Int. J. Neurosci. 2011, 121, 86–93. [Google Scholar]
- Perry, C.; Guillory, T.S.; Dilks, S.S. Obesity and Psychiatric Disorders. Nurs. Clin. N. Am. 2021, 56, 553–563. [Google Scholar]
- Mole, T.B.; Irvine, M.A.; Worbe, Y.; Collins, P.; Mitchell, S.P.; Bolton, S.; Harrison, N.A.; Robbins, T.W.; Voon, V. Impulsivity in disorders of food and drug misuse. Psychol. Med. 2015, 45, 771–782. [Google Scholar]
- Brogan, A.; Hevey, D.; O’Callaghan, G.; Yoder, R.; O’Shea, D. Impaired decision making among morbidly obese adults. J. Psychosom. Res. 2011, 70, 189–196. [Google Scholar]
- VanderBroek-Stice, L.; Stojek, M.K.; Beach, S.R.; Vandellen, M.R.; MacKillop, J. Multidimensional assessment of impulsivity in relation to obesity and food addiction. Appetite 2017, 112, 59–68. [Google Scholar]
- Gomez-Martinez, C.; Babio, N.; Júlvez, J.; Nishi, S.K.; Fernández-Aranda, F.; Martínez-González, M.Á.; Cuenca-Royo, A.; Fernández, R.; Jiménez-Murcia, S.; de la Torre, R.; et al. Impulsivity is longitudinally associated with healthy and unhealthy dietary patterns in individuals with overweight or obesity and metabolic syndrome within the framework of the PREDIMED-Plus trial. Int. J. Behav. Nutr. Phys. Acta 2022, 19, 101. [Google Scholar]
- Zigmond, A.S.; Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar]
- Iani, L.; Lauriola, M.; Costantini, M. A confirmatory bifactor analysis of the hospital anxiety and depression scale in an Italian community sample. Health Qual. Life Outcomes 2014, 12, 84. [Google Scholar] [PubMed] [Green Version]
- Bjelland, I.; Dahl, A.A.; Haug, T.T.; Neckelmann, D. The validity of the Hospital Anxiety and Depression Scale. An updated literature review. J. Psychosom. Res. 2002, 52, 69–77. [Google Scholar] [PubMed]
- Ferrans, C.E.; Powers, M.J. Quality of life index: Development and psychometric properties. ANS Adv. Nurs. Sci. 1985, 8, 15–24. [Google Scholar]
- Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor structure of the Barratt impulsiveness scale. J. Clin. Psychol. 1995, 51, 768–774. [Google Scholar] [PubMed]
- Fossati, A.; Di Ceglie, A.; Acquarini, E.; Barratt, E.S. Psychometric properties of an Italian version of the Barratt Impulsiveness Scale-11 (BIS-11) in nonclinical subjects. J. Clin. Psychol. 2001, 57, 815–828. [Google Scholar]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar]
- Magni, E.; Binetti, G.; Bianchetti, A.; Rozzini, R.; Trabucchi, M. Mini-Mental State Examination: A normative study in Italian elderly population. Eur. J. Neurol. 1996, 3, 198–202. [Google Scholar]
- Magni, E.; Binetti, G.; Cappa, S.; Bianchetti, A.; Trabucchi, M. Effect of age and education on performance on the Mini-Mental State Examination in a healthy older population and during the course of Alzheimer’s disease. J. Am. Geriatr. Soc. 1995, 43, 942–943. [Google Scholar]
- Jensen, A.R.; Rohwer, W.D. The stroop color-word test: A review. Acta Psychol. 1966, 25, 36–93. [Google Scholar]
- Stroop, R.J. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar]
- Caffarra, P.; Vezzadini, G.; Dieci, F.; Zonato, F.; and Venneri, A. Una versione abbreviata del test di Stroop: Dati normativi nella popolazione italiana. Riv. Di Neurol. 2002, 12, 111–115. [Google Scholar]
- Giovagnoli, A.R.; Del Pesce, M.; Mascheroni, S.; Simoncelli, M.; Laiacona, M.; Capitani, E. Trail making test: Normative values from 287 normal adult controls. Ital. J. Neurol. Sci. 1996, 17, 305–309. [Google Scholar]
- Lezak, M.D.; Howienson, D.B.; Loring, D. Neuropsychological Assessment, 4th ed.; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Arnett, J.A.; Labovitz, S.S. Effect of physical layout in performance of the Trail Making Test. Psychol. Assess. 1995, 7, 220–221. [Google Scholar]
- Segura-Serralta, M.; Ciscar, S.; Blasco, L.; Oltra-Cucarella, J.; Roncero, M.; Espert, R.; Elvira, V.; Pinedo-Esteban, R.; Perpiñá, C. Contribution of executive functions to eating behaviours in obesity and eating disorders. Behav. Cogn. Psychother. 2020, 48, 725–733. [Google Scholar]
- Raman, J.; Hay, P.; Tchanturia, K.; Smith, E. A randomised controlled trial of manualized cognitive remediation therapy in adult obesity. Appetite 2018, 123, 269–279. [Google Scholar] [PubMed] [Green Version]
- Levine, B.; Robertson, I.H.; Clare, L.; Carter, G.; Hong, J.; Wilson, B.A.; Duncan, J.; Stuss, D.T. Rehabilitation of executive functioning: An experimental–clinical validation of Goal Management Training. J. Int. Neuropsychol. Soc. 2000, 6, 299–312. [Google Scholar]
Group | Age (Mean ± SD) | Gender (n) | Education (n) | Marital Status (n) | Employment (n) | Smoking (n) |
---|---|---|---|---|---|---|
NW (n = 30) | 62.87 ± 12.88 | M:F = 12:18 | Primary school = 3 Middle school = 7 Secondary school = 18 University = 1 Post-graduate level = 1 | Single = 7 Married = 15 Separated = 3 Widowed = 5 | Student = 0 Worker = 1 Housewife = 14 Unemployed = 2 Retired = 14 | In the past = 14 Yes = 2 No = 14 |
OW (n = 19) | 62.68 ± 10.76 | M:F = 13:6 | Primary school = 1 Middle school = 2 Secondary school = 10 University = 6 Post-graduate level = 0 | Single = 2 Married = 12 Separated = 3 Widowed = 2 | Student = 0 Worker = 1 Housewife = 8 Unemployed = 0 Retired = 10 | In the past = 6 Yes = 2 No = 11 |
OB (n = 55) | 60.11 ± 8.38 | M:F = 44:11 | Primary school = 14 Middle school = 32 Secondary school = 48 University = 9 Post-graduate level = 1 | Single = 5 Married = 34 Separated = 11 Widowed = 5 | Student = 0 Worker = 16 Housewife = 12 Unemployed = 4 Retired = 23 | In the past = 9 Yes = 6 No = 40 |
Psychological Measures (Mean ± SD) | NW (n = 30) | OW (n = 19) | OB (n = 55) |
---|---|---|---|
HADS-total | Mean ± SD 8.03 ± 7.22 Median 2.00 | Mean ± SD 7.00 ± 6.29 Median 5.00 | Mean ± SD 10.56 ± 7.06 Median 10.00 |
HADS-A | Mean ± SD 4.63 ± 4.42 Median 3.50 | Mean ± SD 4.05 ± 4.02 Median 2.00 | Mean ± SD 5.97 ± 4.16 Median 5.06 |
HADS-D | Mean ± SD 3.40 ± 3.27 Median 2.00 | Mean ± SD 2.97 ± 2.89 Median 2.00 | Mean ± SD 4.63 ± 3.61 Median 4.00 |
QLI-total | Mean ± SD 23.47 ± 2.95 Median 23.63 | Mean ± SD 24.03 ± 2.75 Median 24.51 | Mean ± SD 20.88 ± 4.17 Median 21.47 |
QLI-Hlth/Func | Mean ± SD 22.68 ± 3.53 Median 22.12 | Mean ± SD 23.31 ± 2.82 Median 23.96 | Mean ± SD 19.99 ± 4.55 Median 20.40 |
QLI-Socioec | Mean ± SD 23.59 ± 3.72 Median 24.50 | Mean ± SD 24.70 ± 2.84 Median 24.16 | Mean ± SD 21.19 ± 4.02 Median 21.78 |
QLI-Psych/spir | Mean ± SD 23.11 ± 3.63 Median 22.67 | Mean ± SD 23.56 ± 4.09 Median 23.78 | Mean ± SD 20.81 ± 5.38 Median 21.64 |
QLI-Family | Mean ± SD 26.23 ± 4.35 Median 27.60 | Mean ± SD 25.76 ± 4.13 Median 27.60 | Mean ± SD 23.62 ± 4.87 Median 24.98 |
BIS-Total | Mean ± SD 57.53 ± 8.40 Median 55.50 | Mean ± SD 57.52 ± 7.62 Median 57.00 | Mean ± SD 62.11 ± 8.14 Median 61.00 |
BIS-AI | Mean ± SD 13.23 ± 2.43 Median 13.00 | Mean ± SD 14.84 ± 3.38 Median 15.00 | Mean ± SD 16.09 ± 3.20 Median 16.00 |
BIS-MI | Mean ± SD 18.76 ± 4.63 Median 18.50 | Mean ± SD 17.84 ± 2.91 Median 18.00 | Mean ± SD 19.94 ± 3.39 Median 20.00 |
BIS-NpI | Mean ± SD 25.53 ± 5.51 Median 26.50 | Mean ± SD 28.84 ± 5.03 Median 26.00 | Mean ± SD 26.07 ± 4.91 Median 26.00 |
Groups | MMSE | Stroop Interference Time * | Stroop Interference Error | TMT-A * | TMT-B * |
---|---|---|---|---|---|
NW (n = 30) | Mean ± SD 27.46 ± 2.86 Median 29 | Mean ± SD 3.93 ± 0.36 Median 4 | Mean ± SD 3.03 ± 1.32 Median 4 | Mean ± SD 3.33 ± 1.24 Median 4 | Mean ± SD 3.41 ± 1.08 Median 4 |
OW (n = 19) | Mean ± SD 27.89 ± 1.44 Median 28 | Mean ± SD 5.73 ± 5.28 Median 4 | Mean ± SD 3.07 ± 1.41 Median 4 | Mean ± SD 7.52 ± 11.48 Median 4 | Mean ± SD 14.36 ± 34.71 Median 4 |
OB (n = 55) | Mean ± SD 27.40 ± 2.38 Median 28 | Mean ± SD 24.01 ± 14.93 Median 22 | Mean ± SD 3.53 ± 5.17 Median 2 | Mean ± SD 40.81 ± 20.97 Median 42 | Mean ± SD 76.63 ± 45.04 Median 77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrabissa, G.; Cammisuli, D.M.; Scarpina, F.; Volpi, C.; Crotti, L.; Mauro, A.; Gondoni, L.A.; Castelnuovo, G. Executive Attentional Dyscontrol as a Core Cognitive and Behavioral Feature of Individuals with Obesity and Cardiovascular Disease: A Cross-Sectional Investigation. Brain Sci. 2023, 13, 1182. https://doi.org/10.3390/brainsci13081182
Pietrabissa G, Cammisuli DM, Scarpina F, Volpi C, Crotti L, Mauro A, Gondoni LA, Castelnuovo G. Executive Attentional Dyscontrol as a Core Cognitive and Behavioral Feature of Individuals with Obesity and Cardiovascular Disease: A Cross-Sectional Investigation. Brain Sciences. 2023; 13(8):1182. https://doi.org/10.3390/brainsci13081182
Chicago/Turabian StylePietrabissa, Giada, Davide Maria Cammisuli, Federica Scarpina, Clarissa Volpi, Lia Crotti, Alessandro Mauro, Luca Alessandro Gondoni, and Gianluca Castelnuovo. 2023. "Executive Attentional Dyscontrol as a Core Cognitive and Behavioral Feature of Individuals with Obesity and Cardiovascular Disease: A Cross-Sectional Investigation" Brain Sciences 13, no. 8: 1182. https://doi.org/10.3390/brainsci13081182
APA StylePietrabissa, G., Cammisuli, D. M., Scarpina, F., Volpi, C., Crotti, L., Mauro, A., Gondoni, L. A., & Castelnuovo, G. (2023). Executive Attentional Dyscontrol as a Core Cognitive and Behavioral Feature of Individuals with Obesity and Cardiovascular Disease: A Cross-Sectional Investigation. Brain Sciences, 13(8), 1182. https://doi.org/10.3390/brainsci13081182