Abnormal Spatial and Temporal Overlap of Time-Varying Brain Functional Networks in Patients with Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Imaging Acquisition and Preprocessing
2.3. Calculation of Time-Varying Functional Connectivity (TVC)
2.4. Calculation of Betweenness Centrality at Multilevel
2.5. Identification of Candidate Hubs and Active Hubs
2.6. Subnetwork Distribution of Active Hubs
2.7. Spatial Overlap and Temporal Overlap of Active Hubs
2.7.1. Spatial Overlap of Active Hubs
2.7.2. Hierarchical Clustering of Active Hubs
2.7.3. Temporal Overlap of Active Hubs
2.8. Statistical Analysis
3. Results
3.1. Group Comparisons on BC Values
3.2. Candidate Hubs
3.3. Distribution of Active Hubs
3.4. Spatial Overlap of Active Hubs
3.5. Temporal Overlap of Active Hubs
4. Discussion
4.1. Decreased Ability of SZ Patients to Integrate and Process Information
4.2. Reduced Stability of Spatial Configuration of Brain Activity in SZ Patients
4.3. Abnormal Pair Participation Preference for Hubs in SZ Patients
5. Limitations and Directions for Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
ROI | Regions | Abbreviated | RSN |
---|---|---|---|
1 | Precentral_L | PreCG.L | DMN |
2 | Precentral_R | PreCG.R | DMN |
3 | Frontal_Sup_L | SFGdor.L | DMN |
4 | Frontal_Sup_R | SFGdor.R | DMN |
5 | Frontal_Sup_Orb_L | ORBsup.L | DMN |
6 | Frontal_Sup_Orb_R | ORBsup.R | DMN |
7 | Frontal_Mid_L | MFG.L | Attention |
8 | Frontal_Mid_R | MFG.R | Attention |
9 | Frontal_Mid_Orb_L | ORBmid.L | Attention |
10 | Frontal_Mid_Orb_R | ORBmid.R | Attention |
11 | Frontal_Inf_Oper_L | IFGoperc.L | Attention |
12 | Frontal_Inf_Oper_R | IFGoperc.R | Attention |
13 | Frontal_Inf_Tri_L | IFGtriang.L | Attention |
14 | Frontal_Inf_Tri_R | IFGtriang.R | Attention |
15 | Frontal_Inf_Orb_L | ORBinf.L | Attention |
16 | Frontal_Inf_Orb_R | ORBinf.R | Attention |
17 | Rolandic_Oper_L | ROL.L | Sensorimotor |
18 | Rolandic_Oper_R | ROL.R | Sensorimotor |
19 | Supp_Motor_Area_L | SMA.L | Attention |
20 | Supp_Motor_Area_R | SMA.R | Sensorimotor |
21 | Olfactory_L | OLF.L | Subcortical |
22 | Olfactory_R | OLF.R | DMN |
23 | Frontal_Sup_Medial_L | SFGmed.L | DMN |
24 | Frontal_Sup_Medial_R | SFGmed.R | DMN |
25 | Frontal_Mid_Orb_L | ORBsupmed.L | DMN |
26 | Frontal_Mid_Orb_R | ORBsupmed.R | DMN |
27 | Rectus_L | REC.L | DMN |
28 | Rectus_R | REC.R | DMN |
29 | Insula_L | INS.L | Sensorimotor |
30 | Insula_R | INS.R | Sensorimotor |
31 | Cingulum_Ant_L | ACG.L | DMN |
32 | Cingulum_Ant_R | ACG.R | DMN |
33 | Cingulum_Mid_L | DCG.L | Subcortical |
34 | Cingulum_Mid_R | DCG.R | Subcortical |
35 | Cingulum_Post_L | PCG.L | DMN |
36 | Cingulum_Post_R | PCG.R | DMN |
37 | Hippocampus_L | HIP.L | Subcortical |
38 | Hippocampus_R | HIP.R | Subcortical |
39 | ParaHippocampal_L | PHG.L | Subcortical |
40 | ParaHippocampal_R | PHG.R | Subcortical |
41 | Amygdala_L | AMYG.L | Subcortical |
42 | Amygdala_R | AMYG.R | Subcortical |
43 | Calcarine_L | CAL.L | Visual |
44 | Calcarine_R | CAL.R | Visual |
45 | Cuneus_L | CUN.L | Visual |
46 | Cuneus_R | CUN.R | Visual |
47 | Lingual_L | LING.L | Visual |
48 | Lingual_R | LING.R | Visual |
49 | Occipital_Sup_L | SOG.L | Visual |
50 | Occipital_Sup_R | SOG.R | Visual |
51 | Occipital_Mid_L | MOG.L | Visual |
52 | Occipital_Mid_R | MOG.R | Visual |
53 | Occipital_Inf_L | IOG.L | Visual |
54 | Occipital_Inf_R | IOG.R | Visual |
55 | Fusiform_L | FFG.L | Visual |
56 | Fusiform_R | FFG.R | Visual |
57 | Postcentral_L | PoCG.L | Sensorimotor |
58 | Postcentral_R | PoCG.R | Sensorimotor |
59 | Parietal_Sup_L | SPG.L | Sensorimotor |
60 | Parietal_Sup_R | SPG.R | Sensorimotor |
61 | Parietal_Inf_L | IPL.L | Attention |
62 | Parietal_Inf_R | IPL.R | Attention |
63 | SupraMarginal_L | SMG.L | Sensorimotor |
64 | SupraMarginal_R | SMG.R | Sensorimotor |
65 | Angular_L | ANG.L | Attention |
66 | Angular_R | ANG.R | Attention |
67 | Precuneus_L | PCUN.L | DMN |
68 | Precuneus_R | PCUN.R | DMN |
69 | Paracentral_Lobule_L | PCL.L | Sensorimotor |
70 | Paracentral_Lobule_R | PCL.R | Sensorimotor |
71 | Caudate_L | CAU.L | Subcortical |
72 | Caudate_R | CAU.R | Subcortical |
73 | Putamen_L | PUT.L | Subcortical |
74 | Putamen_R | PUT.R | Subcortical |
75 | Pallidum_L | PAL.L | Subcortical |
76 | Pallidum_R | PAL.R | Subcortical |
77 | Thalamus_L | THA.L | Subcortical |
78 | Thalamus_R | THA.R | Subcortical |
79 | Heschl_L | HES.L | Sensorimotor |
80 | Heschl_R | HES.R | Sensorimotor |
81 | Temporal_Sup_L | STG.L | Sensorimotor |
82 | Temporal_Sup_R | STG.R | Sensorimotor |
83 | Temporal_Pole_Sup_L | TPOsup.L | Attention |
84 | Temporal_Pole_Sup_R | TPOsup.R | Sensorimotor |
85 | Temporal_Mid_L | MTG.L | DMN |
86 | Temporal_Mid_R | MTG.R | DMN |
87 | Temporal_Pole_Mid_L | TPOmid.L | Subcortical |
88 | Temporal_Pole_Mid_R | TPOmid.R | Subcortical |
89 | Temporal_Inf_L | ITG.L | Attention |
90 | Temporal_Inf_R | ITG.R | DMN |
References
- van den Heuvel, M.P.; Fornito, A. Brain networks in schizophrenia. Neuropsychol. Rev. 2014, 24, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Doucet, G.E.; Leibu, E.; Frangou, S. Resting-state network connectivity and metastability predict clinical symptoms in schizophrenia. Schizophr. Res. 2018, 201, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A. Timing in cognition and EEG brain dynamics: Discreteness versus continuity. Cogn. Process 2006, 7, 135–162. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.M.; Murray, M.M. Towards the utilization of EEG as a brain imaging tool. Neuroimage 2012, 61, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Caria, A.; Sitaram, R.; Birbaumer, N. Real-time fMRI: A tool for local brain regulation. Neuroscientist 2012, 18, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Brookes, M.J.; Leggett, J.; Rea, M.; Hill, R.M.; Holmes, N.; Boto, E.; Bowtell, R. Magnetoencephalography with optically pumped magnetometers (OPM-MEG): The next generation of functional neuroimaging. Trends Neurosci. 2022, 45, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Mather, M.; Cacioppo, J.T.; Kanwisher, N. Introduction to the Special Section: 20 Years of fMRI-What Has It Done for Understanding Cognition? Perspect. Psychol. Sci. 2013, 8, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Glover, G.H. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 2010, 50, 81–98. [Google Scholar] [CrossRef]
- Hutchison, R.M.; Womelsdorf, T.; Gati, J.S.; Everling, S.; Menon, R.S. Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum. Brain Mapp. 2013, 34, 2154–2177. [Google Scholar] [CrossRef]
- Kabbara, A.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M. The dynamic functional core network of the human brain at rest. Sci. Rep. 2017, 7, 2936. [Google Scholar] [CrossRef]
- Allen, E.A.; Damaraju, E.; Plis, S.M.; Erhardt, E.B.; Eichele, T.; Calhoun, V.D. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 2014, 24, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Peng, W.; Jiang, Y.; Song, L.; Liao, Y.; Yi, C.; Zhang, L.; Si, Y.; Zhang, T.; Wang, F.; et al. The Dynamic Brain Networks of Motor Imagery: Time-Varying Causality Analysis of Scalp EEG. Int. J. Neural Syst. 2019, 29, 1850016. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Ding, C.; Wei, J.; Xue, J.; Wang, X.; Wang, B.; Xiang, J. Analysis of Dynamic Network Reconfiguration in Adults with Attention-Deficit/Hyperactivity Disorder Based Multilayer Network. Cereb. Cortex 2021, 31, 4945–4957. [Google Scholar] [CrossRef] [PubMed]
- Braun, U.; Schäfer, A.; Bassett, D.S.; Rausch, F.; Schweiger, J.I.; Bilek, E.; Erk, S.; Romanczuk-Seiferth, N.; Grimm, O.; Geiger, L.S.; et al. Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function. Proc. Natl. Acad. Sci. USA 2016, 113, 12568–12573. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wang, H.; Bi, H.; Lv, J.; Zhang, X.; Wang, S.; Zou, L. Dynamic functional connectivity changes of resting-state brain network in attention-deficit/hyperactivity disorder. Behav. Brain Res. 2023, 437, 114121. [Google Scholar] [CrossRef] [PubMed]
- Gifford, G.; Crossley, N.; Kempton, M.J.; Morgan, S.; Dazzan, P.; Young, J.; McGuire, P. Resting state fMRI based multilayer network configuration in patients with schizophrenia. Neuroimage Clin. 2020, 25, 102169. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shu, N.; Liu, Y.; Song, M.; Hao, Y.; Liu, H.; Yu, C.; Liu, Z.; Jiang, T. Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr. Res. 2008, 100, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Lynall, M.E.; Bassett, D.S.; Kerwin, R.; McKenna, P.J.; Kitzbichler, M.; Muller, U.; Bullmore, E. Functional connectivity and brain networks in schizophrenia. J. Neurosci. 2010, 30, 9477–9487. [Google Scholar] [CrossRef]
- van Dellen, E.; Börner, C.; Schutte, M.; van Montfort, S.; Abramovic, L.; Boks, M.P.; Cahn, W.; van Haren, N.; Mandl, R.; Stam, C.J.; et al. Functional brain networks in the schizophrenia spectrum and bipolar disorder with psychosis. NPJ Schizophr. 2020, 6, 22. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Wisnowski, J.L.; Leahy, R.M. Identification of overlapping and interacting networks reveals intrinsic spatiotemporal organization of the human brain. Neuroimage 2023, 270, 119944. [Google Scholar] [CrossRef]
- Xu, J.; Potenza, M.N.; Calhoun, V.D.; Zhang, R.; Yip, S.W.; Wall, J.T.; Pearlson, G.D.; Worhunsky, P.D.; Garrison, K.A.; Moran, J.M. Large-scale functional network overlap is a general property of brain functional organization: Reconciling inconsistent fMRI findings from general-linear-model-based analyses. Neurosci. Biobehav. Rev. 2016, 71, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Cordes, D.; Haughton, V.M.; Arfanakis, K.; Wendt, G.J.; Turski, P.A.; Moritz, C.H.; Quigley, M.A.; Meyerand, M.E. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am. J. Neuroradiol. 2000, 21, 1636–1644. [Google Scholar] [PubMed]
- Stam, C.J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 2014, 15, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, J.; Wang, L.; Chen, Z.J.; Yan, C.; Yang, H.; Tang, H.; Zhu, C.; Gong, Q.; Zang, Y.; et al. Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS ONE 2009, 4, e5226. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.H.; Fransson, P. A common framework for the problem of deriving estimates of dynamic functional brain connectivity. Neuroimage 2018, 172, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L.; Sepulcre, J.; Talukdar, T.; Krienen, F.M.; Liu, H.; Hedden, T.; Andrews-Hanna, J.R.; Sperling, R.A.; Johnson, K.A. Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 2009, 29, 1860–1873. [Google Scholar] [CrossRef]
- Fransson, P.; Aden, U.; Blennow, M.; Lagercrantz, H. The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb. Cortex 2011, 21, 145–154. [Google Scholar] [CrossRef]
- Fransson, P.; Thompson, W.H. Temporal flow of hubs and connectivity in the human brain. Neuroimage 2020, 223, 117348. [Google Scholar] [CrossRef]
- Power, J.D.; Schlaggar, B.L.; Lessov-Schlaggar, C.N.; Petersen, S.E. Evidence for hubs in human functional brain networks. Neuron 2013, 79, 798–813. [Google Scholar] [CrossRef]
- Karim, M.R.; Beyan, O.; Zappa, A.; Costa, I.G.; Rebholz-Schuhmann, D.; Cochez, M.; Decker, S. Deep learning-based clustering approaches for bioinformatics. Brief. Bioinform. 2021, 22, 393–415. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, M.P.; Sporns, O.; Collin, G.; Scheewe, T.; Mandl, R.C.; Cahn, W.; Goñi, J.; Hulshoff Pol, H.E.; Kahn, R.S. Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry 2013, 70, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Duan, M.; Wang, Y.; Zhang, X.; Jia, X.; Li, Y.; Xin, F.; Yao, D.; Luo, C. Reconfiguration of Dynamic Functional Connectivity in Sensory and Perceptual System in Schizophrenia. Cereb. Cortex 2019, 29, 3577–3589. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.D.; Snyder, A.Z.; Vincent, J.L.; Corbetta, M.; Van Essen, D.C.; Raichle, M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 2005, 102, 9673–9678. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, M.; Kahn, R.S.; Zandbelt, B.B.; Widschwendter, C.G.; Vink, M. Working memory and default mode network abnormalities in unaffected siblings of schizophrenia patients. Schizophr. Res. 2013, 150, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Whitfield-Gabrieli, S.; Ford, J.M. Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 2012, 8, 49–76. [Google Scholar] [CrossRef] [PubMed]
- Arkin, S.C.; Ruiz-Betancourt, D.; Jamerson, E.C.; Smith, R.T.; Strauss, N.E.; Klim, C.C.; Javitt, D.C.; Patel, G.H. Deficits and compensation: Attentional control cortical networks in schizophrenia. Neuroimage Clin. 2020, 27, 102348. [Google Scholar] [CrossRef]
- Wynn, J.K.; Jimenez, A.M.; Roach, B.J.; Korb, A.; Lee, J.; Horan, W.P.; Ford, J.M.; Green, M.F. Impaired target detection in schizophrenia and the ventral attentional network: Findings from a joint event-related potential-functional MRI analysis. Neuroimage Clin. 2015, 9, 95–102. [Google Scholar] [CrossRef]
- Kim, S.; Kim, Y.W.; Shim, M.; Jin, M.J.; Im, C.H.; Lee, S.H. Altered Cortical Functional Networks in Patients with Schizophrenia and Bipolar Disorder: A Resting-State Electroencephalographic Study. Front. Psychiatry 2020, 11, 661. [Google Scholar] [CrossRef]
- Butler, P.D.; Schechter, I.; Zemon, V.; Schwartz, S.G.; Greenstein, V.C.; Gordon, J.; Schroeder, C.E.; Javitt, D.C. Dysfunction of early-stage visual processing in schizophrenia. Am. J. Psychiatry 2001, 158, 1126–1133. [Google Scholar] [CrossRef]
- Schechter, I.; Butler, P.D.; Zemon, V.M.; Revheim, N.; Saperstein, A.M.; Jalbrzikowski, M.; Pasternak, R.; Silipo, G.; Javitt, D.C. Impairments in generation of early-stage transient visual evoked potentials to magno- and parvocellular-selective stimuli in schizophrenia. Clin. Neurophysiol. 2005, 116, 2204–2215. [Google Scholar] [CrossRef] [PubMed]
- Butler, P.D.; Zemon, V.; Schechter, I.; Saperstein, A.M.; Hoptman, M.J.; Lim, K.O.; Revheim, N.; Silipo, G.; Javitt, D.C. Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch. Gen. Psychiatry 2005, 62, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Mingoia, G.; Wagner, G.; Langbein, K.; Maitra, R.; Smesny, S.; Dietzek, M.; Burmeister, H.P.; Reichenbach, J.R.; Schlösser, R.G.; Gaser, C.; et al. Default mode network activity in schizophrenia studied at resting state using probabilistic ICA. Schizophr. Res. 2012, 138, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Hummer, T.A.; Yung, M.G.; Goñi, J.; Conroy, S.K.; Francis, M.M.; Mehdiyoun, N.F.; Breier, A. Functional network connectivity in early-stage schizophrenia. Schizophr. Res. 2020, 218, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.D.; Mrsic-Flogel, T.D. Cortical connectivity and sensory coding. Nature 2013, 503, 51–58. [Google Scholar] [CrossRef]
- Yeo, B.T.; Krienen, F.M.; Chee, M.W.; Buckner, R.L. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex. Neuroimage 2014, 88, 212–227. [Google Scholar] [CrossRef]
- Northoff, G.; Duncan, N.W. How do abnormalities in the brain’s spontaneous activity translate into symptoms in schizophrenia? From an overview of resting state activity findings to a proposed spatiotemporal psychopathology. Prog. Neurobiol. 2016, 145–146, 26–45. [Google Scholar] [CrossRef]
- Xiao, J.; Uddin, L.Q.; Meng, Y.; Li, L.; Gao, L.; Shan, X.; Huang, X.; Liao, W.; Chen, H.; Duan, X. A spatio-temporal decomposition framework for dynamic functional connectivity in the human brain. Neuroimage 2022, 263, 119618. [Google Scholar] [CrossRef]
- Northoff, G. Spatiotemporal Psychopathology—A Novel Approach to Brain and Symptoms. Noro Psikiyatr. Ars. 2022, 59, S3–S9. [Google Scholar] [CrossRef]
- Hou, C.; Jiang, S.; Liu, M.; Li, H.; Zhang, L.; Duan, M.; Yao, G.; He, H.; Yao, D.; Luo, C. Spatiotemporal dynamics of functional connectivity and association with molecular architecture in schizophrenia. Cereb. Cortex 2023, 33, 9095–9104. [Google Scholar] [CrossRef]
- Northoff, G. Is schizophrenia a spatiotemporal disorder of the brain’s resting state? World Psychiatry 2015, 14, 34–35. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, B.; Shin, J.; Schumacher, E.H.; Keilholz, S.D. Quasi-periodic patterns of intrinsic brain activity in individuals and their relationship to global signal. Neuroimage 2018, 167, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Fan, T.T.; Zhao, R.J.; Han, Y.; Shi, L.; Sun, H.Q.; Chen, S.J.; Shi, J.; Lin, X.; Lu, L. Altered Brain Network Connectivity as a Potential Endophenotype of Schizophrenia. Sci. Rep. 2017, 7, 5483. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Bassil, Y.; Keilholz, S. Quasi-periodic patterns of brain activity in individuals with attention-deficit/hyperactivity disorder. Neuroimage Clin. 2019, 21, 101653. [Google Scholar] [CrossRef] [PubMed]
- Herlin, B.; Navarro, V.; Dupont, S. The temporal pole: From anatomy to function-A literature appraisal. J. Chem. Neuroanat. 2021, 113, 101925. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Collinson, S.L.; Suckling, J.; Sim, K. Dynamic Reorganization of Functional Connectivity Reveals Abnormal Temporal Efficiency in Schizophrenia. Schizophr. Bull. 2019, 45, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Tanglay, O.; Young, I.M.; Dadario, N.B.; Briggs, R.G.; Fonseka, R.D.; Dhanaraj, V.; Hormovas, J.; Lin, Y.H.; Sughrue, M.E. Anatomy and white-matter connections of the precuneus. Brain Imaging Behav. 2022, 16, 574–586. [Google Scholar] [CrossRef]
- Gao, Y.; Tong, X.; Hu, J.; Huang, H.; Guo, T.; Wang, G.; Li, Y.; Wang, G. Decreased resting-state neural signal in the left angular gyrus as a potential neuroimaging biomarker of schizophrenia: An amplitude of low-frequency fluctuation and support vector machine analysis. Front. Psychiatry 2022, 13, 949512. [Google Scholar] [CrossRef]
- Belloy, M.E.; Naeyaert, M.; Abbas, A.; Shah, D.; Vanreusel, V.; van Audekerke, J.; Keilholz, S.D.; Keliris, G.A.; Van der Linden, A.; Verhoye, M. Dynamic resting state fMRI analysis in mice reveals a set of Quasi-Periodic Patterns and illustrates their relationship with the global signal. Neuroimage 2018, 180, 463–484. [Google Scholar] [CrossRef]
- Yang, G.J.; Murray, J.D.; Glasser, M.; Pearlson, G.D.; Krystal, J.H.; Schleifer, C.; Repovs, G.; Anticevic, A. Altered Global Signal Topography in Schizophrenia. Cereb. Cortex 2017, 27, 5156–5169. [Google Scholar] [CrossRef]
- Karahanoğlu, F.I.; Van De Ville, D. Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks. Nat. Commun. 2015, 6, 7751. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.W.; Kim, Y.H.; Jeong, G.W. Whole brain volume changes and its correlation with clinical symptom severity in patients with schizophrenia: A DARTEL-based VBM study. PLoS ONE 2017, 12, e0177251. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, R.J.; Langdon, R.; McGuire, J. Olfactory hallucinations in schizophrenia and schizoaffective disorder: A phenomenological survey. Psychiatry Res. 2011, 185, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Masaoka, Y.; Velakoulis, D.; Brewer, W.J.; Cropley, V.L.; Bartholomeusz, C.F.; Yung, A.R.; Nelson, B.; Dwyer, D.; Wannan, C.M.J.; Izumizaki, M.; et al. Impaired olfactory ability associated with larger left hippocampus and rectus volumes at earliest stages of schizophrenia: A sign of neuroinflammation? Psychiatry Res. 2020, 289, 112909. [Google Scholar] [CrossRef] [PubMed]
- Seghier, M.L. The angular gyrus: Multiple functions and multiple subdivisions. Neuroscientist 2013, 19, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Uddin, L.Q.; Supekar, K.; Amin, H.; Rykhlevskaia, E.; Nguyen, D.A.; Greicius, M.D.; Menon, V. Dissociable connectivity within human angular gyrus and intraparietal sulcus: Evidence from functional and structural connectivity. Cereb. Cortex 2010, 20, 2636–2646. [Google Scholar] [CrossRef]
- Popov, T.; Rockstroh, B.; Miller, G.A. Oscillatory connectivity as a mechanism of auditory sensory gating and its disruption in schizophrenia. Psychophysiology 2022, 59, e13770. [Google Scholar] [CrossRef]
- Voss, M.; Chambon, V.; Wenke, D.; Kühn, S.; Haggard, P. In and out of control: Brain mechanisms linking fluency of action selection to self-agency in patients with schizophrenia. Brain 2017, 140, 2226–2239. [Google Scholar] [CrossRef]
- Leube, D.; Straube, B.; Green, A.; Blümel, I.; Prinz, S.; Schlotterbeck, P.; Kircher, T. A possible brain network for representation of cooperative behavior and its implications for the psychopathology of schizophrenia. Neuropsychobiology 2012, 66, 24–32. [Google Scholar] [CrossRef]
- Deschamps, I.; Baum, S.R.; Gracco, V.L. On the role of the supramarginal gyrus in phonological processing and verbal working memory: Evidence from rTMS studies. Neuropsychologia 2014, 53, 39–46. [Google Scholar] [CrossRef]
- Barbaro, M.F.; Kramer, D.R.; Nune, G.; Lee, M.B.; Peng, T.; Liu, C.Y.; Kellis, S.; Lee, B. Directional tuning during reach planning in the supramarginal gyrus using local field potentials. J. Clin. Neurosci. 2019, 64, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Herold, C.J.; Cheung, E.F.C.; Chan, R.C.K.; Schröder, J. Neurological Soft Signs and Brain Network Abnormalities in Schizophrenia. Schizophr. Bull. 2020, 46, 562–571. [Google Scholar] [CrossRef] [PubMed]
Characteristic | SZ | NC | Statistical Test |
---|---|---|---|
Number of subjects | 43 | 49 | -- |
Age (years) | 34.84 ± 8.60 | 33.12 ± 8.22 | p = 0.331 |
Sex (male/female) SAPS | 30/13 30.61 ± 20.26 | 30/19 -- | p = 0.112 -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, J.; Sun, Y.; Wu, X.; Guo, Y.; Xue, J.; Niu, Y.; Cui, X. Abnormal Spatial and Temporal Overlap of Time-Varying Brain Functional Networks in Patients with Schizophrenia. Brain Sci. 2024, 14, 40. https://doi.org/10.3390/brainsci14010040
Xiang J, Sun Y, Wu X, Guo Y, Xue J, Niu Y, Cui X. Abnormal Spatial and Temporal Overlap of Time-Varying Brain Functional Networks in Patients with Schizophrenia. Brain Sciences. 2024; 14(1):40. https://doi.org/10.3390/brainsci14010040
Chicago/Turabian StyleXiang, Jie, Yumeng Sun, Xubin Wu, Yuxiang Guo, Jiayue Xue, Yan Niu, and Xiaohong Cui. 2024. "Abnormal Spatial and Temporal Overlap of Time-Varying Brain Functional Networks in Patients with Schizophrenia" Brain Sciences 14, no. 1: 40. https://doi.org/10.3390/brainsci14010040
APA StyleXiang, J., Sun, Y., Wu, X., Guo, Y., Xue, J., Niu, Y., & Cui, X. (2024). Abnormal Spatial and Temporal Overlap of Time-Varying Brain Functional Networks in Patients with Schizophrenia. Brain Sciences, 14(1), 40. https://doi.org/10.3390/brainsci14010040