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Abstract: Patients with major depressive disorder (MDD) exhibit an abnormal physiological arousal
pattern known as hyperarousal, which may contribute to their depressive symptoms. However, the
neurobiological mechanisms linking this abnormal arousal to depressive symptoms are not yet fully
understood. In this review, we summarize the physiological and neural features of arousal, and
review the literature indicating abnormal arousal in depressed patients. Evidence suggests that a
hyperarousal state in depression is characterized by abnormalities in sleep behavior, physiological
(e.g., heart rate, skin conductance, pupil diameter) and electroencephalography (EEG) features, and
altered activity in subcortical (e.g., hypothalamus and locus coeruleus) and cortical regions. While
recent studies highlight the importance of subcortical–cortical interactions in arousal, few have
explored the relationship between subcortical–cortical interactions and hyperarousal in depressed
patients. This gap limits our understanding of the neural mechanism through which hyperarousal
affects depressive symptoms, which involves various cognitive processes and the cerebral cortex.
Based on the current literature, we propose that the hyperconnectivity in the thalamocortical circuit
may contribute to both the hyperarousal pattern and depressive symptoms. Future research should
investigate the relationship between thalamocortical connections and abnormal arousal in depression,
and explore its implications for non-invasive treatments for depression.

Keywords: depression; arousal; thalamocortical connectivity; thalamus; EEG vigilance

1. Introduction

Major depressive disorder (MDD), a prevalent neuropsychiatric disorder, is emerg-
ing as a serious public health concern. Despite decades of research, the neurobiological
underpinnings of depression remain elusive. This may partly be due to incomprehensive
investigations regarding the neural basis of arousal—key features of the brain states—in
depression [1]. A theory in affective disorders suggests that hyperstable arousal regulation
may lead to depressive symptoms such as social withdrawal and sensation avoidance [2–4].
In fact, recent evidence supports this abnormal arousal pattern in depression. Specifically,
a higher and hyperstable arousal state has been observed in depressed patients compared
with healthy, non-depressed individuals [4–6]. Moreover, this abnormal arousal pattern is
associated with the severity of depressive symptoms and prolonged sleep onset latency in
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depression [3,7,8]. Therefore, neural mechanisms of physiological arousal appear to play a
critical role in depressed patients, affecting their depressive symptoms.

Physiological arousal is considered as a key component of consciousness [9,10], and
is supported by complex cooperation between the subcortex and cortex, particularly tha-
lamocortical circuitry [11,12]. Previous studies have demonstrated that arousal affects
perception [13], decision making [14], spatial memory [15], and attention [16], and is also a
critical characteristic in mental disorders [3,17–21], including depression [3]. For now, al-
tered activities of several arousal neural correlates have been identified in depression, such
as the hypothalamic–pituitary–adrenal (HPA) axis [22,23] and locus coeruleus (LC) [3,24].
However, these subcortical findings did not reveal the subcortical–cortical interactions, and
could not explicitly explain dysfunctions in high-order cognition or symptoms in depres-
sion. Currently, alterations in thalamocortical interactions that underlie the aberrations in
physiological arousal in depression remain largely unclear.

In this review, we first present an overview of the behavioral and physiological char-
acteristics of arousal. Next, we provide a comprehensive review of abnormal physiological
arousal in depression, including both behavior and psychophysiological evidence. Sub-
sequently, upon overviewing the role of thalamocortical circuits in arousal and MDD, we
propose that abnormalities of these circuits could be a key neural mechanism underlying
both hyperarousal and depressive symptoms. Finally, we discuss the future outlook for in-
vestigating the abnormal arousal in depression, fostering future research on the theoretical
understanding of the pathology of MDD and its treatment approaches, including repetitive
transcranial magnetic stimulation (rTMS), music interventions, and pharmacotherapy.

2. Overview of Physiological Arousal

Arousal is closely linked to consciousness, cognition, and mental disorders [9,25]. The
level of arousal influences the performances of various cognitive tasks. For instance, a brief
increase in arousal can shorten reaction time in decision making [14], while the restoration
of arousal after light sleep improves detection in visuomotor tasks [26]. Additionally,
the level of arousal before stimulus can predict perceptual task performance [27,28]. In
the context of mental disorders, abnormal arousal is commonly found. Depression, for
example, often co-occurs with hyperarousal and sustained tension [3–5,29]. Individuals
with autism spectrum disorder (ASD) demonstrate abnormal arousal, but arguments exist
regarding whether hypoarousal or hyperarousal accounts for the attentional and social
skills in autism [21,30]. Therefore, understanding the neural basis of arousal is essential for
disclosing the neural mechanisms of consciousness, cognition, and mental disorders.

It should be noticed that, although physiological arousal and emotional arousal have
overlapping neural underpinnings, they are distinct concepts [31]. Emotional arousal is
related to an individual’s brain and bodily responses to arousing stimuli, focusing on
emotional reactivity [32]. On the other hand, physiological arousal measures the degree of
wakefulness of the individuals. In this review, we focus on physiological arousal, hereafter
referred to simply as arousal.

2.1. Physiological Correlates of Arousal

Physiological indices provide a comprehensive evaluation of arousal, providing ob-
jective and quantifiable measurements of arousal levels. These indices include behavior,
electrodermal activity (EDA), heart rate variability (HRV), and pupil diameter, each of
which provides unique insights into arousal states [11,33–36]. Behavior, as the most in-
tuitive among these indices, visibly changes with shifts in arousal levels, such as when
an individual awakens from sleep, performs limb movements, or speaks [11,33]; EDA
reflects autonomic nervous system activity, which typically increases during states of high
arousal [36]; HRV measures the natural variability in time intervals between heartbeats,
and shows an inverse relationship with arousal levels [34]. Additionally, pupil diameter,
influenced by the sympatho-vagal balance within the autonomic nervous system, expands
with increased physiological arousal [35,37]. Together, these indices provide a solid founda-
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tion for assessing physiological arousal levels as well as exploring their neurophysiological
underpinnings.

2.2. Neural Correlates of Physiological Arousal

The complex interplay of subcortical brain regions is essential for the neural mecha-
nisms of arousal. These regions, primarily comprising the brainstem, hypothalamus, basal
forebrain, and thalamus, work in concert to regulate various aspects of arousal, ranging
from hormonal responses to neuronal activity [11,12]. This intricate system coordinates
the physiological processes underlying our ability to wake and remain alert, influencing
cognitive functions and mood states. The brainstem, particularly critical for physiological
arousal regulation, contains structures like the reticular formation and various nuclei that
are integral to the sleep–wake cycle [38–40]. The reticular formation enhances arousal by
releasing acetylcholine, while brainstem nuclei, including the locus coeruleus (LC) with its
norepinephrine-producing neurons, regulate cortical activities affecting mood and cognitive
functions [41]. The ascending reticular activating system (ARAS) from the brainstem, pro-
jecting through the thalamus to the cerebral cortex, plays a crucial role in cortical activation
and maintaining alertness [42–44]. The hypothalamus, which governs the hypothalamic–
pituitary–adrenal (HPA) axis, significantly influences arousal [45,46]. Hyperactivity in the
HPA axis can lead to increased arousal and stress responses, potentially resulting in anxiety
and depression [47]. Within the hypothalamus, the lateral hypothalamus (LH) is critical for
wakefulness, with neurons like hypocretin/orexin (Hcrt), glutamatergic, and GABAergic
types modulating sleep stages [48–51]. The basal forebrain (BF) also contributes to arousal,
with its cholinergic neurons enhancing cortical activity and wakefulness, and GABAergic
neurons promoting arousal by modulating cortical inhibitory interneurons [52,53]. The
intricate neuronal dynamics within the BF have significant impacts on cognitive functions
and the sleep–wake cycle [52,54–56]. Additionally, the thalamus has long been involved in
the regulation of sleep–wake cycle and arousal, serving a critical role in the transmission
and integration of information [57–59]. It primarily relays sensory inputs to the cortex,
which is a process essential for perception, emotion, and consciousness [57,60,61], and
influences brain activation and consciousness states, primarily through neurotransmitters
such as glutamate [61].

Numerous studies have focused on how subcortical brain regions regulate arousal.
However, recent research has also revealed that the cortex is also involved in arousal
alteration. For instance, the amplitude of global signals (GS), predominantly constituted
by activities in primary sensory areas such as the sensorimotor cortex [62,63], negatively
correlates with arousal levels [64,65], and increases during light sleep and mild anesthe-
sia [66,67]. This indicates a broader engagement of cortical areas in arousal regulation.
Notably, decreased physiological arousal is associated with increased thalamic activity
and reduced activity in cortical areas, especially the default mode network (DMN) [68].
During anesthesia-induced unconsciousness, while cortico-cortical functional connectivity
is preserved, thalamocortical connectivity is disrupted, with consciousness recovery linked
to its restoration [69]. Additionally, the sensorimotor cortex drives dynamic functional
connectivity of spontaneous signals across the cortex, and is closely related to arousal regu-
lation (Figure 1A) [70–72]. Transient increases in GS, co-occurring with decreased activity
in the dorsal midline thalamus, nucleus basalis and midbrain, suggest brief decreases in
arousal [63]. Moreover, electrical stimulation of central thalamic regions, such as the central
lateral nucleus of the thalamus, can induce widespread cortical activity and elevate arousal
levels in animals under anesthesia and sleep states [59,73]. Our previous studies exploring
altered arousal from eyes-open to eyes-closed states revealed that interactions between
cortical networks are closely linked to arousal, underscoring the cortical contribution to
arousal regulation (Figure 1B) [74,75]. These studies demonstrate that arousal regulation
is governed by not only subcortical mechanisms, but also involves significant cortical
contributions, particularly from areas like the DMN and sensorimotor cortex.
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= dorsal attention network; CEN = central executive network; MN = motor network; AN = auditory 
network. 
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Figure 1. Evidence of altered cortical connectivity in different arousal levels. (A) The brain regions
with decreased degree centrality during unconsciousness. Adapted from [69]. SMA = supplementary
motor area; LSMG = left supramarginal gyrus; RSMG = right supramarginal gyrus; LMTG = left mid-
dle temporal gyrus; SACC = supragenual anterior cingulate cortex. (B) The FC differential patterns
(EC–EO) between networks. Adapted from [73]. FC = functional connectivity; EC = eye closed; EO = eye
open; SN = salience network; VN = visual network; DMN = default mode network; DAN = dorsal
attention network; CEN = central executive network; MN = motor network; AN = auditory network.

Taken together, physiological arousal is a complex and dynamic neurological process
that engages multiple brain functional regions, including the brainstem, hypothalamus,
basal forebrain, thalamus, and cerebral cortex. While initial studies of arousal focused ex-
tensively on the role of subcortical regions and hormonal interactions in arousal regulation,
recent findings have shed light on the impact of cortical activities and their interaction with
the subcortex. These findings indicate that arousal is not solely governed by subcortical
mechanisms, but also involves critical contributions from cortical areas, especially through
the integration and processing of information relayed by the thalamus. Therefore, the
connectivity between cortical and subcortical regions may be a critical mechanism for the
abnormal arousal in mental disorders, such as depression.

3. Abnormal Arousal in Depression

In this study, we mainly focus on patients (adults) diagnosed with MDD to illustrate
the abnormal arousal in depression. We conducted a comprehensive search in the Web
of Science for articles published up to November 2023 with the following terms: “MDD
AND (“heart rate” OR “heart rate variability” OR “pupil” OR “skin conductance” OR
“electrodermal activity”); “MDD AND HPA”; “MDD AND locus coeruleus AND nore-
pinephrine”; and “MDD AND EEG vigilance”. Articles resulting from these searches and
relevant references cited in those articles were thoroughly reviewed for this research, and
this selection was also completed by searches in the authors’ personal files, where articles
published in English were included.

3.1. Behavior Characteristics

Abnormal arousal in depression is manifested in sleep behavior. The DSM-5 has
indicated insomnia as a primary symptoms of MDD [7,76]. Numerous studies have re-
vealed that MDD patients suffer from various sleep disturbances. These disturbances
include permanently increased inner tension [77], difficulties to relax or to initiate sleep,
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prolonged sleep onset latency, early morning awakenings with an inability to return to
sleep, decreased sleep efficiency, and overall reduced sleep duration [78]. Additionally,
electroencephalography (EEG) recordings also revealed irregular sleep architectures in
depression that are characterized by a decrease in slow wave sleep and alterations in rapid
eye movement (REM) sleep patterns. Specifically, the first REM stage occurs earlier and
lasts 3–4 times longer in MDD patients compared to healthy individuals. There is also
an increased proportion of REM sleep in the early part of sleep and higher REM density
(i.e., more ocular movements during REM sleep) [8].

3.2. Physiological Evidence

Physiological evidence further confirms a hyperarousal state in depression that is
characterized by several distinct markers. These include elevated heart rate (HR), de-
creased heart rate variability (HRV), increased skin conductance, larger pupil diameters,
hyperactivity of the HPA axis and locus coeruleus–norepinephrine (LC–NE) system, and
hyperstable arousal regulation as indexed by EEG vigilance.

3.2.1. Autonomic Function Indices

Abnormal arousal in depression is reflected by autonomic function markers such as
HR, HRV, electrodermal activity (EDA), and pupil diameters. Studies have demonstrated
elevated HR and decreased HRV in MDD patients at rest [79–87]. Specifically, studies
controlling for factors such as age, gender, smoking habits, and education levels found
that unmedicated MDD patients displayed a higher average HR than healthy individu-
als [84,86]. Additionally, reviews have consistently shown lower HRV in MDD than healthy
individuals [88,89], despite some inconsistent results [87]. A comprehensive study using
several autonomic function indices revealed that unmedicated MDD patients in a resting
state (20 min in a supine position) exhibited higher HR, increased skin conductance levels
and fluctuations, and larger pupil diameters than healthy individuals [87]. These findings
indicate an increased level of arousal in depression.

3.2.2. Hyperactivity of HPA Axis

Hyperactivity of the HPA axis in MDD has been broadly reported [22,23,90]. The
hypothalamus secretes corticotrophin-releasing factor (CRF) and vasopressin, which in
turn activate the pituitary to release adrenocorticotropin hormone (ACTH). This finally
stimulates the release of cortisol from the adrenal cortex [23]. Typically, hyperactivity of the
HPA axis is always indirectly detected in humans by measuring hormone levels such as cor-
tisol and ACTH. Many studies have reported elevated cortisol levels in the plasma [91–96]
and urine [97,98] of depression patients. For instance, the mean plasma cortisol level of
depressed patients before treatment was observed to be elevated by 10 µg (per 100 mL)
above normal levels [91]. An analysis of plasma cortisol every 20 min over a 24-h period
revealed higher cortisol levels and more frequent secretory episodes in depressed patients
compared to normal individuals [92]. The mean urinary free cortisol level in depressed
patients was significantly elevated (90.1 µg), compared to the normal level (48 µg) [97].
It has also been observed that cortisol levels can return to their normal levels following
treatments like electroconvulsive therapy or antidepressive drugs (imipramine) [91,98].
Notably, cortisol levels in MDD patients, both during depressed and recovery states, are
higher than in healthy individuals [99]. A meta-analysis further supports these findings,
indicating a robust elevated ACTH level in depression [22]. The increase in the ACTH
level in MDD after administration of CRF is slower than in healthy individuals [99,100].
Additionally, research indicates that the volume of the adrenal gland increases during
depressive episodes in MDD and returns to normal size during remission [101].

3.2.3. Hyperactivity of Noradrenergic System (LC)

In MDD, hyperactivity of the central noradrenergic system, particularly the LC, is
evident. Specifically, there is a notably higher level of norepinephrine (NE) and its metabo-
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lites. NE levels in the cerebrospinal fluid of MDD patients during 30-h recordings are
consistently higher compared to healthy individuals [102]. Additionally, the appearance
of NE in both extravascular and vascular compartments is elevated in MDD compared to
healthy individuals [103]. Furthermore, the concentration of noradrenaline metabolites is
also higher in the saliva of MDD compared to healthy individuals [104].

Hyperactivity of the LC–NE system in MDD is also reflected in the abnormal activities
of neurotransmitters, including glutamate and tyrosine hydroxylase. It has been reported
that the LC primarily receives excitatory input from glutamate and increased glutamatergic
activity in MDD. Specifically, increased gene expression of glutamate receptors and a
deficiency in astrocyte glutamate transporter gene expression have been observed in MDD
post-mortem studies [105,106]. Furthermore, levels of tyrosine hydroxylase, which reflect
the neuronal activity of the LC, have been found to be elevated in the LC of post-mortem
MDD brains [107].

Moreover, the effectiveness of some antidepressants is associated with down-regulation
of the LC’s activity. For instance, the selective NE reuptake inhibitor (reboxetine) has been
shown to reduce the firing activity of NE neurons in the LC of rats [41,108]. This effect is
also observed following a series of electroconvulsive shocks [109]. These findings suggest
a close link between the pathogenesis of depression and the hyperactivity of the central
noradrenergic system, potentially contributing to the hyperarousal pattern in depression.

3.2.4. Hyperstable Arousal Regulation as Indexed by EEG Vigilance

Electrophysiological evidence, characterized by EEG vigilance markers such as alpha,
theta, and delta activity, demonstrates a typical hyperstable and higher arousal state in
MDD patients than healthy individuals [110]. During resting states without external
interruptions, most healthy individuals exhibit a progressive decline to a lower vigilance
stage, suggesting a decrease in arousal levels [3]. In contrast, MDD patients often exhibit a
hyperstable pattern of arousal regulation [3–5].

For instance, in a 15-minute EEG recording with closed eyes, unmedicated MDD
patients spend more time in the highest EEG vigilance stages and exhibit a delayed decline
to lower EEG vigilance stages compared to healthy individuals [4]. Subsequent studies have
consistently confirmed the hyperstable arousal regulation pattern in depressed patients,
especially in MDD [6,110–115]. Notably, even during two-minute EEG recordings, this
pattern is observed [6]. It has also been found that more sleep disturbances before the day
of recording correlate with a higher score of arousal stability in depression patients, but
not in healthy individuals [114]. Similarly, symptom severity measured using the Beck
Depression Inventory (BDI) was found to correspond with higher arousal levels and slower
declines in arousal as indexed by EEG vigilance [113]. And patients with bipolar disorder
in a depressive episode also exhibit higher mean vigilance levels as measured by EEG
vigilance [116].

Moreover, studies have revealed that the arousal regulation pattern was related with
responses to antidepressant treatments [111,115]. Specifically, during 15-minute EEG record-
ings, individuals who responded to antidepressants (like escitalopram or/and mirtazapine)
exhibited a reduction in time spent in high vigilance states and an increase in time spent
in low vigilance states two weeks after beginning treatment, compared to those who did
not respond [111]. Remitters demonstrate a stronger tendency to decline to lower arousal
levels compared to non-remitters [115].

In summary, evidence for abnormal hyperarousal in depressed patients is supported
by a range of behavioral and physiological findings. These include sleep disturbances,
increased heart rate, enlarged pupil diameters, heightened skin conductance, and hyperac-
tivity in the subcortical areas, particularly in the hypothalamus and LC (Figure 2). Recent
EEG studies suggest a hyperstable arousal regulation in depressed individuals that is linked
to the severity of depressive symptoms.
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Despite the comprehensive results these studies provide, several limitations must be
acknowledged. Firstly, although the studies suggest correlations between arousal regu-
lation patterns and antidepressant treatments, the causality cannot be firmly established
due to their observational nature. Additionally, the distinction between neurobiological
underpinnings of hyperarousal in MDD and in other mood disorders, such as the depres-
sion phase in bipolar disorder and post-traumatic stress disorder [76,116–119], require
further investigation. More importantly, previous studies did not thoroughly explore the
association between subcortical–cortical connections, particularly thalamocortical inter-
actions, and abnormal arousal in depression. The neural mechanism underlying various
depressive symptoms—phenomena that involve multiple cognitive processes and corti-
cal activities [120]—as responses to abnormal hyperarousal in depression remains poorly
understood.

4. Thalamocortical Circuits Possibly Account for Abnormal Arousal in Depression

Thalamocortical circuits have been implicated in the regulation of physiological
arousal [121,122]. The central thalamus is specialized to maintain the thalamocortical
and cortico-cortical connections, prompting brief shifts in arousal, and injury to the central
thalamus induces impairment of arousal regulation [123]. The firing of centromedial tha-
lamus neurons has been proposed to implement dual control over sleep–wake states by
modulating brain-wide cortical activities [124]. During non-rapid eye movement (NREM)
sleep, the thalamus has also been found to modulate the slow waves that predominate in
the neocortex [125]. Recent studies in macaques have shown that deep brain stimulation of
the central or central lateral thalamus can facilitate their interactions with the brain-wide
cortex, thereby restoring arousal from an anesthetized state [59,73]. Additionally, human
research using fast fMRI has revealed a temporal sequence of activity across thalamic nuclei
and the brain-wide cortex during the transition in arousal, suggesting thalamocortical
dynamics that support arousal [126]. These studies provide empirical evidence for the
critical role of thalamocortical circuits in the arousal system.

In fact, the thalamus and its cortical connections exhibit functional aberrance in pa-
tients with depression. Previous research has identified a positive correlation between
increased thalamic metabolism and the severity of depressive symptoms [127,128], while
a decrease in thalamic metabolism has been observed during remission in depressed pa-
tients [129]. Furthermore, several studies have revealed altered thalamic connectivities
in depression, including increased thalamic connectivities with the default-mode net-
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work [130,131], somatosensory cortex [132,133], temporal cortex [133], insula [134], and
dorsolateral prefrontal cortex [135], as well as decreased thalamic connectivities with the
anterior cingulate [130,131]. Importantly, thalamocortical interactions appear to play a
critical role in the pathology of depression. A recent review demonstrated converging
evidence of enhanced effective connections from the thalamus to various cortical regions,
and reduced effective connections from other regions to the thalamus, suggesting that the
thalamus is the key casual hub region for MDD [136]. Moreover, a study utilizing machine
learning and advanced deep learning methods to distinguish MDD patients and healthy
individuals in large resting-state fMRI datasets, identified thalamocortical hyperconnec-
tivity as a specialized and critical neurophysiological signature in MDD [137]. Given the
importance of thalamocortical circuits in arousal regulation, as previously discussed, it
is proposed that hyperconnectivity of this circuit could be the subcortical–cortical neural
mechanism underlying abnormal arousal regulation in depressed patients.

Except for the thalamus, several subcortical regions are related to arousal, such as
the brainstem, basal forebrain, and hypothalamus, but few of them have been found to
show altered connectivity in the cortex of depressed patients. Based on various evidence
regarding aberrant thalamocortical connections in depression, it can be inferred that hy-
perconnectivity of thalamocortical circuits may play a significant role in hyperarousal and
depressive symptoms (Figure 3).
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5. Future Directions

Currently, converging findings have revealed hyperarousal in depression, as indi-
cated by sleep difficulties [8,77,78], increase in HR [79–87], decrease in HRV [88,89], pupil
diameters and skin conductance [87], and hyperactivity of the HPA axis [22,23,90–101]
and locus coeruleus [102–107] in depressed individuals. Given the intimate involvement
of thalamocortical circuits in physiological arousal, it is proposed that thalamocortical
circuits could account for abnormal arousal regulation in depression. However, existing
research has not yet elucidated how these abnormalities in thalamocortical circuits lead to
hyperarousal regulation in depressed individuals. To further elucidate this relationship,
advanced techniques such as simultaneous fMRI–EEG or fMRI–pupillometry could be
further utilized to investigate the dynamics of thalamocortical interactions and their impact
on arousal regulation in depression.

The thalamus possesses a complex neuroanatomy, comprising a variety of nuclei and
including both excitatory and inhibitory neurons. Its connections to other brain areas are
diverse, contributing to a wide range of cognitive and behavioral functions [138]. For
instance, based on histological criteria, the thalamus is divided into distinctive nuclei,
such as centromedial, ventral posterolateral, pulvinar, etc. [139]. Moreover, according to
the patterns of afferent connection, excitatory thalamic nuclei could be divided into first-
order nuclei (e.g., lateral geniculate nucleus), which receive driver input from subcortical
regions, and higher-order nuclei (e.g., mediodorsal and pulvinar nuclei), which receive
modulatory inputs from the cortex [138,140]. This classification, however, varies depending
on the criteria used [139], suggesting the complex anatomy of thalamus and its cortical
connections. A recent study found that, compared to normal controls, first-episode, drug-
naïve MDD patients exhibit increased gray matter volume in specific thalamic nuclei,
but not in the whole thalamus, suggesting heterogeneous alterations across thalamic
nuclei [141]. Therefore, it is crucial to further investigate the interactions between various
thalamic nuclei and the cortex in depressed individuals [142], in order to determine which
of these interactions is related to abnormal arousal in depression.

Using rTMS that targets the dorsolateral prefrontal cortex (DLPFC) is a common
non-pharmacological clinical treatment for MDD. However, recent studies indicate its
limited effectiveness, with less than half of treatment-resistant MDD patients responding
to DLPFC-rTMS [143]. Additionally, rTMS at other alternative targets near the DLPFC,
such as the dorsomedial prefrontal cortex, did not shown improvements in depressive
symptoms for treatment-refractory depression [144]. This underscores the urgent need to
identify alternative rTMS targets, particularly for those with treatment-resistant depression.
Intriguingly, rTMS at the left motor cortex, which has been proposed to be intimately
associated with arousal systems [72], has recently been found to have comparable efficacy
to DLPFC stimulation in MDD patients who show psychomotor retardation [145]. Given
this context, we propose that the cortical regions connected to the thalamus are related to
hyperarousal regulation in depression, and may be potential targets for rTMS in treating
MDD patients.

Moreover, music intervention is increasingly used in depressed symptoms allevia-
tion. Previous study has shown the impact that music has on stress levels in healthy
individuals [146]. A recent meta-analysis investigating the effects of music interventions on
depression confirmed their efficacy, both in terms of music medicine or music therapy [147].
Future research should explore whether the mechanisms underlying the effectiveness of
music intervention are linked to arousal modulation, and can thereby contribute to the
alleviation of depressive symptoms. This exploration could guide the development of more
effective, non-invasive treatments.

In addition to non-invasive approaches, pharmacotherapy is another effective means
of depression treatment. Recent studies have revealed ketamine’s effectiveness as an antide-
pressant in patients with treatment-resistant depression [148–151]. It should be noticed that,
ketamine, commonly used as an anesthetic, is known to reduce arousal levels [152–156].
However, it remains unclear whether its antidepressant effects are linked to a reduction
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in thalamocortical connectivity in MDD. Future research is needed to determine whether
ketamine alters thalamocortical interactions, and how such changes may contribute to its
antidepressant effects. Should a link between thalamocortical connectivity and antide-
pressant effects be established, it could shed light on the development of targeted drug
treatments in the future by focusing on their impact on thalamocortical connectivity.

Recent findings suggest that sex differences [157] should be considered in the neural
mechanisms underlying the drug treatment. Specifically, hyperarousal in MDD exhibits
sex differences [157], with women often experiencing more hyperarousal symptoms com-
pared to men, a condition linked to excessive secretion of CRF [158,159]. Females show
increased sensitivity to CRF in the LC due to sex differences in the CRF1 receptor, leading to
increased cyclic adenosine monophosphate–protein kinase A (cyclic AMP–PKA) pathway
signaling [160–162]. This increased response may contribute to increased hyperarousal
symptoms in females [163–165]. In contrast, the CRF1 receptor in males preferentially
binds to β-arrestin, leading to different signaling pathways and potentially mitigating
hyperarousal in the context of CRF hypersecretion [160,166–168]. These findings indicate
that sex-specific responses to stress and CRF regulation could promote the development of
targeted drug treatments for MDD that take into account these sex differences.

6. Conclusions

In conclusion, converging evidence indicates a hyperarousal pattern in depressed
patients, characterized by sleep disturbance, increased arousal-related biological markers,
hyperactivity in the HPA axis and LC, and hyperstable EEG vigilance. Notably, there
have been limited studies investigating the contribution of thalamocortical circuits to
abnormal arousal in depression. This knowledge gap hinders our understanding of the
neurobiological underpinnings of how abnormal arousal contributes to various depressive
symptoms, which are phenomena involving complex cognitive functions and multiple
cortical regions. By examining the critical role of thalamocortical connections in arousal
regulation and MDD, we propose that hyperconnectivity of thalamocortical circuits could
account for both the hyperarousal pattern and the related social difficulties in depressed
patients. Future investigations should adopt advanced techniques, such as simultaneous
fMRI–EEG or fMRI–pupillometry, to elucidate the relationship between thalamocortical
interactions and hyperarousal in depression, specifically identifying which nuclei and their
cortical interactions contribute to abnormal arousal. This could provide potential targets for
rTMS treatment. As for other non-invasive treatments, music intervention shows promise;
however, its mechanisms and the potential links with arousal need further investigation.
In pharmacotherapy, the development of targeted drugs in treatment-resistant depression
could consider modulating thalamocortical connectivity. Additionally, observed sex differ-
ences in the neurobiological underpinnings of hyperarousal in MDD should be considered
in future hyperarousal and treatment research.
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