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Abstract: Background: Excessive daytime sleepiness (EDS) among adolescents poses significant risks
to academic performance, mental health, and overall well-being. This study examines the prevalence
and risk factors of EDS in adolescents in Bangladesh and utilizes machine learning approaches to
predict the risk of EDS. Methods: A cross-sectional study was conducted among 1496 adolescents
using a structured questionnaire. Data were collected through a two-stage stratified cluster sampling
method. Chi-square tests and logistic regression analyses were performed using SPSS. Machine
learning models, including Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost),
Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbors (KNN), and Gradient
Boosting Machine (GBM), were employed to identify and predict EDS risk factors using Python
and Google Colab. Results: The prevalence of EDS in the cohort was 11.6%. SHAP values from the
CatBoost model identified self-rated health status, gender, and depression as the most significant
predictors of EDS. Among the models, GBM achieved the highest accuracy (90.15%) and precision
(88.81%), while CatBoost had comparable accuracy (89.48%) and the lowest log loss (0.25). ROC-AUC
analysis showed that CatBoost and GBM performed robustly in distinguishing between EDS and non-
EDS cases, with AUC scores of 0.86. Both models demonstrated the superior predictive performance
for EDS compared to others. Conclusions: The study emphasizes the role of health and demographic
factors in predicting EDS among adolescents in Bangladesh. Machine learning techniques offer
valuable insights into the relative contribution of these factors, and can guide targeted interventions.
Future research should include longitudinal and interventional studies in diverse settings to improve
generalizability and develop effective strategies for managing EDS among adolescents.

Keywords: daytime sleepiness; machine learning; predictive modeling; CatBoost; feature
importance; adolescents

1. Introduction

Excessive daytime sleepiness (EDS) among adolescents is a significant concern due
to its broad and potentially adverse impact on academic performance, social interactions,
emotional well-being, accident risks, and physical health. EDS, denoted as the presence of
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an overwhelming urge to sleep during the day, can lead to reduced cognitive performance,
a diminished attention span, and lower academic achievement, as sleep-deprived students
often struggle with their attention span, concentration, and information retention [1].
Socially, EDS can cause irritability, aggressiveness, or withdrawal, leading to isolation and
a decreased quality of life [2]. Physically, it can contribute to chronic fatigue, metabolic
deregulation with increased food consumption, obesity, and cardiovascular problems [3].
Emotionally, EDS is linked to mood disturbances such as anxiety and depression, further
complicating normal adolescent emotional development [4]. Studies have highlighted the
strong associations between EDS, insomnia, and depressive symptoms [5,6], emphasizing
the need for a comprehensive approach to address these issues.

The prevalence of EDS among adolescents is relatively elevated, even if it varies
across different populations and settings, reflecting the global importance and ubiquity of
this issue [4,7]. Some of the variance in EDS among adolescents seems to reflect diverse
demographic and environmental factors, as illustrated by reports showing different EDS
prevalences in the same country. For example, in a Brazilian study involving 1132 adoles-
cents, EDS was reported in 54.2% of the sample, with a higher incidence observed among
females (64.3%) compared to males (35.7%) [8]. Similarly, another Brazilian study reported
that 46.8% of 876 adolescents experienced EDS [9]. In South Korea, a study of 3871 high
school students revealed a prevalence rate of 15.9% [10], while another study conducted by
Choi et al. [11] reported an EDS prevalence rate of 11.2%, with a notable increase among
those adolescents identified as internet-addicted.

Efforts to identify specific risk factors associated with EDS in teenagers have also
yielded variable findings. In China, perceived social support and a higher household
income were found as act as protective factors against EDS [12]. Kim et al. [13] in South
Korea and Marco et al. [14] in the USA similarly found that parental employment, educa-
tional background, and socioeconomic status significantly influence sleep patterns and EDS
risk. Joo et al. [10] emphasized the link between sleep disorders and EDS in South Korea,
underscoring the need for improved sleep hygiene and behavioral interventions. Among
Brazilian adolescents, Malheiros et al. [9] found that physical activity is protective against
EDS, while high levels of the consumption of processed foods and increased screen time,
particularly through social media, were associated with increased EDS rates. Similarly,
Alves et al. [15] reported that EDS is prevalent among students with an insufficient sleep
duration due to early school start times and the extensive use of electronic devices before
bedtime. The impact of digital technology on sleep remains a major concern, with research
indicating that non-academic screen time is linked to a shorter sleep duration and later bed-
times [16]. Emerging evidence suggests that problematic digital technology use contributes
to poor sleep quality even after accounting for genetic and familial factors, indicating a
potentially causal relationship that requires further exploration [17]. A systematic review
by Brautsch et al. [18] consistently found that digital media use among older adolescents
and young adults is associated with a shorter sleep duration, poorer sleep quality, and
increased daytime tiredness, highlighting the need for more research to fully understand
these dynamics.

An increased understanding of the risk factors and the prevalence of EDS in Bangladesh
is particularly lacking, and research on adolescent sleep patterns has yet to be conducted.
Further insights into inadequate sleep, (i.e., insufficient sleep duration and circadian mis-
alignment) are likely prevalent among Bangladeshi adolescents and, based on studies
elsewhere, could be linked to poor academic performance and health issues [4,7]. Applying
machine learning techniques to large datasets focused on this topic may offer valuable
insights into EDS by analyzing complex patterns in sleep, lifestyle, and mental health
data, providing predictive models for targeted interventions. The present study aimed to
investigate the prevalence and risk factors of EDS among adolescents in Bangladesh and
utilize machine learning techniques to predict the risk of EDS. By addressing the specific
needs of this population and employing advanced analytical methods, the study seeks to
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fill existing gaps in the literature and provide actionable recommendations for improving
adolescent sleep health in Bangladesh.

2. Materials and Methods
2.1. Study Context and Location

This research is part of the “Mental Health Problems and Literacy, Lifestyle, and
Substance Use among Adolescents” (MeLiSA) Study. The study aimed to assess mental
health issues and lifestyle-related factors among high school students. It was conducted
in November 2022 in Shahzadpur Upazila, Sirajganj district, one of the 64 districts in
Bangladesh. Shahzadpur was selected due to its logistical support and alignment with the
study’s budgetary constraints. The Upazila comprises 42 schools, with 16 situated in urban
areas and 26 in rural settings. The selection of this location was based on the availability of
resources, ease of access, and the ability to conduct the study within the allocated budget.

2.2. Sampling Strategies

A two-stage stratified cluster sampling method was employed to recruit participants
for the study. Stage 1: School Stratification and Selection—Schools were first stratified
based on their geographic location (urban vs. rural). Then, a random selection process was
used to identify a total of seven schools as the primary sampling units. These included
three schools from urban areas and four from rural regions. Stage 2: Grade Selection Within
Schools—Within each selected school, a random selection was conducted to choose three
specific grades (7, 8, and 9). Then, all students enrolled in these selected grades were
invited to participate in the study, ensuring a representative sample from both urban and
rural areas.

2.3. Sample Size Calculation

The sample size was calculated using an estimated prevalence of any mental disorder,
13.6%, from the National Mental Health Survey in Bangladesh [19], with a 5% margin
of error and a 95% confidence interval. Accounting for urban–rural differences and a
10% non-response rate, the required sample size was 805. However, the study ultimately
included 1496 participants, exceeding the calculated requirement.

2.4. Data Collection Process

Prior to the main study, a pilot study was conducted with 30 students to test the
understandability and readability of the questionnaire. Based on the feedback from this
pilot, problematic items were identified and subsequently revised by the research team
during focus group discussions. The data collected during the pilot study were excluded
from the formal analysis to maintain the integrity of the main study data. However,
upon obtaining the necessary permissions and consents, the survey was administered in
classrooms. The research team was present during the data collection process to assist
students and address any queries or concerns. This approach aimed to ensure that students
understood the questions and responded accurately.

2.5. Inclusion and Exclusion Criteria

The inclusion criteria required students to be present in the classroom during the
survey and to be enrolled in grades 7, 8, or 9 at the selected schools. Exclusion criteria
included students who did not provide informed consent, those with disabilities that pre-
cluded participation, and those who were absent from class during the survey. In addition,
participants who provided incomplete responses regarding the outcome variables were
excluded from the final analysis to ensure data quality, leading to a total of 1496 subjects.
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2.6. Measures
2.6.1. Sociodemographic Factors

The study collected comprehensive sociodemographic data from participants, includ-
ing their age, gender, grade level, location (urban or rural), birth order, family type (nuclear
or joint), monthly family income in Bangladeshi Taka (BDT), and parental education levels.
Additionally, information on the participants’ smoking history was also gathered to provide
context for their lifestyle and health behaviors.

2.6.2. COVID-19 Related Information

Participants’ experiences related to COVID-19 were assessed through questions re-
garding whether they had personally contracted the virus, if their family or friends had
been infected, and whether they had experienced the loss of family or friends due to
the pandemic. Responses to these questions were recorded in a binary format (yes/no),
facilitating a clear and straightforward evaluation of their COVID-19 experiences.

2.6.3. Strength and Difficulties Questionnaire

The Strengths and Difficulties Questionnaire (SDQ) was utilized to evaluate emotional
and behavioral disorders among adolescents. The SDQ comprises five subscales: Emo-
tional Symptoms (e.g., feelings of unhappiness or being downhearted), Conduct Problems
(e.g., engaging in fights), Hyperactivity/Inattention (e.g., frequent fidgeting), Peer Rela-
tionship Problems (e.g., social isolation), and Prosocial Behavior (e.g., sensitivity to others’
feelings). Each subscale includes five items, rated as Never = 0, Somewhat True = 1, or
Certainly True = 2. A total SDQ score of 20 or above is considered abnormal. The scores
for the subscales are as follows: Emotion 7–10, Conduct 5–10, Hyperactivity 7–10, Peer
Problems 6–10, and Prosocial Behavior 0–4 [20–22].

2.6.4. Depression

Depressive symptoms were assessed using the Patient Health Questionnaire (PHQ-9),
which consists of nine items that participants answered based on their experiences over
the past two weeks [23,24]. Scores on the PHQ-9 range from 0 to 27, with higher scores
indicating more severe depressive symptoms. A cutoff score of 10 or higher was used to
identify significant depression, which has a sensitivity of 88% and a specificity of 88% for
major depression [23]. In this study, the PHQ-9 demonstrated a Cronbach’s alpha of 0.76,
indicating good internal consistency.

2.6.5. Anxiety

Anxiety levels were measured with the Generalized Anxiety Disorder (GAD-7) scale,
comprising seven items rated according to the participant’s experiences over the previous
two weeks [25,26]. Scores range from 0 to 21, with higher scores reflecting more severe
anxiety. A cutoff score of 10 or higher was employed to identify significant anxiety, which
has a sensitivity of 89% and a specificity of 82% for anxiety screening [25]. The GAD-7 also
showed a Cronbach’s alpha of 0.76 in this study, signifying reliable internal consistency.

2.6.6. Digital Addiction

Digital addiction was assessed using the 10-item Digital Addiction Scale for Teenagers
(DAST), with responses rated on a 7-point scale (1 = never to 7 = very often), yielding scores
from 10 to 70 [27]. To categorize digital addiction risk, a cutoff score of 27 was chosen,
which is more than one standard deviation above the mean score of 18.67 (SD = 7.88),
aligning with standard statistical practices for high-risk categories. This cutoff also ex-
ceeds the 75th percentile score of 22, reinforcing its effectiveness in identifying significant
digital addiction.
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2.6.7. Excessive Daytime Sleepiness

Excessive daytime sleepiness was evaluated using the Pediatric Daytime Sleepiness
Scale, which includes eight items designed to assess various aspects of daytime sleepi-
ness [28]. Participants rated each item on a 5-point Likert scale from 0 (never) to 4 (always).
The scale includes questions like “How often do you have trouble getting out of bed in
the morning?” and “Are you usually alert most of the day?” Item 3, regarding alertness,
was reverse-scored to ensure consistency in the scoring direction. The total score ranged
from 0 to 32, with higher scores indicating greater daytime sleepiness [28]. A cutoff score
of 15 was considered for excessive daytime sleepiness [29].

2.7. Ethical Considerations

The study received ethical approval from the University of South Asia, Dhaka, Bangladesh.
This approval ensured that the study adhered to ethical guidelines and standards for con-
ducting research with human participants. Before initiating data collection, approval was
obtained from the relevant school authorities, including school principals and class teachers,
ensuring institutional support and adherence to ethical standards. Students were provided
with written informed consent forms, which required review and approval by their parents
or guardians. This process was designed to ensure that participation was voluntary and
fully informed. Both student assent and parental consent were mandatory for participation.
Students were informed that their participation in the study was entirely voluntary. They were
given the option to withdraw from the study at any time during the data collection process
without any penalty. Additionally, students were not provided with any compensation for
their participation, aligning with ethical standards for non-coercive recruitment practices.

2.8. Statistical Analyses

The data were first entered and made ready for the SPSS using Microsoft Excel 2019.
Categorical variables were presented with frequency percentages, while continuous vari-
ables were reported as means and standard deviations. Associations between variables
and daytime sleepiness were assessed using chi-square tests. All the study variables were
entered into a logistic regression model to determine the factors associated with daytime
sleepiness among adolescents. All statistical tests were conducted at a significant level of
p < 0.05 with a 95% confidence interval.

2.9. Machine Learning Analyses

In this study, machine learning approaches were developed using Python program-
ming, while data analysis and model training were conducted using Google Colab. To
ensure accurate model evaluation, the dataset was divided into training and testing halves
in an 80:40 ratio. To assess their efficacy, a variety of machine learning models, includ-
ing Decision Tree (DT), CatBoost, Extreme Gradient Boosting (XGBoost), Random Forest
(RF), and K-Nearest Neighbors (KNN), were used. These models were selected due to
their extensive use in predictive modeling assignments and their proven ability to handle
complex, non-linear interactions in the data. These models offer an optimal balance of
interpretability, accuracy, and computational ease of use, which makes them particularly
well-suited for predicting substance use behaviors. Feature importance was examined
using the CatBoost and XGBoost models to identify the primary predictors of the target
variable. Each model’s performance was also evaluated using a broad range of parameters,
including log loss, accuracy, precision, and F1 score. The performance of the model was
assessed using the following metrics:

• Accuracy: Accuracy is the measure of the proportion of correctly predicted cases to
all examples, which establishes the overall correctness of the model. It provides a
summary of the general performance of the model.

• Precision: Also referred to as positive predictive value, precision is the proportion
of correctly predicted positive outcomes among all positive predictions the model
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generates. It is significant because it indicates the proportion of projected positives
that are truly accurate, especially in scenarios where false positives could be costly.

• F1 score: By calculating the harmonic mean of these two parameters, the F1 score
strikes a balance between recall and precision. It is especially useful when there is an
imbalance in the classes because it provides a single number that accounts for both
false positives and false negatives.

• Log loss: Also known as logistic loss or cross-entropy loss, log loss measures the level
of uncertainty in the model’s predictions by penalizing incorrect classifications based
on their expected probability. It clarifies the model’s calibration and level of confidence
in its probabilistic forecasts.

2.10. Machine Learning Models
2.10.1. K-Nearest Neighbors (KNN)

Among instance-based learning strategies, K-Nearest Neighbors (KNN) is unique in
that it delays computation until after classification. This non-parametric method resolves
regression and classification problems using locally determined functions. KNN finds the
K training samples that are closest to the item that needs to be classified in the feature space.
An object’s K nearest neighbors cast a majority vote to determine its class membership; K
is frequently a small positive number. When K = 1, the item is assigned to the class of its
nearest neighbor [30].

2.10.2. Random Forest (RF)

A well-liked ensemble learning method, Random Forest is renowned for its persever-
ance in tackling classification and regression issues. During training, a large number of
decision trees are constructed using this method, from which the class mode (in the case of
classification) or mean prediction (in the case of regression) is obtained. By bagging training
models with different fractions of the training data, Random Forests reduce overfitting
in decision trees and improve prediction accuracy. Consequently, a more accurate and
comprehensive model is produced by the diverse forest of trees [31].

2.10.3. Gradient Boosting (XGBoost)

XGBoost represents a significant breakthrough in ensemble machine learning ap-
proaches, outperforming conventional gradient-boosting methods thanks to its innovative
gradient-boosting architecture. Algorithmic design and systems optimization have greatly
advanced because of this technology [32]. It enables the successive building of decision
trees, minimizing errors by using the mistakes made by previous trees as a guide. Because
of XGBoost’s methodical approach to speed and performance enhancement and its deft
handling of large-scale data, predictive modeling has evolved, surpassing the accuracy of
its GBM predecessors [33].

2.10.4. Categorical Boosting (CatBoost)

Classified data are a good fit for CatBoost and other modern machine learning tech-
niques. Gradient boosting using decision trees is the main focus. Recently, Yandex created
a brand-new technique called CatBoost that reduces common problems with categorical
data without necessitating a large amount of pre-processing. It accomplishes this by fusing
one-hot encoding with an advanced computational technique that improves prediction
accuracy and decreases overfitting. CatBoost is a very useful tool for many applications,
including recommendation systems and predictive modeling, due to its well-known scala-
bility and effectiveness. The method is significant in the rapidly expanding field of machine
learning and has been demonstrated to enhance model performance, especially in datasets
with a high concentration of categorical variables [34].
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2.10.5. Gradient Boosting Machine (GBM)

Gradient Boosting Machine (GBM), a potent ensemble machine learning technology,
creates a strong learner by progressively adding weak learners, usually decision trees. This
increases predicted accuracy. Gradient descent is used in this method to minimize the
loss function, with an emphasis on areas where prior models commonly performed badly.
Although careful hyperparameter tuning is necessary to avoid overfitting and to control the
computing costs, GBMs are adaptable and powerful for a variety of prediction applications.
They are extensively utilized in a variety of industries due to their capacity to manage
complex, nonlinear data [33].

2.10.6. Support Vector Machine (SVM)

Robust supervised learning methods like Support Vector Machine (SVM) are widely
used for classification problems. It splits a dataset’s various class memberships as much as
possible by locating the best hyperplane. Support vector machine learning (SVM) aims to
improve classification accuracy by utilizing the data points in the support vectors that are
closest to the decision boundary. The kernel trick increases the efficiency and adaptability
of handling nonlinear data [35].

3. Results
3.1. Characteristics of the Study Participants

The study involved 1496 adolescents, with a nearly equal gender distribution (53.9%
boys and 46.1% girls). The mean age of the participants was 13.91 (±1.07 years, and
primarily aged between 12 and 14 years (71.9%). Participants were from Grades 7, 8, and 9,
with the largest group in Grade 8 (41.4%). The sample was almost evenly divided between
urban (49.1%) and rural (50.9%) areas. Most participants were first-born children (50.2%)
and came from nuclear families (80.5%). Family income varied, with 14.6% earning less than
BDT 15,000 monthly. However, digital device usage was prevalent, especially television
(68.0%) and smartphones (52.9%), with many having these devices in their personal rooms.
Health and behavioral assessments showed that 16.9% rated their health as excellent,
while 9.1% reported emotional problems, 21.7% experienced conduct disorders, 6.2% had
hyperactivity, and 15.1% had peer-relationship problems. Depression was reported by
17.1% of the participants, while anxiety was reported by 7.1%, and digital addiction risk by
14.2%. About 11.6% of the participants (n = 173) experienced daytime sleepiness (Table 1).

Table 1. Distribution of the factors and their associations with daytime sleepiness.

Variables
Total Sample Excessive Daytime Sleepiness

n; % With EDS; n; % χ2 Value p-Value

Socio-demographic information

Age group (n = 1491)

12–14 years 1075; 71.9% 112; 10.4%
3.687 0.055

15–17 years 416; 27.8% 58; 13.9%

Gender (n = 1496)

Male 807; 53.9% 65; 8.1%
21.104 <0.001

Female 689; 46.1% 108; 15.7%

Grade (n = 1455)

Grade 7 395; 26.4% 18; 4.6%
32.494 <0.001Grade 8 620; 41.4% 71; 11.5%

Grade 9 440; 29.4% 75; 17.0%
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Table 1. Cont.

Variables
Total Sample Excessive Daytime Sleepiness

n; % With EDS; n; % χ2 Value p-Value

Location (n = 1496)

Urban 734; 49.1% 141; 19.2%
82.368 <0.001

Rural 762; 50.9% 32; 4.2%

Birth order (n = 1420)

First 751; 50.2% 97; 12.9%

4.361 0.225Second 402; 26.9% 47; 11.7%

Third 144; 9.6% 13; 9.0%

More than third 123; 8.2% 9; 7.3%

Family type (n = 1446)

Nuclear 1205; 80.5% 137; 11.4%
1.045 0.307

Joint 241; 16.1% 33; 13.7%

Family monthly income (BDT) (n = 493)

<15,000 218; 14.6% 7; 3.2%
34.095 <0.00115,000–30,000 182; 12.2% 35; 19.2%

>30,000 93; 6.2% 22; 23.7%

Sleep alone in single room (n = 1496)

Yes 771; 51.5% 92; 11.9%
0.211 0.646

No 725; 48.5% 81; 11.2%

Digital device usage

Television (n = 1496)

Yes 1017; 68.0% 139; 13.7%
13.742 <0.001

No 479; 32.0% 34; 7.1%

PC/Laptop (n = 1496)

Yes 156; 10.4% 27; 17.3%
5.618 0.018

No 1340; 89.6% 46; 10.9%

Smartphone (n = 1496)

Yes 792; 52.9% 114; 14.4%
13.178 <0.001

No 704; 47.1% 59; 8.4%

Gaming gadget (n = 1496)

Yes 43; 2.9% 12; 27.9%
11.562 <0.001

No 1453; 97.1% 161; 11.1%

Digital device in personal room

Television (n = 1496)

Yes 731; 48.9% 97; 13.3%
4.065 0.044

No 765; 51.1% 76; 9.9%

PC/Laptop (n = 1496)
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Table 1. Cont.

Variables
Total Sample Excessive Daytime Sleepiness

n; % With EDS; n; % χ2 Value p-Value

Yes 113; 7.6% 27; 23.9%
18.170 <0.001

No 1383; 92.4% 146; 10.6%

Smartphone (n = 1496)

Yes 583; 39.0% 86; 14.8%
9.488 0.002

No 913; 61.0% 87; 9.5%

Gaming gadget (n = 1496)

Yes 27; 1.8% 10; 37.0%
17.446 <0.001

No 1469; 98.2% 163; 11.1%

Health and behavioral variables

Self-rated health status (n = 1470)

Excellent 253; 16.9% 10; 4.0%

75.172 <0.001Good 657; 43.9% 48; 7.3%

Neutral 522; 34.9% 101; 19.3%

Bad 38; 2.5% 13; 34.2%

Emotional problems (n = 1496)

Yes 136; 9.1% 53; 39.0%
109.874 <0.001

No 1360; 90.9% 120; 8.8%

Conduct disorder (n = 1496)

Yes 325; 21.7% 71; 21.8%
42.921 <0.001

No 1171; 78.3% 102; 8.7%

Hyperactivity (n = 1496)

Yes 93; 6.2% 33; 35.5%
55.479 <0.001

No 1403; 93.8% 140; 10.0%

Peer-relationship problems (n = 1496)

Yes 226; 15.1% 30; 13.3%
0.761 0.383

No 1270; 84.9% 143; 11.3%

Depression (n = 1496)

Yes 256; 17.1% 101; 39.5%
234.894 <0.001

No 1240; 82.9% 72; 5.8%

Anxiety (n = 1496)

Yes 106; 7.1% 58; 54.7%
207.729 <0.001

No 1390; 92.9% 115; 8.3%

Digital addiction risk (n = 1496)

Yes 213; 14.2% 71; 33.3%
115.087 <0.001

No 1283; 85.8% 102; 8.0%

3.2. Associations with Sociodemographic Factors

Gender differences were significant: 15.7% of girls compared to 8.1% of boys (χ2 = 21.104,
p < 0.001). Age showed a marginal link with sleepiness (p = 0.055); 13.9% of older adolescents
(15–17 years) reported it versus 10.4% of younger adolescents (12–14 years). Students in
higher grades had a greater prevalence of sleepiness (χ2 = 32.494, p < 0.001). Urban students
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reported more sleepiness (19.2% vs. 4.2%) compared to rural students (χ2 = 82.368, p < 0.001).
Family-related factors like birth order (χ2 = 4.361, p = 0.225) and family type (χ2 = 1.045,
p = 0.307) did not show significant associations with daytime sleepiness. However, family
income was significantly related to sleepiness, with those with a higher income reporting
a higher prevalence of daytime sleepiness (p < 0.001). Sleeping in a personal room did not
significantly impact daytime sleepiness (χ2 = 0.211, p = 0.646) (Table 1).

3.3. Associations with Digital Device Usage

Digital device usage was significantly associated with daytime sleepiness. For instance,
13.7% of television users reported sleepiness compared to 7.1% of non-users (χ2 = 13.742,
p < 0.001). Similarly, 17.3% of PC/laptop users experienced daytime sleepiness, compared
to 10.9% of non-users (χ2 = 5.618, p = 0.018). Adolescents using smartphones and gaming
gadgets reported higher levels of sleepiness compared to their non-user peers. Similarly, the
presence of digital devices in personal rooms, especially PCs/laptops and gaming gadgets,
showed a strong association with increased daytime sleepiness (χ2 = 18.170, p < 0.001 and
χ2 = 17.446, p < 0.001, respectively) (Table 1).

3.4. Associations with Health and Behavioral Factors

Health and behavioral factors were highly associated with EDS. Participants who rated
their health as “bad” (34.2%) or “neutral” (19.3%) were significantly more likely to report
EDS compared to those with an “excellent” health rating (4.0%) (χ2 = 75.172, p < 0.001).
Emotional problems were particularly impactful, with 39.0% of those experiencing emo-
tional difficulties reporting EDS compared to 8.8% without such issues (χ2 = 109.874,
p < 0.001). Other behavioral factors, such as conduct disorder (21.8% vs. 8.7%), hyper-
activity (35.5% vs. 10.0%), depression (39.5% vs. 5.8%), and anxiety (54.7% vs. 8.3%),
showed strong associations with EDS, with anxiety seemingly being the most robust risk
factor (χ2 = 207.729, p < 0.001) (Table 1).

3.5. Factors Associated with Daytime Sleepiness

A logistic regression analysis was conducted to assess the predictors of EDS in adoles-
cents. The model demonstrated statistical significance (χ2 = 342.613, p < 0.001), indicating
its effectiveness in distinguishing between adolescents with and without EDS. The model
accounted for 42.9% of the variance in EDS (Nagelkerke R2) and correctly classified 91.2%
of the EDS cases.

The findings indicated that female adolescents were almost twice as likely to expe-
rience EDS compared to males (OR = 1.963, 95% CI = 1.249–3.086). Urban adolescents
had a significantly higher probability of EDS than those from rural areas (OR = 2.658,
95% CI = 1.551–4.555). Poor physical condition was associated with a greater likelihood
of EDS, with those reporting ‘bad’ physical condition being over five times more likely
to be affected (OR = 5.600, 95% CI = 1.655–18.943). The presence of a gaming device
in the personal room also increased the likelihood of disturbed sleep (OR = 3.863, 95%
CI = 1.111–13.433). Adolescents facing emotional problems were more susceptible to
EDS (OR = 2.857, 95% CI = 1.657–4.927). Depression was a strong predictor of EDS, with
depressed adolescents being four times more likely to experience it (OR = 4.011, 95%
CI = 2.498–6.441). Anxiety also notably raised the likelihood of EDS (OR = 2.693, 95% CI
= 1.436–5.050). Finally, adolescents with a digital addiction risk were more than twice as
likely to experience EDS (OR = 2.273, 95% CI = 1.398–3.696) (Table 2).
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Table 2. Results of logistic regression analysis on factors affecting daytime sleepiness in adolescents.

Variable B S.E. Wald df Sig. Exp(B) 95% C.I. for Exp(B)
(Lower–Upper)

15 to 17 Years Age group (Ref: 12 to 14 years) −0.088 0.257 0.118 1 0.731 0.915 0.553–1.515
Female Gender (Ref: Male) 0.674 0.231 8.539 1 0.003 1.963 1.249–3.086

Urban Location (Ref: Rural) 0.978 0.275 12.656 1 0.000 2.658 1.551–4.555
Grade 8 (Ref: Grade 7) 0.223 0.321 0.484 1 0.487 1.250 0.667–2.344
Grade 9 (Ref: Grade 7) 0.674 0.351 3.684 1 0.055 1.962 0.986–3.903

Joint Family type (Ref: Nuclear) −0.045 0.274 0.027 1 0.871 0.956 0.559–1.635
Sleep alone in single room (Ref: No) 0.165 0.225 0.533 1 0.465 1.179 0.758–1.834

TV use (Ref: No) 0.217 0.285 0.583 1 0.445 1.243 0.711–2.171
PC/Laptop use (Ref: No) -0.485 0.383 1.604 1 0.205 0.616 0.290–1.304

Smartphone use (Ref: No) 0.244 0.266 0.840 1 0.360 1.276 0.757–2.151
Gaming gadget use (Ref: No) 0.273 0.544 0.252 1 0.615 1.314 0.452–3.817

TV available in personal room (Ref: No) 0.201 0.242 0.690 1 0.406 1.222 0.761–1.962
PC/Laptop available in personal room (Ref: No) 0.551 0.401 1.889 1 0.169 1.735 0.791–3.805

Smartphone available in personal room (Ref: No) −0.146 0.270 0.292 1 0.589 0.864 0.509–1.467
Gaming gadget available in personal room (Ref: No) 1.352 0.636 4.518 1 0.034 3.863 1.111–13.433

Good Self-rated health status (Ref: Very Good) 1.000 0.438 5.202 1 0.023 2.718 1.151–6.417
Neutral Self-rated health status (Ref: Very Good) 1.353 0.433 9.782 1 0.002 3.868 1.657–9.031

Bad Self-rated health status (Ref: Very Good) 1.723 0.622 7.675 1 0.006 5.600 1.655–18.943
Emotional problem (Ref: No) 1.050 0.278 14.259 1 0.000 2.857 1.657–4.927

Conduct disorder (Ref: No) 0.322 0.231 1.938 1 0.164 1.379 0.877–2.169
Hyperactivity (Ref: No) 0.752 0.316 5.678 1 0.017 2.121 1.143–3.937

Peer relationship problem (Ref: No) 0.029 0.284 0.010 1 0.919 1.029 0.590–1.795
Depression (Ref: No) 1.389 0.242 33.050 1 0.000 4.011 2.498–6.441

Anxiety (Ref: No) 0.990 0.321 9.527 1 0.002 2.693 1.436–5.050
Digital addiction risk (Ref: No) 0.821 0.248 10.954 1 0.001 2.273 1.398–3.696

Constant −6.006 0.588 104.331 1 0.000 0.002

Reference for age group: 12 to 14; gender: male; location: rural; class: 7th grade; family type: nuclear; physical
condition: very good; and NO for all other variables. B: regression coefficient; S.E.: standard error; Wald: Wald
chi-square test; df: degrees of freedom; Sig.: significance level (p-value); Exp(B): odds ratio; 95% C.I. for Exp(B):
95% confidence interval for the odds ratio.

3.6. Comparative Evaluation of Machine Learning Models
3.6.1. Feature Importance

With the use of SHapley Additive exPlanations (SHAP) values, the impact of each
feature on the distinct model predictions was measured and analyzed, offering insights
into the pertinent ways in which certain characteristics influence the outcome of interest,
i.e., EDS. The analysis of the SHAP values derived from the CatBoost model allows one
to determine the contribution of each feature to the predictions. SHAP values offer a
single, all-inclusive measure of feature significance by taking into consideration all possible
interactions and determining each feature’s influence on the prediction. The analysis
reveals that the top three characteristics of self-rated health status, gender, and depression
have a significant impact on the model’s predictions. According to the SHAP value plot,
these features have the greatest SHAP values, which suggests that they significantly affect
the output (Figure 1). On the other hand, characteristics like PC/laptop available, television
available, and hyperactivity were found to have the lowest SHAP values, suggesting that
they have little bearing on the model’s predictions. This detailed SHAP analysis highlights
how important it is to use a model-specific feature importance measure to accurately
capture the nuanced contributions of each feature.
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The total impact of the decision tree-based models on each feature was assessed
using Gini significance, which aided in determining the key components that affect the
model’s capacity to forecast results and suggest potential areas for modification. The
XGBoost model’s feature importance analysis uses Gini importance to assess each feature’s
impact on the model’s prediction performance. The Gini significance, also known as
Gain, quantifies the total contribution of each feature to the improvement in the model’s
performance. The study shows that two of the most significant components are depression
and location. These features have Gain values of 11.19 and 3.63, respectively, and have
a significant impact on the model (Figure 2). The gain values of 3.41, 2.21, and 1.34 for
the features of anxiety, emotional problems, and gaming gadget available indicate these
features’ high significance. Television available and birth order have somewhat lower
feature values (0.75 and 0.76, respectively), indicating that they have less of an effect on the
model. The feature relevance distribution shows how important each variable’s properties
are to the model’s capacity to forecast results.
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3.6.2. Machine Learning Model Performances

The machine learning model’s prediction performance indicators for EDS in adoles-
cents are shown in Figure 3. After assessments that included measures such as accuracy,
precision, F1 score, and log-loss metrics, each model was found to have a differing ability
to predict EDS in adolescents. Interestingly, all algorithms achieved respectable degrees of
accuracy. GBM exhibited the highest accuracy score of 90.15%, CatBoost demonstrated sim-
ilar accuracy of 89.48%, and XGBoost achieved the lowest accuracy of 88.65%. In terms of
precision, GBM also achieved the highest score of 88.81%, while KNN achieved the lowest
score 86.02%, but an F1 score of 88.86%. In comparison, XGBosst achieved the lowest value
of 86.65%. Additionally, in every situation, all algorithms displayed logarithmic loss rates
of less than 2%, demonstrating accurate and secure model predictions. Notably, CatBoost
had the lowest log loss of 0.25 and the highest forecast accuracy, with others displaying
lower scores: GBM log loss of 0.27, KNN log loss of 1.97, RF log loss of 0.41, SVM log loss of
0.29 and XGBoost log loss of 0.29. Throughout the analyses, the CatBoost model performed
better than the other models in every domain, indicating its higher prediction power.
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Figure 4 displays the performance trends of a number of machine learning models,
including XGBoost, SVM, DT, CatBoost, KNN, and RF, when evaluating a variety of
factors affecting daytime sleepiness in adolescents. The models were evaluated using
important metrics like Log Loss, F1 Score, Accuracy, and Precision. The results show
that CatBoost outperforms the other models overall, especially in terms of accuracy and
precision, with only slight modifications across multiple behaviors. The image provides a
detailed comparison of the models and highlights the benefits and drawbacks of each in
terms of predicting daytime sleepiness in adolescents.
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3.6.3. ROC-AUC Curves

The algorithms’ Receiver Operating Characteristic Curve (ROC-AUC), a critical assess-
ment parameter in machine learning for binary classification models, is shown in Figure 5.
The CatBoost and GBM models showed remarkable accuracy in differentiating between
positive and negative EDS classifications, with an AUC score of 0.86. RF and SVM exhibited
strong discriminatory power, as evidenced by their maximum AUC score of 0.85 for EDS.
Similarly, the KNN model yielded an AUC score of 0.70, which was the lowest value.
Overall, CatBoost and GBM showed the strongest discriminatory power of all models
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based on their AUC values, effectively and competently differentiating EDS-positive and
EDS-negative cases.
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4. Discussion

This study found that the prevalence of EDS among adolescents in our study is
approximately 11.6%, notably lower than some reported rates in other countries, reflecting
the previously detected significant regional variability in EDS. Furthermore, an analysis
of several potential risk factors enabled the construction of a predictive model that was
further confirmed and strengthened using machine learning approaches, yielding high
accuracy in the prediction of EDS in Bangladeshi adolescents.

Our findings are similar to those of Choi et al. [11] in South Korea, who reported
an EDS prevalence of 11.2%, and to those of Joo et al. [10], who found 15.9% among
South Korean high school students. In contrast, much higher EDS rates were reported
in Brazil, with Meyer et al. [8] reporting rates of 54.2% and Malheiros et al. [9] reporting
rates of 46.8%. These discrepancies may be influenced by demographic, cultural, and
socioeconomic factors, such as sleep habits, academic pressures, and lifestyle differences.
For example, Brazil’s high prevalence could be related to socioeconomic factors and lifestyle
habits, whereas South Korea’s lower rates might be linked to structured daily routines
and a cultural emphasis on academic achievement. These differences underscore the
importance of localized research to understand the factors contributing to EDS and to tailor
interventions effectively. The lower EDS rate in our sample compared to the international
data emphasizes the need for region-specific studies to explore local factors affecting sleep
patterns and their health implications.

The study found that female adolescents are nearly twice as likely to experience
daytime sleepiness compared to their male counterparts. This gender disparity aligns
with the findings from various international studies. Hormonal differences, such as those
related to menstrual cycles, have been shown to impact sleep patterns and quality, poten-
tially contributing to this gender discrepancy [36]. Furthermore, societal pressures and
psychosocial stressors, which disproportionately affect females, may also contribute to
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their increased likelihood of experiencing EDS. In addition, this study also revealed that
urban adolescents are significantly more likely to experience EDS compared to their rural
counterparts, a finding that has been supported by studies conducted in other parts of
the world. For instance, Joo et al. [10] noted that urban adolescents face higher levels of
academic stress and environmental stressors, while another study identified urbanization
as a factor contributing to poor sleep quality and increased sleep disturbances among
adolescents [13]. Urban environments often involve higher levels of noise, light pollution,
and more stringent and competitive academic demands, all of which can adversely affect
sleep quality and contribute to daytime somnolence.

In the context of digital technology use, excessive exposure to digital media has been
extensively associated with poorer sleep outcomes. Burnell et al. [16], Lund et al. [37], and
Perez-Chada et al. [38] found that high levels of non-academic screen time are associated
with disrupted sleep patterns and decreased sleep quality. Problematic digital technology
use adversely affects sleep quality, even when accounting for genetic and environmental
factors [17]. Similarly, Chung et al. [39] reported that smartphone addiction among Korean
adolescents correlates with increased daytime sleepiness, underscoring the impact of digital
distractions on sleep. The current study corroborated that the presence of a gaming device
in adolescents’ personal bedrooms is linked to a higher likelihood of EDS. Gaming devices
often lead to delayed bedtimes and increased mental stimulation, promoting arousal and
disrupting sleep onset and quality. Evidence shows that screen exposure before bedtime
interferes with circadian rhythms, contributing to insomnia [17]. A systematic review by
Brautsch et al. [18] highlighted that digital media use among adolescents and young adults
is associated with shorter sleep duration, poorer sleep quality, and increased daytime
tiredness. Our results, which indicate that the risk of digital addiction more than doubles
the likelihood of daytime sleepiness, reinforce the need for interventions that manage
screen time and promote healthier sleep practices to counteract the negative effects of
digital media on sleep.

The association between poor physical condition and a higher likelihood of EDS in
this study highlights the critical role that overall health plays in sleep patterns among
adolescents. This finding is consistent with research by Taheri et al. [3], who linked poor
physical health with increased fatigue, contributing to sleep disturbances. Adolescents
in poor physical condition often experience chronic fatigue and related health issues,
which exacerbate daytime sleepiness, emphasizing the need for a comprehensive approach
to managing the constellation of sleep problems. Moreover, our findings indicate that
adolescents with emotional problems are significantly more likely to suffer from EDS. This
aligns with the work of Liu et al. [5] and Luo et al. [6], who identified strong associations
between emotional disturbances and sleep issues. Emotional problems, including stress
and mood disturbances, can increase physiological arousal, impair sleep onset, and disrupt
sleep maintenance. EDS is also associated with a higher risk of mood disturbances, such as
anxiety and depression, further complicating adolescent emotional development [4]. The
bidirectional relationships between sleep disturbances and mental health issues underscore
the necessity of addressing emotional well-being as part of a strategy to manage daytime
sleepiness effectively. Interventions focused on improving emotional health have been
shown to enhance sleep quality, highlighting the importance of integrated approaches to
managing both emotional and sleep health.

In the study, SHapley Additive exPlanations (SHAP) values were used to assess feature
importance within the CatBoost model, providing a comprehensive understanding of how
different variables influenced the predictions of EDS. The analysis revealed that self-rated
health status, gender, and depression were the top contributors to the model predictions,
highlighting their significant impact on EDS among adolescents. These features had the
highest SHAP values, indicating their strong influence on the model’s output. Conversely,
features such as the availability of a PC/laptop, television, and hyperactivity had the lowest
SHAP values, suggesting minimal impact on the model predictions. In comparison, the Gini
importance analysis from the XGBoost model identified depression and location as the most
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significant predictors, with Gain values of 11.19 and 3.63, respectively. Other important
features included anxiety, emotional problems, and the availability of gaming gadgets, with
each contributing significantly to the model’s predictive performance. Features such as
television availability and birth order had lower Gini importance values, indicating their
lesser impact. The distribution of feature importance across these models highlights the
varying predictive power of different features depending on the algorithm being used,
emphasizing the need for the careful selection and interpretation of features in machine
learning models. This comprehensive approach offers deeper insights, helping to improve
targeted interventions for adolescents at risk.

When evaluating the performance of different machine learning models, the study
found that all algorithms demonstrated adequate and satisfactory levels of accuracy in
predicting EDS among adolescents. Importantly, all models maintained low log loss values,
with CatBoost achieving the lowest log loss, indicating its superior prediction accuracy and
reliability. The performance of the CatBoost model consistently outshined other models
across multiple metrics, suggesting its robustness in predicting outcomes related to EDS.
These results highlight the importance of selecting appropriate machine learning models
based on the specific characteristics of the dataset and the prediction task at hand. The
superior performance of CatBoost, particularly in terms of log loss and accuracy, indicates
its potential as a powerful tool for identifying adolescents at risk for EDS, and facilitating
timely and targeted interventions.

When compared with the findings of Al-Mamun et al. [40], who explored sleep du-
ration and insomnia among prospective university students using machine learning tech-
niques, several key similarities and differences emerge. Both studies highlighted the
effectiveness of CatBoost in predicting sleep-related outcomes, with Al-Mamun et al. [40]
reporting accuracy rates of 61.27% and 73.46% for predicting sleep duration and insomnia,
respectively. In contrast, the current study achieved higher accuracy rates, particularly with
GBM and CatBoost, suggesting that these models may perform differently depending on the
population and specific sleep-related outcomes being studied. Moreover, while Al-Mamun
et al. [40] utilized GIS techniques to explore regional variations in sleep disturbances, the
present study focused more on predictive accuracy and feature importance in machine
learning models. Both studies stress the unique value of machine learning in enhancing
predictive accuracy and identifying significant predictors that traditional statistical meth-
ods may overlook. However, the current study’s use of SHAP values and Gini importance
provides a more detailed and interpretable understanding of the feature contributions,
which can be crucial for developing targeted detection and intervention measures.

Despite the strengths of this study, several limitations should be noted. First, the
cross-sectional design of the research limits the ability to infer causality, as it provides only
a snapshot of the associations between variables at a single point in time. Additionally,
the reliance on self-reported data introduces the potential for biases, such as social de-
sirability or recall bias, which may affect the accuracy of the reported information. The
generalizability of the findings may also be constrained by the specific demographic and
geographic context of Bangladesh (e.g., selecting a single district), and caution is needed
when applying these results to other populations or geographical settings. The categoriza-
tion of digital device usage into broad categories may oversimplify its impact, while more
detailed measures could offer a more nuanced understanding. Furthermore, while several
sociodemographic and behavioral variables were controlled for, there may be additional
unmeasured confounders that could influence the outcomes. The study sample, although
diverse, may not fully capture the variability within the adolescent population, and future
research should consider a broader range of factors. Lastly, the machine learning models
used in this study, while advanced, are limited by the quality of the input data and the
chosen features, which may affect the interpretation of results. Addressing these limitations
in future studies will be crucial for enhancing the understanding and generalizability of
findings related to EDS among adolescents.
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5. Conclusions

In conclusion, this study provides valuable insights into the prevalence and risk
factors associated with daytime sleepiness among adolescents in Bangladesh, emphasizing
the significance of digital device use, sleep quality, and mental health variables. The
application of machine learning techniques allowed for a robust analysis of the predictive
factors, revealing important associations that contribute to the understanding of EDS in this
vulnerable population. The findings emphasize the need for targeted interventions that
address both digital usage and mental health to mitigate the impact of daytime sleepiness.
Despite the study’s limitations, including its cross-sectional design and reliance on self-
reported data, the results offer a foundation for future research and practical applications.
Further studies are needed to explore these relationships longitudinally and in diverse
settings to enhance generalizability and inform comprehensive strategies for managing
daytime sleepiness among adolescents. Overall, this study contributes to the growing
body of knowledge on adolescent health and provides a basis for future work aimed at
improving well-being and functioning in this critical developmental period.
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Informed Consent Statement: Written informed consent was obtained from all subjects involved in
the study.
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