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Abstract: Background/Objectives: Age-related decline in balance and postural control is common in
healthy elders and is escalated in aging adults with stroke. Transcranial direct current stimulation
(tDCS) has emerged as one of the promising brain stimulations adjoining therapeutic exercise to
enhance the recovery of balance and motor functions in persons with and without neurological
disorders. This review aims to summarize and compare the available evidence of the tDCS on
improving balance in the older adults without neurological disorders and the older adults with stroke.
Methods: The Ovid (Medline) database was searched from its inception through to 06/15/2024 for
randomized controlled trials investigating tDCS for improving balance in older adults with and
without stroke. Results: Overall, 20 appropriate studies (including 271 stroke subjects and 259 healthy
older adults) were found. The data indicate mixed results of tDCS for improving balance in older
adults with and without stroke. Conclusions: Based on current research evidence, we have not found
a specific tDCS protocol that is more effective than other tDCS protocols for improving balance and
postural control in healthy older adults and older adults with stroke. Further research should explore
the ideal tDCS approach, possibly in conjunction with standard interventions, to optimize postural
control and balance in healthy older adults and older adults with stroke.

Keywords: tDCS; older adults; rehabilitation; falls; postural control

1. Introduction

Postural control, including static and dynamic balance, subserves all voluntary move-
ments and prevents falls and injuries in the daily life [1,2]. According to U.S. Census, older
adults aged 65 years and over are one of the fastest-growing populations in the country.
Approximately 62 million adults aged 65 years and older live in the U.S., making up 18%
of the population [3,4]. Furthermore, age is the significant risk factor for stroke [5]. Nearly
75% of all strokes occur in persons aged ≥65 years, and the prevalence of stroke doubles in
adults over 75 years [6]. Balance or postural control deficits are highly prevalent in older
adults and may be escalated in the aging adults with stroke, leading to increased mortality
rate and disability, and decreased quality of life [7]. In 2018, more than 25% of older adults
aged 65 years and older living in the U.S. reported at least one fall over past one year, and
the risk of falling significantly increases in the elderly aged 85 years and older [8,9]. A
recent statistic shows that the death rates due to unintentional falls are largely increased in
older Americans during 1999–2020 [10]. Specifically, the older adults aged 85 years and
older have the highest death rates (was 31.5% in 1999 and increased to 67.9% in 2020); the
lowest death rates occurred among older adults aged 65–74 years (9% in 1999 and 18.2% in
2020, respectively) [10].
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Transcranial direct current stimulation (tDCS) is a noninvasive, low-intensity brain
stimulation technique that has been used to enhance balance and motor function in healthy
adults and persons with neurological disorders [11–20]. The premise is that tDCS can
modulate neural excitability and therefore enhance motor skill performance and learn-
ing [21–25]. The tDCS-induced modulation is polarity-dependent: the application of anodal
tDCS (a-tDCS) increases neuronal excitation, whereas the application of cathodal tDCS
(c-tCDS) decreases neuronal excitation over the region of interest [26–30]. In addition to
polarity-dependent neural modulations, a recent system review suggests that the study
population was a key factor in determining the therapeutic outcomes of tDCS on balance
and postural control [31]. In addition, the effect of tDCS may show outcome-dependent
effects. For example, tDCS application may enhance walking recovery but may not trans-
fer to the improvements of balance or postural control [32,33]. Thus, this study aims to
investigate and compare the available evidence of the tDCS on improving balance in the
older adults without neurological disorders and the older adults with stroke. The data from
healthy older adults without neurological disorders shed light on the impacts of tDCS on
the normal, aging postural control system, whereas data from stroke populations provide
additional insight on the aging postural system following stroke.

2. Materials and Methods
2.1. Search Strategy

We conducted a systematic review using Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA). The online database, OVID/Medline, was used for
literature search. The search focused on studies that used tDCS to improve balance in older
adults and older adults with stroke from inception to 15 June 2024. The following search
terms were used: (1) “tDCS” or “a-tDCS” or “s-tDCS” and (2) “balance” or “postural con-
trol”, or “fall”, “frailty”, and (3) “older adults”, or “stroke”. Three independent reviewers
(ST, SC, and SD) worked on two phases of the screening process, with the first phase being
“title and abstract” screening, followed by the second phase, “full-text” screening (Figure 1).
Any disagreements were resolved through discussion to reach consensus.

2.2. Inclusion and Exclusion Criteria

We used the population–intervention–comparison and outcome (PICO) approach to
refine the search and define the scope of this review. The study populations consist of
older adults without neurological disorders and older adults with stroke. The interventions
involved tDCS alone or tDCS paired with exercise or skill training. The outcomes included
static or dynamic balance and postural control or stability measures. Additional inclusion
criteria were as follows: (1) randomized controlled trials, (2) crossover studies with the
random assignments of tDCS protocols, (3) English publications, and (4) full-text articles
available online in PDF or web (HTML) format. The exclusion criteria were as follows:
(1) not human studies; (2) animal studies; (2) review articles; (3) case studies; (4) protocol
studies; (5) books, theses, conference papers, commentaries, and letters; (6) studies that
are not randomized controlled studies; (7) studies that do not have sham stimulation or
control groups; and (8) study participants who are not healthy older adults or not older
adults with stroke.

2.3. Data Extraction

Following the full-text screening, two researchers cross-checked all studies included
in the review and extracted relevant data. Excel templates were used to prepare the stan-
dardized tables for data extraction, consisting of (1) the study author(s) and publication’s
year, (2) study designs, (3) sample size and groups, (4) protocol setup and the parameters
of tDCS (locations, types, intensities and durations), (5) total number of tDCS sessions,
(6) additional exercise intervention adjoining tDCS, (7) timing of tDCS application relative
to the exercise intervention, (8) outcome measures, and (9) primary findings related to the ef-
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fects of tDCS interventions on balance outcomes. The authors resolved any inconsistencies
in data extraction before data analysis.
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3. Results

An online search from the database in MEDLINE identified 444 studies. Following
the removal of duplicates, there was a total of 443 studies left. Title and abstract screening
excluded 333 studies against the eligibility criteria, resulting in a total of 110 studies
remaining for the next step of full-text screening. During full-text screening, another
90 studies were excluded, as outlined in Figure 1.

Twenty studies (12 focusing on older adults with stroke and 8 on older adults without
neurological disorders) met the eligibility criteria and were included in this review [11,12,
14,15,18,20,32–45]. The included studies were categorized into two groups: older adults
with stroke and older adults without neurological disorders. The salient characteristics
of these studies are outlined in Tables 1 and 2. The included studies constituted a total
of 530 older adults, including 271 older adults with stroke and 259 older adults without
neurological disorders.
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Table 1. Characteristics of included studies for older adults with stroke.

Authors Study
Design Blinding Sample tDCS Electrode tDCS

Parameters
Number of

Sessions
Additional

Activity

Time of
tDCS

Relative to
Activity

Balance
Outcome
Measure

Time of
Assessment Main Results

Active/
Anode

Reference/
Cathode

Chang et al.,
2015 [11]

Parallel
group double-blind

Subacute
stroke (n = 24):
anodal (n = 12)
sham (n = 12)

ipsilesional
M1-TA

contra-lateral
supraorbital

area

2 mA,
10 min 10 sessions Conventional

PT during BBS pre- and post-
intervention

No significant differences
in BBS between groups

after a 2-week intervention.

Ehsani et al.,
2022 [15]

Parallel
group Double-blind

chronic stroke
(n = 32):

anodal (n = 12)
sham (n = 10)
control (n = 10)

ipsilesional M1
contra-lateral
supraorbital

area

1 mA,
20 min 10 sessions Conventional

PT during BBS

Pre-, post- and
one month

after
intervention

BBS was significantly
improved in the anodal

group immediately and 1
month after intervention.

No significant
improvements in BBS were
found in other two groups.

Fruhauf et al.,
2017 [34] Crossover double-blind

chronic stroke
(n= 30):

anodal + FES
(n = 30)

sham + FES
(n = 30)

anodal + sham
FES (n = 30)
sham + sham
FES (n = 30)

ipsilesional M1
contra-lateral
supraorbital

area

2 mA,
20 min

One for each
STIM

condition

Active or Sham
FES on TA for

20 min
during Postural

sway

before and
immediate
after each

STIM condition

The combination of anodal
tDCS and active FES had

no significant
improvements of static
balance in persons with

chronic stroke.

Kim et al., 2024
[18]

Parallel
group Double-blind

chronic stroke
(n = 24):

anodal (n = 12)
sham (n = 12)

ipsilesional M1 ipsilateral to
anodal SITM

2 mA,
30 min 10 sessions

Robotic
assisted gait

training
(RAGT)

during TUG, BBS

Pre- and post-
intervention;

pre- and
one-month
follow-up

Both groups showed
significant improvements
in BBS and TUG after the

intervention. not described
on extraction. At

one-month follow-up,
a-tDCS group showed

significant improvements
in both BBS and TUG

whereas s-tDCS showed
significant changes only in

TUG.

Liang et al.,
2020 [20] Crossover double-blind

chronic stroke
(n= 10):

anodal (n = 10)
sham (n = 10)

ipsilesional M1
contra-lateral
supraorbital

area

2 mA,
20 min

One for each
STIM

Postural
training
(limits of
stability)

during BBS Pre- and post-
intervention

No significant changes in
BBS were found between

groups and at
post-intervention

compared to
pre-intervention.

Postural sway was reduced
at similar levels between

two groups after
intervention
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Table 1. Cont.

Authors Study
Design Blinding Sample tDCS Electrode tDCS

Parameters
Number of

Sessions
Additional

Activity

Time of
tDCS

Relative to
Activity

Balance
Outcome
Measure

Time of
Assessment Main Results

Active/
Anode

Reference/
Cathode

Manji et al.,
2018 [35] Crossover double-blind

chronic stroke
(n = 30):

anodal (n = 30)
sham (n = 30)

ipsilesional
SMA inion 1 mA,

20 min
One for each

STIM BWSTT during TUG Pre- and post-
intervention

Significant improvements
of TUG scores were found
in a-tDCS group compared

to the s-tDCS group.

Saeys et al.,
2015 [32] Crossover double-blind

subacute stroke
(n = 31):

anodal (n = 31)
sham (n = 31)

ipsilesional M1 contra-lesional
M1

1.5 mA,
20 min 16 sessions PT and OT before

Tinetti
Balance

score

Pre- and post-
intervention, 4-

and 8- week
follow-up

Tinetti balance scores were
significantly improved in

both groups after
intervention. There were
no group differences in
Tinetti balance scores.

Seo et al., 2017
[33]

Parallel
group double-blind

chronic stroke
(n = 21):

anodal (n = 11)
sham (n = 10)

ipsilesional M1
contra-lateral
supraorbital

area

2 mA,
20 min 10 sessions

robotic-
assisted gait

training
(RAGT)

before RAGT BBS

Pre- and post-
intervention,

4-week
follow-up

No group differences in the
improvements of BBS.

Sohn et al.,
2013 [36] Crossover single-blind

chronic stroke
(n = 11):

anodal (n = 11)
sham (n = 11)

ipsilesional M1
contra-lateral
supraorbital

area

2 mA,
10 min

One for each
STIM No N/A Static

balance
Pre- and post-
intervention

The a-tDCS group showed
significant improvements
of postural stability after
intervention compared to

s-tDCS group.

Toktas et al.,
2024 [37]

Parallel
group

double-
blinded

chronic stroke
(n = 28):

anodal (n = 14)
sham (n = 14)

ipsilesional M1
contra-lateral
supraorbital

area

2 mA,
20 min 20 sessions task- oriented

physiotherapy concurrent BBS, TUG Pre- and post-
intervention

There were significant
improvements of TUG and

BBS after intervention in
both groups. There were
no group differences in
balance improvements.

Youssef et al.,
2023 [38]

Parallel
group double-blind

subacute stroke
(n = 35):
anodal-bi-

hemispheric
(n = 11)

anodal-uni-
hemispheric

(n = 13)
sham (n = 11)

ipsilesional M1

contra-lesional
M1 or

contra-lateral
supraorbital

area

2 mA,
20 min 12 sessions physiotherapy during BBS Pre- and post-

intervention

Both uni-hemispheric and
bi-hemispheric anodal

stimulation significantly
improved balance more
than sham stimulation.
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Table 1. Cont.

Authors Study
Design Blinding Sample tDCS Electrode tDCS

Parameters
Number of

Sessions
Additional

Activity

Time of
tDCS

Relative to
Activity

Balance
Outcome
Measure

Time of
Assessment Main Results

Active/
Anode

Reference/
Cathode

Zandvliet et al.,
2018 [39] Crossover single-blind

chronic stroke
(n = 15):

contra-lesional
cerebellar,

ipsi-lesional
cerebellar, or

sham
healthy adults

(n = 10):
contra-lesional

cerebellar or
ipsilesional
cerebellar

ispilesional or
contra-lesional

cerebellum

ipsilateral
buccinators

muscles

1.5 mA,
20 min

one for each
STIM

postural
tracking task during COP Pre- and post-

intervention

There was significant
decrease in CoP only in
tandem stance for the

stroke group after
contra-lesional stimulation.
There were no significant

differences in CoP between
sham and cerebellar

stimulations for healthy
adults.

Note: Abbreviations: tDCS: transcranial direction current stimulation; a-tDCS: anodal transcranial direct current stimulation; M1: primary motor cortex; SMA: supplementary motor
area; STIM: stimulation; PT: physical therapy; OT: occupational therapy; BWSTT: body-weight support treadmill training; BBS: Berg Balance Score; TUG: Time up and Go test; COP:
center of pressure; N/A: not applicable.
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Table 2. Characteristics of included studies for older adults without neurological disorders.

Authors Study
Design Blinding Sample tDCS Electrode tDCS

Dose
Number of

Sessions
Additional

Activity

Time of tDCS
Relative to

Activity

Outcome
Measure

Baseline
Balance Score

Time of
Assessment Main Results

Active/
Anode

Reference/
Cathode

Correa
et al., 2023

[12]

Parallel
groups triple-blind

older adults (n = 28)
(1) anodal (n = 14)
(2) sham (n = 14)

Left DLPC
contra-lateral
supraorbital

area

2 mA,
20 min 24

Multi-
component

training
(MT)

during MT Mini BESTest Anodal: 26 ± 5
Sham: 24 ± 5

pre- and post-
intervention,

30 day
follow-up

There were no
significant differences

in MiniBEST scores
between groups after
intervention and at
30-day follow-up

Craig
et al., 2017

[14]
Crossover double-

blind

older adults (n = 18):

(1) M1 a-tDCS (n =
18)

(2) cerebellar a-tDCS
(n = 18)

(3) sham M1 (n = 18)

M1 or median
line 2 cm

below
the inion

inion or right
buccinator

muscles

2 mA,
20 min

One for
each STIM

Postural
control task

(PCT)
during PCT Postural sway none pre-. Post-, 30

min post

There were no
significant differences

in postural sway
between stimulation

conditions.

Ehsani
et al., 2017

[40]

Parallel
groups

double-
blind

older adults (n = 29):
(1) cerebellar a-tDCS

(n = 14)
(2) sham (n = 15)

1 cm below
inion of

occipital bone
right arm

1.5
mA,

20 min
1 none N/A BBS

Anodal:
42.45 ± 1.43

Sham:
42.91 ± 1.87

pre- and post-
intervention,

48 h
follow-up

Improved postural
stability and BBS were
found after cerebellar
a-tDCS intervention.

Lo
et al.,

2023 [41]

Parallel
groups

double-
blind

older adults (n = 6)
(1) DLPC a-tDCS

(n = 2)
(2) sham (n = 4)

Left DLPC not specified <4 mA,
20 min up to 10

Conventional

PT
Before PT BBS, TUG

BBS scores:
Anodal:

44 ± 1.41
Sham:

41.25 ± 5.97

pre- and post-
intervention

There were no
significant differences

in balance
improvements between

groups.

Parsaee
et al., 2023

[42]

Parallel
groups

single-
blind

older adults (n = 24)
(1) cerebellar a-tDCS

(n = 12)
(2) sham (n = 12)

Inion left eye socket 2 mA,
15 min 3 none N/A TUG, static

balance

TUG scores:
Anodal:

11.29 ± 1.07
sham:

11.28 ± 0.98

pre- and post-
intervention

The cerebellar a-tDCS
group showed

significant
improvements in static
balance and TUG after
intervention compared

to sham group

Schneider
et al., 2021

[43]
Crossover double-

blind

older adults (n = 25):
(1) DLPC a-tDCS +
walking (n = 25)

(2) DLPC a-tDCS +
seated (n = 25)

(3) sham + walking
(n = 25)

Left DLPFC +
M1

Left PF and
left parietal

lobe

3 mA,
20 min

1 for each
STIM N/A N/A Postural sway not reported pre- and post-

intervention

There were no
significant

improvements of
postural sway after

a-tDCS stimulations.
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Table 2. Cont.

Authors Study
Design Blinding Sample tDCS Electrode tDCS

Dose
Number of

Sessions
Additional

Activity

Time of tDCS
Relative to

Activity

Outcome
Measure

Baseline
Balance Score

Time of
Assessment Main Results

Active/
Anode

Reference/
Cathode

Yosephi
et al., 2018

[44]

Parallel
groups

double-
blind

Older adults (n = 62):

(1) cerebellar
a-tDCS+ postural
training (n = 12)

(2) left M1 a-tDCS +
postural training

(n = 13)
(3) sham tDCS +
postural training

(n = 12)
(4) postural training

(n = 12)
(5) cerebellar a-tDCS

(n = 13)

(1) cerebellum
(1 cm below

inion of
occipital
bone)

(2) left M1
(3) cerebellum

or left M1
(randomized)

(1) right
buccinator
muscles
(2) right

contralateral
supraorbital

area
(3) right

buccinator
muscles or

right
contralateral
supraorbital

area

2 mA,
20 min 6 Postural

training

during
postural
training

BBS, static
balance

BBS:
(1) 39.55 ± 1.43;
(2) 39.58 ± 1.38;
(3) 39.50 ± 0.87;
(4) 38.18 ± 1.01;
(5) 38.84 ± 0.91

pre- and post-
intervention

Postural training with
M1 or cerebellar

a-tDCS, especially
cerebellar atDCS,
can significantly
improve postural

control or balance in
older adults with high

fall risks after
two-week intervention.

Cerebellar a-tDCS
alone is not a sufficient

intervention.

Zhou
et al., 2021

[45]
Crossover double-

blind

older adults (n = 57):
(1) DLPC + SM1
a-tDCS (n = 12)

(2) DLPC a-tDCS
(n = 14)

(3) SM1 a-tDCS
(n = 16)

(4) sham tDCS
(n = 15)

Left DLPFC,
SM1

Left PF,
Temporal,

and Occipital
lobes

<4 mA,
20 min

1 session
for each

STIM
none N/A TUG,

postural sway TUG: 12 ± 3 pre- and post-
stimulation

The DLPFC + SM1 and
DLPFC a-tDCS groups

had lower dual-task
costs to postural sway
compared to the SM1

or sham groups.

Note: Abbreviations: tDCS: transcranial direction current stimulation; a-tDCS: anodal transcranial direct current stimulation; DLPFC: dorsal lateral prefrontal cortex; M1: primary motor
cortex; SM1: primary sensorimotor area; STIM: stimulation; PT: physical therapy; OT: occupational therapy; BWSTT: body-weight support treadmill training; BBS: Berg Balance Score;
TUG: Time up and Go test; N/A: not applicable.
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Interestingly, our review revealed a notable distinction in tDCS applications for older
individuals with and without stroke. For older adults with stroke, a-tDCS was predomi-
nantly focused on the ipsilesional primary motor cortex (M1), while in healthy older adults,
the stimulation was primarily directed towards the left dorsal lateral prefrontal cortex
(L-DLPFC) or cerebellum (Figure 2). A brief comparison of the stroke and healthy adult
studies is presented below.
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Figure 2. Electrode placements for different transcranial direct current stimulation (tDCS) applications.
(A) Uni-hemispheric primary motor cortex (M1) tDCS. (B) Bi-hemispheric M1 tDCS. (C) Cerebellar
tDCS. (D) Left dorsal lateral prefrontal (L-DLPF) tDCS. Red square is the electrode for anodal (i.e.,
active) stimulation. Blue square is the electrode for cathodal or reference electrode. During uni-
hemispheric M1 tDCS stimulation, the anodal electrode was placed on the leg area of the ipsilesional
M1 while the reference electrode was placed on contralateral supraorbital area (A). During bi-
hemispheric M1 tDCS stimulation, the anodal electrode was placed on the leg area of the ipsilesional
M1 while the cathodal electrode was placed on contralesional M1 (B). During cerebellar stimulation,
the anodal electrode was placed on the median line 1–2 cm below the inion of the occipital bone and
the reference electrode was placed on the right buccinator muscle (C). During L-DLPF stimulation,
the anodal electrode was placed on the L-DLPF area and the reference electrode was placed on
contralateral supraorbital area (D).

3.1. Stroke tDCS Studies (12 Studies)

Ten out of twelve stroke studies applied a-tDCS over the ipsilesional M1 (Table 1).
The remaining two studies used tDCS on the ipsilesional supplementary motor area (SMA,
n = 1) or the ipsilesional or contra-lesional cerebellum (n = 1). Half of the 12 stroke studies
utilized a crossover within-subject design which had a single a-tDCS session [20,32,34–36,46].
The other half were interventional studies, involving concurrent application of a-tDCS and
therapeutic exercise or skill training over multiple sessions [11,15,18,33,37,38]. There was
a trend toward greater improvements in balance and postural control when a-tDCS was
combined with multiple sessions of task-specific training (ex. gait or balance training) for
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persons with stroke [15,18,38]. Although half of the interventional studies found a-tDCS to be
more effective than sham tDCS in improving balance or postural control, crossover studies
indicated limited benefits from a single a-tDCS session.

In addition, two studies examined the effects of bi-hemispheric tDCS applications over
bilateral M1 areas on postural and balance recovery in persons with stroke [32,38]. This
stimulation involved anodal stimulation over the affected M1 and cathodal stimulation
over the unaffected M1. Youssef et al. (2023) [38] compared uni-hemispheric versus bi-
hemispheric tDCS protocols and found no significant differences between both approaches
in enhancing balance in persons with stroke.

3.2. Healthy Older Adult tDCS Studies (8 Studies)

Unlike stroke studies, tDCS research on healthy older adults primarily focused on
the left dorsolateral prefrontal cortex (L-DLPFC, four studies) and bilateral cerebellum
(four studies, Table 2). Three studies were crossover studies which had a single a-tDCS
session [14,43,45]. The other five studies were interventional studies which combined
multiple training sessions and tDCS [12,40–42,44]. Aligned with stroke research, a single-
session tDCS had minimal impact on postural or balance improvements; repeated tDCS
sessions, especially when paired with task-specific training, may be more beneficial for
improving balance in older adults.

In addition, for healthy older adults, bilateral cerebellar a-tDCS [40,42,44] was better
than L-DLPFC stimulation in improving postural control and balance [12,41,43,45]. There
was no significant difference between cerebellar and left M1 stimulation [14,44].

4. Discussion

This review aimed to assess the effectiveness of transcranial direct current stimulation
(tDCS) in enhancing postural control and balance among older adults. Our findings
revealed varying tDCS protocols for healthy older adults and those with stroke. While L-
DLPFC and cerebellar a-tDCS were common targets for healthy individuals, ipsilesional M1
was primarily stimulated in stroke patients. However, current research does not support
the efficacy of any specific tDCS protocol for improving balance and postural control in
either group.

4.1. Effects of tDCS on Postural Control and Balance in Older Adults with Stroke

Growing research indicate that applying a-tDCS to the affected side of the brain in
persons with stroke patients can enhance motor learning and functional recovery, including
balance and walking [31,47,48]. Two common electrode placements, or montages, used
to increase neuronal activity in the damaged M1 were uni-hemispheric M1 tDCS and bi-
hemispheric M1 tDCS. For uni-hemispheric M1 tDCS, the anodal (i.e., active) electrode was
placed over the lesioned M1 to enhance cortical excitation, while the reference electrode
was positioned over the contralesioned supraorbital area. For bi-hemispheric M1 tDCS ap-
plication, the anodal/active electrode was placed over the injured M1 to increase neuronal
excitation while the cathodal electrode was placed over the intact M1 contralateral to the
lesioned M1 to reduce transcallosal inhibition. Although research on stroke survivors has
yielded inconsistent findings regarding the effectiveness of unilateral versus bilateral M1
tDCS, a recent meta-analysis suggests bilateral tDCS may be more effective than unilateral
stimulation [48]. However, this conclusion is primarily supported by a single study with
larger effect size for bilateral M1 tDCS [49].

This systematic review found that the uni-hemispheric M1 a-tDCS is the most common
intervention for improving balance and postural control in older adults with stroke. Yet,
only one-third of studies (33%) demonstrated a significant advantage of the uni-hemispheric
M1 a-tDCS over sham tDCS [18,36,38]. Compared to previous research, uni-hemispheric
M1 a-tDCS appears to be less effective in improving balance and postural control in this
population. Our review of uni-hemispheric versus bi-hemispheric M1 tDCS for improving
postural control and balance in older adults with stroke yielded mixed results. While
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Youssef et al. (2023) found both approaches to be effective for improving balance compared
to sham tDCS [38], Saeys et al. (2015) did not observed significant differences in balance
scores between bi-hemispheric M1-tDCS and sham groups [32]. Given these conflicting
findings, more research is needed to determine the optimal approach for this population.

Our review found that only two studies have applied a-tDCS on non- M1 regions
in older adults with stroke: one was over the cerebellum [39], and the other one was
over ipsilateral supplementary motor area (SMA) [35]. These studies suggest that a-tDCS
over the cerebellum and SMA could improve static and dynamic balance for older adults
with chronic stroke [35,39]. The evidence suggests that cerebellar and SMA a-tDCS could
enhance motor planning and learning, leading to greater improvements in postural control
and balance for persons with stroke [35,39,50]. A recent systematic review found both
cerebellar a-tDCS and M1 a-tDCS can enhance motor recovery in persons with stroke [50].
More research is needed to determine if cerebellar tDCS can help older stroke patients
improve their balance and posture.

4.2. Effects of tDCS on Postural Control and Balance in Healthy Older Adults

Our review identified L-DLPFC and cerebellar tDCS as the primary targets for a-tDCS
application for improving postural control and balance in healthy older adults. Among
four studies targeting L-DLPFC [41,43,45,51], only one study demonstrated a reduction in
dual-task costs for postural sway compared to the sham applications [45]. Three out of four
studies investigating cerebellar a-tDCS in older adults reported significant improvements
in postural control or balance, particularly among those at high risk of falls [40,42,44]. The
findings suggest that cerebellar a-tDCS could be a promising intervention for enhancing
postural control and balance in healthy older adults.

Additionally, this review revealed that a single tDCS session had minimal benefits on
postural or balance improvements. Multiple tDCS sessions, particularly when combined
with task-specific training, could be more effective in improving postural control and
balance in both healthy older adults and older adults with stroke.

4.3. Limitations and Recommendations

To our knowledge, this is the first review focusing on the effects of tDCS on postural
control and balance in both healthy older adults and older adults with stroke. Our review
found insufficient evidence to conclusively determine the effectiveness of tDCS in improv-
ing postural control and balance in older adults. The heterogeneity in study methods and
designs is a limitation that could potentially bias the results. The therapeutic interventions
used in conjunction with tDCS varied widely, confounding the balance outcomes. Another
limitation is that many tDCS studies had small sample sizes, limiting their statistical powers
and potentially leading to biased conclusions. Future clinical trial studies should include
larger samples of older adults. Additionally, follow-up assessments should be conducted
to evaluate the long-term effects of tDCS on postural and balance in older adults.

5. Conclusions

This scoping review offers a preliminary examination of tDCS’s potential to enhance
balance and postural control in older adults. Tailored tDCS protocols are likely required
for older adults with and without neurological conditions. Current evidence indicates
that different tDCS protocols are needed for older adults with and without neurological
disorders. To determine the effectiveness of various tDCS protocols for balance and postural
control in older adults, large-scale clinical trials are essential. These studies should compare
outcomes between healthy individuals and those with neurological conditions like stroke
or Parkinson’s disease. Enhancing balance in older adults, regardless of neurological status,
is vital for improving their quality of life, functional independence, and reducing risks
of falling and mortality rate. Further research should explore the ideal tDCS approach,
possibly in conjunction with standard interventions, to optimize postural control and
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balance in healthy older adults and older adults with stroke. This will contribute to more
effective rehabilitation strategies and guide clinical practice.
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