
Table S1 Comparative Analysis of System Attributes 

Note: (-) indicates that this information is unknown. 

 

Time/ 

References 

 

Number 

of 

optical 

channel

s 

Wavelengt

h (nm) 

SDS 

(mm) 

Number 

of EEG 

channel

s 

fNIRS/EE

G sampling 

rate (Hz) 

Summary 

2016 [78] 16 - 25 14 -/128 

The study employs the EEG-

fNIRS framework to uncover a 

robust correlation between 

spontaneous facial emotional 

expression and human brain 

activity. 

2016 [83] 23 695, 830 30 8 10/256 

The study employs the joint 

independent component analysis 

method within the EEG-fNIRS 

system to objectively assess 

mental stress. 

2017 [19] 52 
780, 805, 

830 
30 64 28/1000 

The study introduces a bimodal 

brain-computer interface system 

utilizing multiple channels of 

EEG-fNIRS to achieve a 

relatively high level of accuracy 

in distinguishing motion picture 

tasks. 

2017 [82] 19 760, 850 30 19 8.95/250 

The study utilizes EEG-fNIRS to 

quantify the ability of human 

mental load. 

2017 [75] 16 730, 850 25 28 2/500 

The study employs a fusion of 

EEG-fNIRS in the decision-

making stage to classify three 

levels of mental workload induced 

by an n-back working memory 

task. 

2017 [57] 4 690, 830 

15, 

20, 

25, 

30 

9 -/512 

The study delves into the 

assessment of brain activity 

during infantile spasms utilizing 

the EEG-fNIRS system. 

 

2018 [69] 

 

1 670, 850 - 2 20-80/2000 

The study presents the 

development of a simultaneous 

EEG-fNIRS Multimodal System 

on Chip (SoC) for accurate 

monitoring of anesthesia depth. 

2019 [96] 12 - - 8 7.81/256 

The study introduces a novel 

hybrid brain-computer interface 

paradigm that integrates EEG-

fNIRS fusion to enhance binary 

classification accuracy in 

quantifying the neural correlates 

of mental arithmetic-induced 

workload. The study targets two 

distinct age groups: older and 

younger individuals, examining 

the multiscale aspects of cognitive 

processing. 

2019 [49] 32 760, 845 30 19 10/512 
The study employs a bimodal 

system comprising EEG-fNIRS 



for estimating and analyzing the 

IQ levels of individuals using a 

regression model. 

2019 [29] 16 
730, 805, 

850 
25 4 2/2500 

The study marks the first instance 

of combining an EEG-fNIRS 

multi-peak neuroimaging system 

for the objective diagnosis of 

ADHD. 

2020 [97] 18 760, 850 - 13 7.81/256 

The study employs an EEG-

fNIRS system to record brain 

activity in patients with 

Parkinson's disease. Additionally, 

it captures body movements, 

including limb movements, and 

fine movements such as finger 

movements, using an inertial 

measurement unit and a WearU 

glove, respectively. 

2020 [86] 46 760, 850 30 32 3.91/500 

The study employs an EEG-

fNIRS model to classify subjects 

into four categories, enhancing 

the diagnostic and evaluative 

process for Alzheimer's disease. 

2021 [80] 24 - - 24 12.5/4000 

The study enhances the fusion of 

EEG-fNIRS signals, providing 

hand-specific interpretability of 

the encoded forces, which is 

valuable for motor rehabilitation 

assessment. 

2021 [67] 128 750, 850 
25-

50 
19 20/500 

The study assesses the feasibility 

of employing the EEG-fNIRS 

system to investigate cortical 

hemodynamics associated with 

status epilepticus, burst 

suppression, and periodic 

discharges. This opens new 

avenues for a better understanding 

and management of abnormal 

EEG patterns in neurological 

ICUs. 

2021 [21] 48 695, 830 - 19 10/256 

The study utilizes EEG-fNIRS to 

concurrently record 

hemodynamic responses during 

ankle movements alongside brain 

oscillatory activity, laying the 

foundation for future 

advancements in brain-computer 

interfaces for lower extremity 

rehabilitation. 

2021 [98] 37 695, 830 - 17 10/256 

The study employs the EEG-

fNIRS system to assess the impact 

of low and high noise levels in the 

workplace on alterations in 

prefrontal cortex (PFC) activity 

during stressful psychological 

tasks. 

2021 [72] 2 
760, 810, 

850 
30 2 1/128 

The study introduces a 

multimodal system for monitoring 

the depth of anesthesia, utilizing 

EEG-fNIRS to comprehensively 



study both neurological and 

hemodynamic responses during 

general anesthesia. 

2021[77] 20 690, 830 
15, 

35 
128 10.42/250 

The study assesses the multimodal 

EEG-fNIRS system as a potent 

ecological tool for clinically 

evaluating and early identifying 

Alzheimer's disease. 

2022 [81] 2 - - 26 50/500 

The study scrutinizes the 

characteristics of the mental load 

recognition model, refines its 

signal acquisition configuration, 

and devises a more precise and 

user-friendly method for detecting 

mental load using EEG-fNIRS. 

2022 [99] 36 - - 30 10/- 

The study introduces a novel 

framework for multi-level mental 

workload classification based on 

EEG-fNIRS features, bolstered by 

machine learning techniques. 

2022 [74] 37 785, 830 30 36 5.21/1200 

The study introduces a 

comprehensive EEG-fNIRS 

bimodal signal processing 

framework for characterizing 

neural activity elicited by three 

types of bi-periodic tasks. This 

framework supports the proposed 

method as a promising technique 

for studying neural activity during 

robot-assisted two-handed 

training. 

2022 [100] 22 - 30 28 20/1024 

The study introduces a pioneering 

approach to feature extraction 

utilizing the EEG-fNIRS system. 

The study demonstrates that 

event-related desynchronization 

and HbO levels during ankle 

dorsiflexion, along with age, serve 

as promising biomarkers for 

stroke motor recovery. 

2022 [73] 36 - - 30 12.5/1000 

The study introduces an end-to-

end multimodal multitasking 

neural network model that 

leverages EEG-fNIRS fusion for 

decoding various brain 

physiological signals. 

2022 [101] 44 - 30 32 3.91/500 

The study introduces an integrated 

multimodal EEG-fNIRS 

framework, encompassing data 

collection and analysis, to 

investigate the impact of 

personalized music therapy on 

brain activity as an effective 

adjunctive therapy. 

2023 [102] 42 785, 850 - 14 3.81/500 

The study investigates the impact 

of varying light colors on human 

fatigue levels during simulated 

driving conditions, along with 

corresponding alterations in 

hemodynamics within the visual 



and prefrontal cortex. This is 

achieved through the utilization of 

an integrated EEG-fNIRS fusion 

system. 

2023 [85] 24 - - 48 10/- 

The study introduces a structured 

sparse multiset canonical 

correlation analysis method that 

leverages concurrent recordings 

from an integrated EEG-fNIRS 

fusion system. The aim is to 

discern distinctions in motorized 

executive, observational, and 

imagery neural activity involved 

in cognitive processes. 

2023 [84] 15 - - 28 10/500 

The study suggests employing an 

EEG-fNIRS system for the 

evaluation of sustained mental 

fatigue in cockpit applications. 

2023 [103] 8 - - 30 10/200 

The study proposes and assesses a 

Y-shaped neural network, based 

on the EEG-fNIRS bimodal 

fusion system, using an open 

dataset. This network integrates 

bimodal information at various 

stages. 

2023 [76] 15 760, 850 35 28 10/500 

The study presents an automated 

diagnosis of depression using 

feature fusion from EEG-fNIRS 

data. 

2023 [79] 20 762, 845.5 - 64 50/1000 

The study investigates the 

synergistic potential of EEG-

fNIRS integration in augmenting 

the decoding accuracy, stability, 

and fault tolerance of brain-

computer interface applications 

during motor imagery tasks. 

 

Table S2 fNIRS-EEG dual-modality imaging system, data processing, and analysis 

Note: (-) indicates that this information is unknown. 

Time/ 

References 

EEG data 

preprocessing 

fNIRS data 

preprocessing 

EEG feature 

information 

extraction 

fNIRS feature 

information 

extraction 

2016 [78] 

30 Hz low-pass 

filtering, independent 

component analysis 

(ICA), artifact 

removal, baseline 

correction 

0.1 Hz low-pass 

filtering, ICA, removal 

of artifacts, and 

calculation of 

concentration changes 

of HbR, HbO, and Hb 

using the modified 

Lambert-Beer law 

the logarithm of θ, 

α, β power spectral 

densities 

mean, median, 

standard deviation, 

maximum, 

minimum, and 

range of maximum 

and minimum 

values for changes 

in HbO 

concentration 

2016 [83] 

0.5-30 Hz bandpass 

filtering, ICA, 

wavelet transform, 

frequency band 

division 

0.012- 0.8 Hz band-

pass filtering, baseline 

correction, time-series 

extraction and moving 

averages, least-mean 

linear regression, and 

average power 

density in α, β 

bands 

changes in the 

average 

concentration of 

HbO. 



calculation of 

concentration changes 

of HbR, HbO, and Hb 

using the modified 

Lambert-Beer law 

2017 [19] 

6-30 Hz bandpass 

filtering, ICA, data 

window smoothing 

0.02-0.1 Hz bandpass 

filtering, data 

segmentation, baseline 

correction 

current source 

density of 

electrical signals 

recorded from the 

scalp 

hurst index fort 10 

channels 

2017 [82] 

0.5-80 Hz bandpass 

filtering, 60 Hz trap 

filtering 

0.01-0.5 Hz band-pass 

filtering, calculation of 

concentration changes 

of HbR, HbO, and Hb 

using the modified 

Lambert-Beer law, data 

segmentation 

band power, 

phase-locked 

values, phase-

amplitude 

amplification 

coupling, and left-

right hemispheric 

asymmetrical 

power 

the amplitude of 

HbO and HbR, 

slope of HbO and 

HbR, standard 

deviation of HbO 

and HbR, skewness 

of HbO and HbR, 

and kurtosis of HbO 

and HbR 

2017 [75] 

1 Hz high pass 

filtering, 58-62 Hz 

trap filtering 

sliding window motion 

artifact suppression 

algorithm, 0.08 Hz low-

pass filtering, FIR filter 

to remove artifacts, 

calculation of HbR 

using the modified 

Lambert-Beer law, 

concentration change of 

HbO, data 

segmentation 

power spectral 

density in the δ (1-

4 Hz), θ (4-8 Hz), 

α (8-13 Hz), β1 

(13-20 Hz), and β2 

(20-30 Hz) bands 

changes in mean 

activation amplitude 

relative to baseline 

for HbO 

2017 [57] 

0.5-70 Hz bandpass 

filtering, a bipolar 

montage  

calculation of HbR and 

HbO concentration 

changes using the 

modified Lambert-Beer 

law, 0.03-0.5 Hz zero-

pHase filter, amplitude 

normalization, data 

splitting 

power density of θ 

and δ waves 

differences between 

maximum and 

minimum HbO 

concentrations 

 

2018 [69] 

 

- - 
power spectral 

density 

absolute and 

relative 

concentrations of 

HbO, HbR (rHbO = 

HbO/HbO + 

Hb,,rHb = Hb/HbO 

+ Hb) 

2019 [96] 

0.5-30 Hz bandpass 

filtering, 

normalization, data 

segmentation, 

wavelet transform, 

baseline correction 

0.01-0.2 Hz band-pass 

filtering, calculation of 

HbR and HbO 

concentration changes 

using the modified 

Lambert-Beer law, data 

splitting 

average of δ, θ, α, 

β band spectra 

integration, slope, 

maximum, and 

maximum absolute 

values of HbO and 

HbR concentrations 

2019 [49] 

0.5-45 Hz bandpass 

filtering, baseline 

correction, ICA 

elimination of baseline 

drift, 0.01-0.2 Hz band-

pass filtering, 

calculation of HbO 

concentration using the 

modified Lambert-Beer 

law, calculation of 

mean values, t-tests 

higuchi fractal 

dimension, 

Shannon entropy 

value of wavelet 

transform 

coefficients, 

frequency 

subband average 

slope, mean, 

variance, kurtosis, 

skewness, and peak 

of HbO 

concentration 

change 



power 

2019 [29] 

abnormal data 

exclusion, 0.05-100 

Hz bandpass filter, 

45-50 Hz trap filter 

exclusion of anomalous 

saturation data, 0.14 Hz 

low-pass filtering, 

calculation of HbR and 

HbO concentration 

changes using the 

modified Lambert-Beer 

law, data segmentation 

lempel-Ziv 

complexity, fractal 

dimension, P3 

component of ERP 

signals 

changes in 

concentration of 

HbO 

2020 [97] 

 

ee-trending, 1-99 Hz 

bandpass filtering 

0.1-0.4 Hz bandpass 

filtering, the definition 

of extinction 

coefficients, and the 

calculation of HbR and 

HbO concentration 

changes using a 

modified Beer-Lambert 

law 

 

 

power density in 

the θ, α, and β 

wavebands 

 

changes in 

concentration of 

HbO 

2020 [86] 

 

 

0.5-40 Hz bandpass 

filtering, 50 Hz trap 

filtering, ICA, de-

artifacts, data 

segmentation 

0.01-0.2 Hz band-pass 

filtering, calculation of 

HbR and HbO 

concentration changes 

using modified Beer-

Lambert law, data 

splitting, baseline 

correction 

power densities 

for θ, δ, β, γ, low-

α, and high-α 

average changes in 

HbO and HbR 

concentrations 

2021 [80] 

50 Hz trap filtering, 

high pass filtering 

above 0.01 Hz, ICA 

0.25 Hz low-pass 

filtering, calculation of 

HbR and HbO 

concentration changes 

using a modified Beer-

Lambert law 

power and phase 

of θ, α, β, δ, low γ, 

medium γ and 

high γ 

changes in the 

concentrations of 

HbO and HbR 

2021 [67] - 

channels with 

intensities <100 (AU) 

or signal-to-noise ratios 

<2 were excluded, raw 

optical data were 

converted to optical 

density, PCA, 0.01-0.2 

Hz band-pass filtering, 

and HbR and HbO 

concentration changes 

were calculated using a 

modified Beer-Lambert 

law 

rhythmic 

spectrograms, fast 

Fourier transform 

spectrograms, 

asymmetric 

relative 

spectrograms, 

amplitude EEG 

spectrograms 

changes in 

concentration of 

HbO 

2021 [21] 

0.05-40 Hz bandpass 

filtering, data 

segmentation, ICA, 

wavelet transforms 

calculation of HbR and 

HbO concentration 

changes using the 

modified Lambert-Beer 

law, 0.02-0.4 Hz 

bandpass filtering, 

smoothing of the signal, 

baseline correction, 

averaging, and 

normalization 

M,ean absolute 

value, root mean 

square, waveform 

length, and fourth-

order 

autoregressive 

coefficient of the 

alpha-band power 

spectrum 

variance, kurtosis, 

and skewness of 

concentration 

changes in HbO 

2021 [98] 

 

 

 

0.5-70 Hz bandpass 

filtering, ICA, 

calculation of HbR and 

HbO concentration 

changes using the 

modified Lambert-Beer 

law, 0.012-0.8 Hz band-

α, , θ, β band 

power density 

changes in 

concentration of 

HbO 



baseline correction, 

data segmentation, 

wavelet 

decomposition 

pass filtering, data 

segmentation, baseline 

correction 

2021 [72] 

0.1-45 Hz bandpass 

filtering, wavelet 

transform, denoising, 

de-artifacts 

 

 

excluding anomalous 

data, motion artifact 

correction, response 

averaging, 0.01-0.10 

Hz bandpass filtering, 

data segmentation 

amplitude, 

spectrum, sample 

entropy, 

arrangement 

entropy\amplitude

, spectrum, sample 

entropy, phase 

differences 

between HbO and 

Hb, power spectral 

density, average 

power 

average changes in 

HbO and HbR 

concentrations 

2021[77] 

 

 

visual inspection, 1-

80 Hz bandpass 

filtering, 50 Hz trap 

filtering, ICA, 

wavelet 

decomposition 

raw data conversion to 

optical density, 0-0.4 

Hz band-pass filtering, 

motion correction 

algorithm, and 

calculation of HbR and 

HbO concentration 

changes using the 

modified Lambert-Beer 

law 

average power 

density in the θ, β, 

and α bands 

standard deviation 

of changes in HbO 

and HbR 

concentrations 

2022 [81] 

 

 

re-referencing, 0.5-45 

Hz Bandpass Filter, 

50 Hz Trap Filter, 

ICA, Resampling, 

Data Splitting 

motion artifact 

removal, 0.5 Hz low-

pass filter, data 

segmentation 

power spectral 

density in the θ, α, 

β1, and β2 bands 

mean, standard 

deviation, mean 

square deviation, 

skewness, root 

mean square, peak, 

peak factor, 

kurtosis, waveform 

factor, pulse factor, 

and margin factor 

for concentration 

changes of HbO and 

HbR 

2022 [99] 

 

 

resampling, artifact 

removal, 1-45 Hz 

bandpass filtering, 

data segmentation 

 

 

calculation of HbR and 

HbO concentration 

changes using the 

modified Lambert-Beer 

law, 0 - 0.04 Hz 

bandpass filtering, 

baseline correction, 

data partitioning, 

normalization 

 

power spectral 

density of θ, α 

waves 

changes in HbO and 

HbR concentrations 

2022 [74] 

 

 

 

 

 

 

1 Hz high-pass 

filtering, removal of 

large amplitude 

pseudo-signals, fast 

convert raw fNIRS 

intensity values to 

optical density data and 

rejects undesirable 

channels, calculates 

HbR and HbO 

concentration changes 

using the modified 

Lambert-Beer law, 

corrects for baseline 

 

baseline 

normalized event-

related power 

spectral density 

changes in 

concentration of 

HbO 



independent 

component analysis, 

2-36 Hz band-pass 

filtering, data 

segmentation 

shift and peak artifacts, 

and 0.05-0.2 Hz 

bandpass filtering 

2022 [100] 

resampling, 0.05-35 

Hz bandpass filtering, 

ICA, data splitting 

calculation of 

concentration changes 

of HbR, Hb, and HbO 

using the modified 

Lambert-Beer law, 

0.01-0.2 Hz band-pass 

filtering, and data 

segmentation 

power spectral 

density of task-

related events 

changes in HbO, 

Hb, HbR 

concentrations 

2022 [73] 

downsampling, 

baseline removal, 50 

Hz power removal, 8-

30 Hz bandpass 

filtering, ICA, 

channel data filtering, 

data splitting 

downsampling, 

baseline removal, 0.01-

0.2 Hz bandpass 

filtering, channel data 

filtering, data 

partitioning, and 

calculation of HbR and 

HbO concentration 

changes using the 

modified Lambert-Beer 

law 

 

feature extraction 

block is composed 

of two 2-D 

convolution 

layers, a 

maximum pooling 

layer, and a batch 

normalization 

layer 

feature extraction 

block is composed 

of a 2-D 

convolution layer, a 

maximum pooling 

layer, and a batch 

normalization layer 

2022 [101] 

 

 

 

re-referenced co-

averaged references, 

0.5-50 Hz bandpass 

filtering, data 

segmentation, 

baseline correction, 

ICA 

 

 

 

 

 

0.01-0.1 Hz band-pass 

filtering, calculation of 

HbR and HbO 

concentration changes 

using the modified 

Lambert-Beer law, 

baseline correction, 

data splitting 

time-domain 

features (mean, 

standard 

deviation, mean of 

the absolute value 

of first-order 

differences, mean 

of the absolute 

value of 

normalized 

differences, mean 

of the absolute 

value of second-

order differences, 

mean of the 

absolute value of 

normalized 

second-order 

differences), 

frequency-domain 

features (power 

spectral density, 

Shannon's 

entropy), time-

frequency domain 

(wavelet entropy, 

spatial features, 

ratio of 

eigenvalues of 

left-right 

symmetric 

electrode pairs) 

mean and variance 

of concentration 

changes of HbO, Hb 

2023 [102] 

1-50 Hz bandpass 

filtering, ICA, 

wavelet transform, 

data segmentation 

0.5 Hz low-pass 

filtering, calculation of 

HbR and HbO 

concentration changes 

power spectral 

density and 

average power of, 

θ, α, β,  waves 

changes in HbO and 

HbR concentration 



 

Table 3 Summary of the advantages and disadvantages of the integrated fNIRS-EEG dual-modality 

imaging system. 

 

Time/ 

References 
Advantages Disadvantages 

2016 [78] 

⚫ demonstrates the utility of a multimodal 

approach 

⚫ wireless data transmission 

⚫ fNIRS has a low sampling rate 

⚫ Ergonomics are less scalable. 

2016 [83] 
⚫ an easy way to connect multiple data types 

⚫ multi-modal advantages are obvious  

⚫ more complex systems 

⚫ EEG-fNIRS inefficient 

integration 

using the modified 

Lambert-Beer law 

2023 [85] 

0.3 Hz high-pass 

filtering, 49 Hz low-

pass filtering, removal 

of artifactual 

cHannels data, ICA, 

data segmentation 

calculation of HbR, Hb, 

and HbO concentration 

changes using the 

modified Lambert-Beer 

law, ICA, 0.01 Hz high-

pass filtering, 0.5 Hz 

low-pass filtering, 0.2 

Hz band-pass filtering, 

data segmentation 

power density 

variation in the α-

band 

changes in HbO and 

HbR concentrations 

2023 [84] 

downsampling, 0.5-

40 Hz bandpass 

filtering, 50 Hz trap 

filtering, motion 

artifact removal, ICA, 

data segmentation 

downsampling, 

calculation of HbR and 

HbO concentration 

changes using the 

modified Lambert-Beer 

law, data segmentation, 

sequence 

autocorrelation, 

correction for motion 

artifacts, and 

physiological 

confounding 

 

variation of the 

power spectral 

density of β, α, θ 

changes in HbO and 

HbR concentrations 

2023 [103] 

common averaging 

reference, 8-25 Hz 

bandpass filtering, 

signal amplitude 

normalization 

calculation of HbR and 

HbO concentration 

changes using the 

modified Lambert-Beer 

law, 0.01-0.1 Hz 

bandpass filtering, and 

baseline removal 

mean and slope 

values of power 

density variation 

changes in HbO and 

HbR concentrations 

2023 [76] 

 

 

50Hz Trap Filtering, 

0.5-30Hz Band Pass 

Filtering, Re-

referencing, Data 

Splitting 

0.01-0.1 Hz band-pass 

filtering, wavelet 

denoising, and 

calculation of HbO and 

HbR concentration 

changes using the 

modified Lambert-Beer 

law 

power spectral 

density in the θ, α 

bands 

concentration 

changes and sample 

entropy of HbO 

2023 [79] 

 

4-30 Hz bandpass 

filtering, data 

segmentation 

0.02 Hz-0.08 Hz band-

pass filtering, 

calculation of HbR and 

HbO concentration 

changes using the 

modified Lambert-Beer 

law 

 

variation of signal 

power density in θ, 

α, and β bands 

changes in HbO and 

Hb concentrations 



2017 [19] ⚫ highly efficient sorting results 

⚫ EEG-fNIRS fusion inefficiency 

⚫ The feature extraction process is 

cumbersome. 

2017 [82] 

⚫ extract multiple features for comparative 

analysis 

⚫ evaluate the effect of window size on 

classification performance 

⚫ fNIRS only covers the PFC 

⚫ limited study sample size 

2017 [75] 
⚫ high efficiency of feature extraction 

⚫ The advantages of bimodality are obvious. 

⚫ memory categorization work 

study to be studied in depth 

⚫ low accuracy of classification 

results  

2017 [57] 

⚫ Scanning optical changes at different tissue 

depths uses a multi-distance optical probe. 

⚫ synchronization of EEG-fNIRS data 

logging 

⚫ sample rate and dynamic range 

unknown 

⚫ smaller number of channels 

 

2018 [69] 

 

 

⚫ microchip-based design, lightweight and 

compact 

⚫ wireless operation with shared ADC 

architecture 

 

⚫ minimal number of channels 

⚫ poor scalability for large-area 

monitoring  

2019 [96] 

⚫ data visualization 

⚫ better data pre-processing 

 

⚫ fewer channels 

⚫ few mental testing tasks 

2019 [49] 
⚫ high number of fNIRS channels 

⚫ relatively lightweight system 

⚫ Wearable portability is in 

average. 

⚫ sparse spatial sampling 

2019 [29] ⚫ bluetooth module 

⚫ a smaller number of channels in 

the system 

⚫ limited ergonomic scalability 

2020 [97] 

⚫ high model accuracy 

⚫ Selection of the number of features when 

the highest accuracy is reached by 

comparison. 

⚫ The effect of factors such as age 

on the results of the experiment 

was not considered. 

⚫ small sample size 

2020 [86] 

⚫ detail data analysis 

⚫ use different feature sets for different 

datasets 

⚫ Pre-processing of fNIRS data is 

too simple. 

⚫ poor ergonomic design 

2021 [80] 

⚫ compare the classification effects of 

multiple classifiers 

⚫ optimize Models with Deep Learning 

⚫ The decoding process creates 

confusion. 

⚫ poor reliability of decoding 

capability 

⚫ complex systems 

2021 [67] 

⚫ a higher number of channels 

⚫ analytical methods applicable to long and 

complex neurological disease data 

⚫ Failure to account for factors 

such as age and gender affects 

substantive heterogeneity. 

⚫ Failure to consider systemic 

physiological factors that also 

affects cerebral blood flow. 

2021 [21] 

⚫ experimental tests cover the whole brain 

⚫ increased sensitivity and specificity of the 

system 

⚫ poor ergonomic scalability 

⚫ low precision of classification 

results 

2021 [98] 

⚫ advantages of multi-frequency band 

analysis of EEG data 

⚫ synchronization of EEG-fNIRS data 

recording 

⚫ The experiment covered a small 

range of head regions. 

⚫ less wearable portability 

2021 [72] 

⚫ data visualizations 

⚫ comparative analysis of multiple features is 

advantageous 

⚫ low number of channels in the 

system 

⚫ low acquisition frequency 

2021[77] ⚫ The advantages of combining long and ⚫ interference between signals 



short separation channels for measurement 

are obvious. 

⚫ whole brain measurement 

⚫ The device is less wearable and 

portable. 

2022 [81] 
⚫ high accuracy of classification results 

⚫ a wider range of applications 

⚫ EEG acquisition configuration to 

be optimized 

⚫ not a real application task 

scenario 

2022 [99] 

⚫ The advantages of five-fold cross-

validation technology are obvious. 

⚫ data visualizations 

⚫ The experimental test range 

involved only the right frontal 

region. 

⚫ presence of volume conduction 

effects in EEG datasets 

2022 [74] 

⚫ EEG-fNIRS data log synchronization 

⚫ multimodal feedback 

 

⚫ less wearable portability 

⚫ limited experimental sample 

2022 [100] 
⚫ whole brain measurement 

⚫ 8-fold cross-validation 

⚫ less wearable portability 

⚫ limited experimental sample 

2022 [73] 

⚫ advantages of multimodal multitasking 

neural network models 

⚫ powerful raw data process capabilities and 

model generalization 

⚫ interference between signals 

⚫ Other auxiliary tasks have an 

impact on classification 

accuracy. 

2022 [101] 

⚫ a multimodal integration framework for 

EEG-fNIRS from data collection to data 

analysis 

⚫ Excessive amount of features 

affects classification accuracy. 

⚫ fNIRS covers a smaller range of 

brain regions. 

2023 [102] 

⚫ multi-group controlled experiments 

⚫ All electrodes are grounded to a passive 

electrode. 

⚫ lower fNIRS sampling rate 

⚫ less portable 

2023 [85] 

⚫ Comparative advantages of multitasking 

are obvious. 

⚫ EEG-fNIRS data are fused efficiently. 

⚫ less ergonomic scalability 

⚫ limited experimental sample 

⚫ high data exclusion rate  

2023 [84] 

⚫ use data augmentation to improve model 

quality 

⚫ high model performance for bimodal 

fusion 

⚫ The smaller amount of data 

severely limits the size of the 

neural network as well as the 

final classification performance. 

2023 [103] 
⚫ ongoing collection and analysis of fNIRS 

⚫ whole brain measurement 

⚫ low system sampling rate 

⚫ The amount of data for the 

experiment was limited. 

2023 [76] 
⚫ whole brain measurement 

⚫ multi-group controlled experiments 

⚫ EEG-fNIRS feature-level fusion 

is simpler and ignores the 

complex relationships among 

them. 

⚫ smaller experimental sample size 

2023 [79] 

⚫ The advantages of feature fusion methods 

are more obvious. 

⚫ separability of data and high reliability of 

classification results 

⚫ low number of channels 

⚫ Systematic research is more 

complex. 

⚫ limited sample for the 

experiment 

 

 


