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Abstract: Alzheimer’s disease (AD), the most prevalent neurodegenerative disorder and the leading
cause of dementia worldwide, profoundly impacts health and quality of life. While cognitive
impairments—such as memory loss, attention deficits, and disorientation—predominate in AD,
motor symptoms, though common, remain underexplored. These motor symptoms, including gait
disturbances, reduced cardiorespiratory fitness, muscle weakness, sarcopenia, and impaired balance,
are often associated with advanced stages of AD and contribute to increased mortality. Emerging
evidence, however, suggests that motor symptoms may be present in earlier stages and can serve
as predictive markers for AD in older adults. Despite a limited understanding of the underlying
mechanisms driving these motor symptoms, several key pathways have been identified, offering
avenues for further investigation. This review provides an in-depth analysis of motor symptoms in
AD, discussing its progression, potential mechanisms, and therapeutic strategies. Addressing motor
symptoms alongside cognitive decline may enhance patient functionality, improve quality of life, and
support more comprehensive disease management strategies.

Keywords: Alzheimer’s disease; motor impairments; neuromuscular; muscle atrophy; strength loss;
gait; balance; coordination; posture; cardiorespiratory fitness

1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia and the leading
neurodegenerative disorder globally, affecting approximately 50 million individuals. The
World Health Organization (WHO) projects that by 2050, the number of AD cases will triple,
establishing AD as a global public health priority. In 2019, dementia-related care incurred a
global cost of 1.3 trillion dollars, with approximately 50% of these expenses shouldered by
informal caregivers, who play a critical role in managing the high dependencies of patients.
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These dependencies, which stem from cognitive and physical impairments, intensify as the
disease progresses into its intermediate and late stages (WHO 2023) [1].

Researchers have identified two types of AD: the familial form, which manifests early
and accounts for only 1–5% of cases, and the sporadic form, which occurs in individuals
over 65 and accounts for about 95% of cases [2]. The term “AD continuum” is commonly
used to describe the gradual and progressive development of the disease, from its earliest
signs to its advanced stages. The AD continuum classifies the disease according to the
progression of symptoms into three stages: cognitively normal or presymptomatic, mild
cognitive impairment, and dementia. The histopathological Braak and Braak stages and
the Thal phases correlate with these disease stages [3,4].

Two distinctive neuropathological markers characterize AD: neurofibrillary tangles
(NFTs), which are made of hyperphosphorylated tau protein, and extracellular aggregates
of amyloid-beta (Aβ) peptide, which accumulate in brain tissue to form neuritic plaques
and in blood vessels to form cerebral amyloid angiopathy (CAA) [5]. These markers
primarily affect areas related to memory, such as the hippocampus; however, they are not
limited to these regions, as their spatiotemporal progression impacts other anatomical areas
related to motor control, such as the motor cortex, cerebellum, and basal ganglia, causing
motor impairments in patients and, consequently, a higher degree of disability [6].

While cognitive deficits, such as impaired cognitive function, memory problems,
disorientation, and learning difficulties, are the most well-known and commonly studied
signs and symptoms of AD, numerous studies indicate that motor system impairments
are also typical [7]. Motor deficits in AD become particularly pronounced during the
intermediate and late stages, though current evidence suggests they can also emerge in
the early stages [8]. Although researchers have not studied these changes as extensively
as cognitive issues, their importance is evident due to their direct impacts on patient
functionality and quality of life. These motor deficits are even linked to significant mortality
events, including pneumonia and infection processes [9,10].

Among AD’s most common motor deficits are gait disturbances, commonly known
as “cautious gait” [8]. AD patients have an increased risk and incidence of falls, which
can cause serious injuries [11]. Researchers have observed problems with coordination
and manual dexterity, along with deficits in dynamic and static balance, which may be
related to the previously described issues [8]. Other motor signs, such as bradykinesia,
rigidity, and motor denervation, can also be present in AD patients [12]. Furthermore,
some of the most frequent motor signs are muscle atrophy and decreased strength, which
have been found even in the early stages of the disease and progress with it [13]. Studies
have correlated the strength decrease with reduced brain volume and cognition, as well as
with abnormal weight loss and cachexia, which directly impact patient functionality and
increase the risk of fractures [14,15].

Motor impairments contribute to movement restriction and the limitation of physical
activities imposed by caregivers or family members for the patient’s well-being, resulting
in patients being less active than they are when in a physiological state [16]. This process, in
turn, reduces their cardiorespiratory capacity, leading to lower maximum oxygen volume
(VO2max), which is associated with an increased risk of mortality and poor cognitive
performance [17,18].

Motor deficits in AD remain poorly understood, with limited insights into the mech-
anisms driving these impairments [6]. The relationship between the progression of neu-
ropathological features and the emergence of motor dysfunction is still unclear [19]. As
these deficits are often under-recognized or deprioritized in research, this review aims
to address this gap by exploring the onset, the anatomopathological and physiological
progressions, and the potential predictive biomarkers of motor impairments in AD. We
highlight the need for the comprehensive integration of motor assessments from clinical
studies and animal models while identifying therapeutic avenues and future research
opportunities to advance this critical aspect of AD pathology.
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2. Spatiotemporal Progression of AD Symptoms and Their Connection to
Motor Impairments

Motor signs in AD usually result from pathological changes in the extrapyramidal
system; however, their exact anatomical location is not precise [20]. Clinically, some
recognized molecular alterations in AD, like those in tau or Aβ, are involved in anatomical
changes in different brain regions and are valuable markers to determine the AD stage
and diagnosis (Table 1). For instance, in the presymptomatic stage of the disease, the
transentorhinal region of the temporal mesocortex (Braak and Braak stage I) and the
CA1 and CA2 subregions of the hippocampus (Braak and Braak stage II) are the first
brain regions to exhibit conditions related to alterations caused by tau proteins [21,22].
Similarly, in the Thal phases, the brain regions mainly affected by Aβ are the neocortex
(Thal phase 1), entorhinal region, CA1, insular cortex, amygdala, cingulate gyrus, and
the presubicular region (Thal phase 2) [23]. These alterations cause subtle changes in
thinking abilities that are first noticed by the individual when cognitive tests do not
reveal significant evidence of objective impairment [24]; they are apparent as alterations
in episodic memory and verbal memory recall [25]. Although researchers have long
considered that neuropathological changes begin in the cortex, they have observed pre-
tangle accumulation in subcortical regions [3], such as the locus coeruleus (LC) and nucleus
basalis of Meynert (NBM) [26]. This process can explain the neuropsychiatric symptoms
observed in the disease before the development of cognitive impairment, such as depression,
anxiety, and sleep disturbances [26,27].

Interestingly, researchers have observed that motor alterations, including motoric
cognitive risk syndrome, tremor, and restless leg syndrome, precede cognitive decline [28].
Damage to the cholinergic projection pathways from the pedunculopontine nucleus and
NBM explains these alterations, with the former innervating the basal ganglia and thalamus
to control gait and posture directly [3,29,30]. The amygdala directly connects with the
motor cortex, subthalamic nucleus, and globus pallidus, making it crucial for controlling
motor function [29,31]. Researchers have associated these connections with the appearance
of aberrant motor behavior [32,33].

During the prodromal stage of the disease, tau pathology progresses to the temporal
association areas, entorhinal cortex, and parahippocampal, occipitotemporal, and lingual
gyri (Braak and Braak stage III), as well as to the hippocampus CA3 and CA4, insular
cortex, thalamus, claustrum, and medial temporal gyrus (Braak and Braak stage IV) [21,22].
Meanwhile, in Thal phase 3, the Aβ pathology extends to subcortical regions and the mid-
brain, such as the caudate nucleus, putamen, claustrum, basal forebrain nuclei, substantia
innominata, diencephalon, superior and inferior colliculus, CA4, and red nucleus [23]. In
this stage, memory impairment becomes evident; the decrease in episodic memory and
verbal memory recall [34] manifests through difficulty acquiring new tasks, fluent aphasia,
and apraxia [35]. The alterations in other structures of the neocortex and the insular cortex
are related to the appearance of neuropsychiatric symptoms: agitation, anxiety, appetite
dysfunction, irritability, euphoria, and disinhibition [27,32]. In this stage, the most remark-
able motor symptoms in AD patients are decreased limb strength and changes in postural
control [28,35]. These symptoms correlate with the alterations in structures that participate
in motor function control, such as the substantia nigra, basal ganglia, and thalamus [36–38],
which leads to the presence of falls and the most significant deterioration in the ability to
perform instrumental activities of daily living [35].

Finally, in the dementia stage, tau pathology is observed in larger areas of the cortex,
such as the superior temporal gyrus, premotor area, and primary temporal association
areas (Braak and Braak stage V), followed by the prostriata and striatum association areas
of the occipital neocortex (Braak and Braak stage VI) [21]. In contrast, Aβ deposition
is present in different brainstem nuclei, such as the inferior olivary nucleus, substantia
nigra, and reticular formation of the medulla oblongata (Thal phase 4); moreover, it occurs
in the reticular formation and reticular tegmental nucleus of the pons, Raphe nuclei,
LC, parabrachial nuclei, and dorsal tegmental nucleus (Thal phase 5) [23]. Cognitive
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symptoms, executive and visuospatial dysfunction, and alterations in language characterize
this stage [39]. Additionally, neuropsychiatric symptoms include apathy, delusions, and
hallucinations [27,40].

Regarding motor symptoms, this stage presents slow essential mobility, impaired bal-
ance and gait, and difficulties in performing dual tasks [40,41]. Researchers have observed
alterations in areas related to the initiation of appendicular and facial movements, includ-
ing the medial frontal gyrus, precentral gyrus, gyrus rectus, and anterior cingulate cortex.
These changes are associated with the progression of Parkinsonism and the development
of truncal and facial dyskinesias [42–44]. In addition, tau [45,46] and Aβ pathology have
also been observed in neurons of the anterior medullary horn and the cerebellum, causing
dysmetria, ataxia, muscle weakness, and spasticity [23,47]. All of the above hinder the
patient from performing the basic activities of daily living due to the need for adequate
motor and cognitive functions to perform them [35].

Table 1. Association between Alzheimer’s disease continuum, Braak and Braak stages, and
Thal phases.

Alzheimer’s Disease Continuum

Cognitively Healthy or
Presymptomatic Mild Cognitive Impairment Dementia

Cognitive
symptoms

↑ Subjective cognitive
impairment (alteration

in episodic and verbal memory)

↑ Memory impairment
(decrease in episodic and verbal

memory)

↑ Executive and visuospatial
dysfunction

↑ Alterations in
language

Neuropsychiatric
symptoms

↑ Depression, anxiety,
and sleep disturbance

↑ Agitation, anxiety, appetite
dysfunction,

irritability, euphoria, and
disinhibition

↑ Apathy,
delusions, and
hallucinations

Motor symptoms

↑ Motoric cognitive risk
syndrome, tremors, gait
disturbances, restless leg

syndrome, and aberrant motor
behavior

↑ Parkinsonian symptoms
(rigidity,

bradykinesia and
postural instability),

↓ Strength, muscle mass, CRF
levels, and changes in postural

control

↑ Aberrant and slow motor
behavior, balance, and gait

problems, speech-facial
expression dual-task

difficulties, and
Parkinsonian

symptoms

Braak and Braak stages

I–II III–IV V–VI
Brain regions

affected
NCx, EC, CA1, IC,

AMG, CG, MFG, PreS
EC, PHG, OTG, LG, HC-CA3,
HC-CA4, IC, Thal, Cla, MTG STG, HAA, ProA, StrA

Thal phases

1–2 3 4–5

Brain regions
affected NC, HC-CA1, EC

CN, Put, Cla, BFN,
SI, Thal, Hyp, LHN,

CS, CI, CA4, RN,
STN

ION, SN, RFMO, RFP, ARN, CRN,
LC, PBN, DTN, RTNP, Cb, RtTg

Abbreviations: AMG: amygdala, ARN: anterior raphe nuclei, BFN: basal forebrain nuclei, CA1: Ammon’s horn
CA1, CRF: cardiorespiratory fitness, CI: colliculus inferior, Cla: claustrum, CG: cingulate gyrus, Cb: cerebellum,
CN: caudate nucleus, CRN: caudal raphe nuclei, CS: colliculus superior, DTN: dorsal tegmental nucleus, EC:
entorhinal cortex, HAA: primary temporal association areas, HC-CA3: hippocampus CA3, HC-CA4: hippocampus
CA4, Hyp: hypothalamus, IC: insular cortex, ION: inferior olivary nucleus, LC: locus coeruleus, LG: lingual gyrus,
LHN: lateral hypothalamic nucleus, MFG: medial frontal gyrus, MTG: medial temporal gyrus, NCx: neocortex,
PBN: parabrachial nuclei, PHG: parahippocampal gyrus, PreS: presubicular region, ProA: prostriata association
areas, Put: putamen, RFMO: reticular formation of the medulla oblongata, RtTg: reticulo tegmental nucleus of
the pons, RN: red nucleus, SI: substantia innominata, SN: substantia nigra, STG: superior temporal gyrus, STN:
subthalamic nucleus, StrA: striata association areas, ↑: increase, and ↓: decrease. The information in the table was
obtained from [21,22,26–29,45].

Given the increasing evidence linking motor impairments to AD, it is essential to
prioritize their study alongside cognitive decline, as motor symptoms significantly affect
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the quality of life and functionality of patients. Future research should focus on understand-
ing the anatomical and pathophysiological mechanisms underlying these impairments,
particularly in the early stages. Integrating motor assessments in clinical studies and animal
models can provide valuable insights into AD progression. Moreover, early identification
of predictive biomarkers for motor symptoms can also enhance diagnosis and treatment,
making comprehensive care for cognitive and motor symptoms vital for improving the
lives of those affected by AD.

3. Motor Impairments in Alzheimer’s Disease
3.1. Gait Disorders

Gait is a complex task that, although often considered automatic, requires continuous
adjustments to maintain control of the body’s position during movement [48]. This process
relies on the proper integration and functioning of both sensorimotor and cognitive sys-
tems, involving motor processes and memory, cognition, attention, decision-making, and
problem-solving. As a result, gait assessment plays an essential role in various physical
examinations, including those for AD [48].

Gait disorders are common in aging, but in individuals with AD, deviations from
normal walking are more pronounced compared to healthy peers of the same age. This
exacerbation is linked to factors such as decreased muscle mass and strength, reduced
muscle blood flow, limited mobility, inflammation, and oxidative stress, all of which arise
from the impaired sensorimotor systems associated with AD [49,50]. Older adults with gait
disorders are estimated to have a 1.2–2.5 times higher risk of developing AD [49]. In AD
patients, the typical gait pattern, known as “cautious gait”, is characterized by a slower
walking speed, a shorter step length, increased step variability, a wider support base, a
longer double support time, and greater postural instability. These gait abnormalities
emerge in the early stages of the disease and worsen as AD progresses [8,51]. Similar
alterations and their pathological progressions have been observed in both AD patients
and animal models, where early-stage changes deteriorate with age [52–54].

Researchers have correlated gait variations with cognitive batteries, such as the Mon-
treal Cognitive Assessment (MoCA), which helps distinguish between healthy individuals
and those with mild cognitive impairment (MCI) or AD [55]. Furthermore, dual-tasking gait
assessment, such as conversing or counting backward while walking, offers a more accurate
measure of the relationship between cognition and gait. This approach provides deeper
insights into how cognitive impairment impacts gait and affects daily activities [51,56].
Variables such as step time, gait speed, sway time, double support, single support, and step
length can help differentiate healthy subjects from those with MCI or AD [55].

Different reports have extensively studied gait speed and demonstrated that it pre-
dicts dementia development in individuals initially without dementia [50,57]. Reduced
gait speed appears even in the early stages of the disease and directly correlates with
impairments in executive functions, working memory, and an increased risk of falls [48].
Furthermore, individuals with the apolipoprotein ϵ4 (APOE4) allele experience a more
pronounced decline in gait speed than non-carriers [58]. Moreover, this parameter has been
associated with increased mortality in older adults, leading some authors to suggest it may
be the sole parameter capable of predicting dementia, in addition to being an important
biomarker in AD [51]. Therefore, evaluating gait from the early stages of the disease is
crucial for identifying potential impairments that might affect functionality and possible
predictive biomarkers of AD.

3.2. Decline in Cardiorespiratory Fitness

Cardiorespiratory fitness (CRF) is closely tied to an individual’s level of physical
activity and refers to the VO2 max in response to the body’s energy demands [59]. Higher
CRF levels are associated with better brain functions in healthy older adults. Benefits in-
clude maintaining brain and hippocampal volume, preserving white matter microstructure,
reducing the incidence of cardiovascular disease, and lowering mortality rates [60,61]. Ad-
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ditionally, improved physical performance is associated with a reduced risk of developing
dementia [62,63].

In AD patients, physical activity levels decrease due to various motor and mental
impairments, as well as imposed physical restrictions for safety. Consequently, CRF levels
drop, with an estimated 20% reduction compared to healthy individuals of the same age [64].
Such a decrease in CRF among AD patients correlates with several findings, including
reduced brain volumes in regions such as the hippocampus, amygdala, supramarginal
gyrus, and rostral middle frontal gyrus. Early-stage AD also shows decreased white
matter integrity in the fronto-occipital fasciculus [65,66]. Furthermore, lower CRF levels
are associated with poorer cognitive performance, executive functions, learning, memory,
and visuospatial abilities and higher mortality rates [64]. CRF is also linked to Aβ42 levels,
and it impacts immediate and verbal memory learning [67], with lower CRF levels found
to be APOE4 allele carriers [68].

Nevertheless, maintaining higher CRF through physical activity can help mitigate cog-
nitive impairments in AD patients, highlighting the importance of incorporating physical
exercise into their care to improve overall health and quality of life. Therefore, sustaining
physical activity and assessing CRF as both a predictor of AD and an indicator of overall
health is crucial for managing AD effectively.

3.3. Muscle Atrophy and Strength Loss

Sarcopenia is a syndrome characterized by a pathological decline in muscle mass
and function, which directly impacts an individual’s functionality [69]. Muscle mass and
strength decline with age, reducing by 1–2% annually starting from the third decade of
life and accelerating to 1.5–3% per year after age 50 [70]. Sarcopenia has a multifactorial
etiology associated with chronic inflammation, insulin resistance, hormonal imbalances,
malnutrition, and physical inactivity, among other factors [71]. These factors contribute
to falls, fractures, disability, and even mortality [72]. Studies show that older adults with
dementia and AD exhibit higher rates of sarcopenia and declining muscle strength [8,73,74].
Patients with dementia have a sarcopenia rate that is 3–5 times higher than that in adults
without dementia [75].

Additionally, healthy adults with higher rates of sarcopenia have a 1.58 times greater
likelihood of cognitive impairment [71]. Research using dual-energy X-ray absorptiometry
(DEXA) has shown that muscle mass loss related to sarcopenia is evident from the early
stages of the disease [19,73]. This loss is correlated with cognitive decline, reduced brain
volume in areas such as the frontal lobe, amygdala, and hippocampus, and decreased
cerebral blood flow [76,77]. Furthermore, studies have found that the presence of sarcope-
nia increases the likelihood of developing AD by 197% and any other type of dementia
by 58% [71]. There is also a preferential loss of type II muscle fibers related to muscle
power [75].

On the other hand, AD patients show a decline measured by tests such as the handgrip
test. This decline is evident from the early stages of the disease, becomes more pronounced
in the intermediate stages, and worsens as the disease progresses compared to control
groups [13,72]. This parameter is also associated with cognitive impairment, particularly in
memory and attention, and it can be a risk predictor for cognitive decline. It is linked to
previously described gait disturbances, affecting the patient’s functionality and quality of
life [78,79]. Monitoring handgrip strength is thus necessary as a marker of functionality and
cognition in older adults and patients with AD [74]. Animal model studies reflect a decrease
in muscle mass from the early stages of the disease, progressing with the development of
pathology. These studies also show deficiencies in muscle strength, which are evident in
the intermediate and late stages of the disease [19,53]. Therefore, the positive association
between sarcopenia, decreased strength, and neurocognitive disorders in AD is clear.
Nonetheless, both parameters should be evaluated and included in the disease assessment.
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3.4. Disruptions in Balance

Balance refers to the body’s ability to remain upright and stable while performing
movements (dynamic) or in a specific posture (static) [80]. Many studies report that in
AD, balance control deteriorates as cognitive impairment increases [81]. Patients with an
AD diagnosis have a 44% higher risk of falls compared to control patients, along with
impairments in various static and dynamic balance conditions. Activity level, gait, and
mobility are also affected, particularly during turning and balance maintenance tasks [82].

A study evaluated balance control in patients with AD, MCI, and moderate AD (MAD)
using the Balance Evaluation Systems Test (BESTest). The results show that the mild AD
group performs worse than the MCI patient group, while the MAD patient group has
the worst scores among the groups. This suggests that impairments in coordination and
balance are associated with disease progression and the development of Parkinsonian
symptoms commonly observed in AD patients [83].

The Timed Up and Go (TUG) test assesses balance impairment by measuring the time
it takes for a patient to rise from a chair without armrests, walk three meters, and sit back
down. Researchers have observed that patients with moderate MAD take longer and have
slower speeds on the TUG test compared to healthy control patients, indicating balance
issues [84].

Another study using the same test on patients with subjective cognitive impairment
(SCI), MCI, and AD shows an increase in task completion time related to disease progression.
Using the one-leg standing test (OLST), they have reported coordination impairments,
showing deterioration from SCI patients, and it is more acute in patients carrying the
APOE4 allele [81]. Finally, studies have associated the worst balance scores with patients
who have more significant cognitive impairment based on the TUG scale, the balance
subscale of the Performance-Oriented Mobility Assessment (POMA-B), and the Functional
Gait Assessment (FGA) [85]. Since balance deficits impact various motor tasks and patient
functionality and correlate with the severity of cognitive deficits, medical professionals
should evaluate these parameters in AD patients to assess disease progression and severity.

3.5. Impact on Postural Impairments

Posture is the position adopted by an individual involving neuromusculoskeletal
systems. As AD progresses, many motor symptoms become noticeable, including difficul-
ties in movement planning and postural stability. A study reported that postural stability
performance decreases by about 32% in older adults with cognitive impairment compared
to healthy patients, according to tests with open and closed eyes [86]. Meanwhile, another
study reported that AD patients exhibit greater postural instability and display distinct
kinetic profiles compared to healthy controls [87]. The complex process of maintaining
balance, which involves the coordination of multiple body systems, is notably disrupted in
AD patients, especially under conditions of visual suppression, increasing their risk of falls.
These findings highlight the crucial role of cognitive factors in postural control.

Regarding structural postural deficits, studies using animal models have found that
alterations such as hyperkyphosis and clasping in the advanced stages of the disease can
contribute to increased disability [52,53]. The results suggest that kinetic analysis may be
a valuable tool for identifying Alzheimer’s patients at higher risk of falls [87]. However,
more studies are needed to analyze postural alterations in the different stages of the disease
and the possible underlying pathways of these alterations. Table 2 summarizes different
findings regarding motor impairments in AD in clinical studies and animal models.
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Table 2. Motor impairments in Alzheimer’s disease: Findings from patients and animal models.

Characteristics of the Subjects Studied
Parameters Main Findings Author

/Year

Clinical Studies

NC, AD, LBD, and VD, both genders
(65–85 years) n = 1789 (Japan)

-Balance
-Posture

↑ Postural alterations in all types of
dementia.

-AD patients exhibit postural alterations in
dynamic and static balance tasks.

[88]
2024

Older adults with dementia n = 3774
(Korea) -Balance -Correlation of balance problems with the

risk of developing AD or VD.
[89]
2024

NC, MCI, and AD, both genders
(74.2 ± 5.7 years) n = 121 (USA)

-Correlation
of brain volumes

and motor
function

-Correlation of volumetric and cognitive
predictors of motor learning.

[90]
2023

NC, MCI, and AD, both genders
(55–84 years) n = 100

(Belgium)

-Vestibular
function
-Balance

↑ Vestibular deficits in groups with
increasing cognitive impairment.

↑ Alterations in dynamic and static balance
are related to cognitive impairment.

[85]
2023

MCI and AD, both genders (76.1 years)
n = 26 (USA)

-Vestibular function
-Balance

-Hippocampal
volume

↑ Vestibular alterations in both groups.
↓ Independence in instrumental activities

of daily living.
↓ The volume of the left hippocampus and
its correlation with vestibular alterations.

[91]
2022

Patients at risk of AD APOE ε4 carrier,
both genders (40–65 years)

n = 155 (USA)
-CRF

↑ Association of CRF with a slower decline
in the cognitive domains of verbal learning,

visual learning memory, and spatial
memory.

-Stronger effects among men than women.

[18]
2020

Mild AD, Moderate AD, both genders
n = 339 (Europe)

-Gait
-Risk of falls

↓ Relation of gait speed to cognitive deficit
only in the early stages of the disease.

-Decreased gait speed associated with an
increase in falls.

[50]
2020

NC, MCI, and AD, both genders
n = 295 (Korea) -Balance

↑ Balance associated with the cognitive
state.

↑ Balance alterations in APOE ϵ4 carriers.

[81]
2020

NC, Early AD, Mild AD, Moderate AD,
both genders (n = 90) (USA)

-Muscle mass
-Gait

-Strength

↓ Gait speed correlated with the stage of
the disease.

↑ Sarcopenia from early stages.
-Correlation of sarcopenia index with

cognitive status.

[8]
2018

Patients with AD, LBD, and VD, both
genders

n = 55 (Italy)

-Motor
functionality

-NP signs
-Cholinergic
dysfunction

↑ Locomotor impairment and
extrapyramidal signs.

Correlation of motor alterations with Aβ42
but not with t-tau and p-tau.

↑ Degeneration of the cholinergic system
mediated by amyloid pathology.

[30]
2018

Patients with early AD in both genders
(n = 40) (USA)

-CRF
-Brain volume

↓ CRF and its correlation with lower white
matter integrity in the fronto-occipital

fasciculus.

[92]
2016

NC, Moderate AD both genders
(72.9 ± 4.7 years)

n = 26 (USA)

-Balance
-Gait

↑ Alterations in static and dynamic balance.
↓ Gait speed and step length.

↑ Gait support time.

[84]
2015
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Table 2. Cont.

Characteristics of the Subjects Studied
Parameters Main Findings Author

/Year

Clinical Studies

NC, early AD, both genders (+60 years)
n = 90 (USA)

-CRF
-Brain volume

↓ CRF and correlation with progression of
dementia severity in AD.

↑ Brain and hippocampal atrophy in
patients with low CRF levels.

[66]
2012

NC, AD, both genders (68–90 years)
n = 50 (Australia)

-Balance
-Risk of falls

-Gait

↑ Risk of falls.
↑ Alterations in dynamic and static balance.
↑ Gait disturbances such as turning and

dual tasks.

[82]
2012

Animal model studies

Transgenic 3xTg-AD mice, females; 2, 4,
18, and 20 months

(n = 36)

-NP signs
-Muscle mass

-NMJ
-Mitochondrial

complexes at the
muscle level

↑ Aβ and tau in the brain, spinal cord,
nerve, and muscle in early and late stages.

↑ Muscle atrophy in the early stages
exacerbated in the advanced stages.

-No changes in contractile proteins or
motor neurons.

↑ Denervation in the NMJ in late stages.
↑ ROS at the muscle level and alterations in

mitochondrial respiratory complexes.
-Activation of the TGF-β pathway related

to atrophy.

[19]
2022

Transgenic 3xTg-AD mice, males; 6, 12,
and 16 months (n = 45)

-Posture
-Coordination

-Gait
-Balance

↓ Stride length, speed, and cadence from
an early age.

-Speed and cadence correlate with postural
alterations.

↑ Motor pathway alterations progress with
age.

↑ Alterations in posture and coordination
in advanced stages of the disease.

[93]
2022

Transgenic 3xTg-AD mice, males,
6 months (n = 30)

-Balance
-Coordination
-Sensorimotor

activity

↑ Balance disturbance.
↑ Coordination problems.

↓ Sensorimotor activity from the early
stages.

[94]
2022

Transgenic APP Tg2576 mice, females,
6 months (n = 10)

-NMJ
- Cholinergic

activity

↓ Neuronal innervation and synaptic area.
↓ Chat.

↓ Cholinergic innervation at the muscle
level.

[95]
2021

Transgenic 3xTg-AD mice, males; 6, 12
and 16 months (n = 45)

-Gait
-Strength
-Posture

-Hypertrophy
-Locomotor

activity
-Posture

↓ Muscle strength in the intermediate and
late stages of the disease.

-Changes in motor performance from the
early stages of the disease.

↓ Gait speed, cadence, and step length that
progress with the stages of the disease.

↑ Atrophy more evident in the late stages
of the disease.

↑ Presence of postural changes
(hyperkyphosis) in advanced stages.

[53]
2021

Transgenic 5xFAD mice, females, and
males, 3–16 months

-Locomotor
activity

-Balance
-Strength

-Coordination

↓ Locomotor activity, coordination,
strength, and balance from the

intermediate stages (9 months) and worsen
in the late stages (16 months).

-No differences between sexes.

[96]
2020
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Table 2. Cont.

Characteristics of the Subjects Studied
Parameters Main Findings Author

/Year

Clinical Studies

Transgenic TgCRND8 mice; 5, 7, 10, and
18 months (n = 24)

-NP signs
-Axonopathy

↑ Dilated corticospinal axons at 7 months
and age-dependent.

↑ βA in the spinal cord at 10 months.
↑ Axonal dystrophies and dense vesicles.

[97]
2019

Transgenic Tg4-42 mice, both genders, 3
and 7 months (n = 90)

-Coordination
-Balance

- Cerebellar
metabolic activity

↑ Balance and motor coordination
problems in aged mice.
↓ Locomotor activity.

↓ Cerebellar metabolism PET/MRI with
18F-FDG.

[98]
2019

Transgenic APP/PS mice, both genders;
3, 6, 9, 12, and 18 months (n = 60)

-Muscle mass
-Strength

-Myostatin

-Correlation of muscle atrophy and
memory impairment.

↑ Atrophy at 12 months but significant
from 9 months.

↑ Myostatin in gastrocnemius at 12 months.
-Removal of myostatin increased grip

strength and muscle mass.

[99]
2019

Transgenic APP/PS1 mice, 7–8 months
(n = 43) -NMJ

↑ Synaptic alterations at the muscular level.
↓ Quantum content and amplitude of

terminal plate potentials.
↑ Synaptic vesicle recycling time.

- Disordered neurosecretion and recycling
of synaptic vesicles at presynaptic

nerve endings.

[100]
2018

Transgenic McGill-R-Thy1-APP
transgenic rats, males, 4–7 months

(n = 20)

-Locomotor
activity

-Coordination
-Balance

-No changes in locomotor activity.
↑ Alterations in coordination and

static-dynamic balance.

[101]
2018

Transgenic TgCRND8 mice, both
genders, 2 months (n = 23)

-Balance
-Gait

-Synaptic
plasticity in

the cerebellum

↑ Motor coordination and balance deficits.
↓ Step length.

↑ Altered noradrenergic modulation at the
parallel synapse between fiber and

Purkinje cells.
↑ Dysfunction of cerebellar circuits.

[102]
2018

Transgenic 5xFAD, mice, both genders;
11, 19, and 27 weeks (n = 34)

-NP signs
-Axonopathy

and myelopathy

↑ βA in the spinal cord from 11 weeks and
age-dependent.

↑ βA in the gray and white matter of the
mouse spinal cord.

-No changes in motor neurons.
↑ Myelinopathy in the spinal cord in

old age.

[103]
2017
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Table 2. Cont.

Characteristics of the Subjects Studied
Parameters Main Findings Author

/Year

Clinical Studies

Transgenic 3xTg-AD mice, males; 3, 6,
and 12 months (n = 18)

-Muscle
-Mitochondrial alterations

-Cholinergic
system

↑ Alterations in
acetylcholinesterase–catalase activity from

3 months of age.
↑ βA muscle at 6 months and more

pronounced at 12.
↑ Alterations of mitochondrial respiratory

complexes at 6 months.

[104]
2015

Abbreviations: 3xTg-AD: Triple-transgenic Alzheimer’s disease model, Aβ42: Beta-amyloid peptide 42, AD:
Alzheimer’s disease, APP: Amyloid precursor protein, APP/PS: Amyloid precursor protein/presenilin, APP/PS1:
Amyloid precursor protein/presenilin 1, APOE ε4: Apolipoprotein E ε4 allele, Chat: Choline acetyltransferase,
CRF: Cardiorespiratory fitness, FDG: Fluorodeoxyglucose, LBD: Lewy body dementia, MCI: Mild cognitive
impairment, McGill-R-Thy1-APP: Transgenic rat model overexpressing human APP, MRI: Magnetic resonance
imaging, NMJ: Neuromuscular junction, NC: Normal cognition, NP signs: Neuropsychiatric signs, PET: Positron
emission tomography, ROS: Reactive oxygen species, TGF-β: Transforming growth factor beta, Tg2576: Transgenic
model overexpressing APP, Tg4-42: Transgenic model with APP mutations, TgCRND8: Transgenic model with
APP mutations, VD: Vascular dementia, 5xFAD: Transgenic model with five familial AD mutations, ↑: Increase,
and ↓: Decrease.

4. Potential Mechanisms Underlying Motor Impairments in Alzheimer’s Disease
4.1. Pathological Proteins and Motor Neural Pathways
4.1.1. Amyloid-β Pathology

Neurodegeneration induced by Aβ pathology may play a role in exacerbating neu-
romuscular and motor conditions associated with aging. In this regard, AD patients with
positive cerebral Aβ show motor deficits related to memory decline, suggesting a contribu-
tion of certain neurodegenerative processes, such as the atrophy of cortical brain areas [105].
However, motor deficits in disorders such as AD might precede neurodegeneration, as
suggested by findings in humans [106], but the exact mechanisms remain unclear. Evidence
shows that transgenic mouse models of AD, which express mutant Aβ in the human
brain, also exhibit abnormal accumulation of mutant Aβ in the spinal cord or skeletal
muscles [19,107–110]. Distinct alterations accompany these histopathological findings, in-
cluding a decrease in the number of cholinergic neurons, demyelination, a reduction in the
number of sciatic nerve fibers, denervation of neuromuscular junctions (NMJ), increased
lipid peroxidation, reduced mitochondrial activity, decreased oxygen consumption rates in
muscle fibers, increased transforming growth factor beta (TGF-β) signaling, sarcopenia,
and decreased contractile response [19,108,109].

Moreover, in 5xFAD mice, a progressive decline in motor behavior with age and
correlated Aβ accumulation in the spinal cord are evident, but not with intracellular Aβ

and neuronal loss in cortical layer V [110]. On the other hand, human studies have found
Aβ accumulation in the spinal cord, although only in about 50% of cases [111]. However,
researchers poorly understand the pathological role of Aβ accumulation in tissues such as
the spinal cord and skeletal muscle in AD, though it may contribute to these manifestations.

Interestingly, Aβ pE 3-42, a post-translational Aβ modification, may have more cy-
totoxic properties. A study using the TBA2 transgenic mouse model demonstrates the
immunoreactivity of this Aβ fragment in several regions, particularly in Purkinje cells in
the cerebellum, which are crucial for motor functions. This region also shows significant
neurodegeneration. The mice rapidly develop a clinical phenotype with the loss of motor
coordination, ataxia, and premature death [112].

Therefore, the excessive production of amyloid peptides in the brain may extend to
peripheral tissues and impact components of motor control, having significant implications
for the progression of motor deficits in AD.
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4.1.2. Tauopathy

Tau pathology also contributes to the onset and progression of motor deficits in AD,
as observed in transgenic mouse models of the disease, such as the JNPL3 and PS19
strains [113–115]. JNPL3 mice carry a mutation in the microtubule-associated protein tau
(MAPT) gene, which leads to early motor deficits that worsen with age, primarily due to
spinal cord alterations, such as tau NFTs, motor neuron loss, and astrogliosis [113]. PS19
mice carry a P301S mutation in the human 1N4R tau and exhibit motor deficits as early
as three months of age, progressing to paralysis between seven and ten months [114]. In
particular, motor dysfunction in PS19 mice is associated with widespread tauopathy in
the motor neurons of the spinal cord, resulting in their loss, axonal degeneration, and
astrogliosis and inducing structural changes in muscles and myofibrils that lead to motor
neuron denervation [114].

However, some authors have noted that evidence from these tauopathy mouse models
should be taken with caution, as studies in humans have not correlated the presence of tau
with motor deficits [116–118], and events such as spinal cord pathology and motor neuron
loss have been under-studied in AD patients [119]. This may suggest that tauopathies
might play a minor role in motor deficits in most cases of AD. However, further studies are
needed to explore the potential mechanisms by which tau can influence motor impairments
in the disease.

4.1.3. Mixed Proteinopathy

Mixed proteinopathy in AD refers to the coexistence of multiple types of misfolded
proteins in an individual, adding to the disease’s complexity and heterogeneity and pos-
sibly influencing the pathogenesis of the motor symptoms that develop in AD patients.
The main proteinopathies implicated in this condition are TDP-43 protein inclusions, the
accumulation of Aβ plaques and NFTs composed of hyperphosphorylated tau protein, and
α-synuclein (α-syn)-associated pathology [120].

α-Syn is both a soluble presynaptic protein and the main component of Lewy bodies
found in the brains of patients with Parkinson’s disease, a leading motor disorder [121]. A
postmortem study found that 51.8% of AD patients show α-syn inclusions, with 34% in the
substantia nigra pars compacta (SNpc) and 28% in the LC. Some of these patients exhibit
motor symptoms, suggesting a possible link between α-syn in these motor regions and the
motor symptoms in AD [122]. Another study involving 82 sporadic AD patients, diagnosed
according to the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD)
criteria, found α-syn-positive structures in 32% of these patients, with equal involvement
of the substantia nigra and amygdala complex [123]. In the transgenic hSyn/hAPP mouse
model, researchers observed α-syn inclusions in the temporal and cingulate cortices without
directly assessing motor areas. They also detected significant degeneration of cholinergic
neurons in the caudoputamen nucleus, accompanied by motor deficits starting at 6 months
of age. This suggests that hSyn/hAPP accelerates α-syn-dependent motor deficits in the
presence of Aβ [124]. Although studies have not yet explored the impact of α-syn on
muscle in AD models, synucleinopathy models suggest that α-syn has physiological and
pathological functions. Despite the apparent involvement of α-syn, its pathogenesis,
progression, and clinical impact in motor manifestations of AD remain unclear, emphasizing
the need for further studies to clarify these aspects [125].

TDP-43 protein, typically known for its accumulation in cytoplasmic inclusions in
amyotrophic lateral sclerosis, appears in phosphorylated and truncated forms—critical
features of the disease [126]. Recently, studies have identified TDP-43 inclusions in aging
and cognitive decline, particularly in AD, where these inclusions are present in up to 57%
of cases [127,128]. Models of TDP-43 progression in advanced stages reveal pathology
in motor regions, including the ventral striatum, basal ganglia, SNpc, and frontal cortex.
These findings suggest a potential link between TDP-43 pathology and motor impairment
in AD patients [127].
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In the 5xFAD transgenic AD mouse model, researchers found TDP-43 accumulating in
the inner mitochondrial membrane of cortical layer 5, though the specific cortical region
remains unidentified. This accumulation is linked to weight and muscle mass loss and
gait and balance impairments, suggesting that mitochondrial TDP-43 contributes to motor
dysfunction. Inhibiting this accumulation may help reverse these deficits [129]. Another
study showed that TDP-43 injection in APP/PS1∆E9 mice significantly increases amyloid
plaque load in the olfactory bulb, amygdala, and several cortical areas, including the
prefrontal, motor, and somatosensory cortices [130].

To date, human studies have not found a correlation between TDP-43 progression
and motor function in AD, representing an important area of opportunity. The above
evidence suggests that these mixed proteinopathies present in motor regions may interact
synergistically, contributing to motor dysfunction in AD [120]. These interactions remain
poorly understood in terms of their roles in neurodegeneration and motor dysfunction.
Further research is needed to clarify how these factors influence the motor alterations
observed in some AD patients.

4.2. Neuronal Degeneration and Synaptic Loss Impact on Motor Function

Neuronal degeneration in AD not only contributes to cognitive decline but may also
play a role in the onset of motor symptoms [131]. A human study found a significant
correlation between gait dysfunction in patients with advanced AD and atrophy in specific
brain areas, such as the motor cortex, middle cingulate gyrus, anterior insula, and anterior
lobe of the cerebellum, using volumetric and diffusion tensor imaging (DTI) through
magnetic resonance imaging (MRI) [132].

Cerebellar atrophy is another characteristic of sporadic AD, initially affecting parts
of the cerebellar regions connected to the default mode network. As atrophy extends
to the cerebellum’s anterior lobe, patients may exhibit motor dysfunctions, such as gait
deficiencies and limb coordination issues [133,134].

On the other hand, synaptic dysfunction is an early and critical feature of AD associ-
ated with cognitive impairment [135]. This dysfunction involves synapse loss, dendritic
abnormalities, and enlarged presynaptic terminals [136]. The progressive loss of synapses
may affect motor areas, leading to motor dysfunction in the later stages of AD [136]. An-
other meta-analysis examined the effects of AD on various synaptic markers in crucial
regions involved in motor control, including the motor cortex, cerebellum, and basal
ganglia [137].

Researchers observed decreased presynaptic markers in the motor cortex, including
synaptophysin and synaptobrevin. The cerebellum showed a more pronounced reduction
in cytoskeletal proteins, while postsynaptic markers vary in their decline. The basal ganglia
also reduce postsynaptic markers [137]. These findings underscore the significance of
synaptic dysfunction in these regions and its potential link to motor alterations in AD.

4.3. Vascular Changes and Cerebral Blood Flow Impact on Motor Function

AD causes significant neurovascular unit dysfunctions, including abnormal vasocon-
striction in arterioles, which reduces tissue oxygenation, and inappropriate vasodilation,
which diverts blood away from regions with high metabolic demand [138]. These changes
have been linked to damage in several motor areas, even in the early stages of the dis-
ease, leading to previously described motor alterations, notably gait disturbances such as
reduced speed, poor dual-task performance, and apraxia [139]. Moreover, white matter
pathologies that are typically caused by alterations in vascular tone, including myelin
pallor, reduced axonal density, blood–brain barrier breakdown, spongiosis, and dilated
perivascular spaces, are frequently observed in regions traversed by the corticospinal tract.
These changes are consistently associated with motor alterations and likely contribute to
the gait disturbances or generalized slowing observed in elderly AD patients [29,138,140].

CAA, characterized by the deposition of Aβ in the walls of cortical blood vessels,
is associated with widespread ischemic injury, including white matter lesions and mi-
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croinfarcts [141], in regions such as the supramarginal gyrus, superior frontal gyrus, and
inferior temporal gyrus. These regions are essential for cognitive and motor functions [142].
Researchers have linked CAA, neurovascular unit disturbances, and structural alterations
in blood vessels, such as perivascular edema, to impaired motor performance in an animal
model [143]. Vascular changes have also been identified in regions like the cerebellum and
striatum—areas particularly susceptible to small vessel disease and high blood pressure,
especially in meningeal vessels and occasionally in the brainstem. These alterations may
contribute to balance and coordination disturbances [138]. These findings highlight the
critical role of preserving vascular and white matter integrity to maintain motor function in
AD [144–146].

4.4. Motor Pathway Alterations Implicated in Motor Dysfunction

Numerous pyramidal and extrapyramidal motor deficits emerge during the course of
AD, accompanying cognitive decline [29]. Researchers have widely reported the deposition
of Aβ and NFTs in several cortical areas, including the primary motor cortex, supplemen-
tary motor areas, and the white matter of the spinal cord, particularly in the corticospinal
tract [36,147]. In animal models, studies found damage to corticospinal axons, showing
progressive dilation as the disease developed. They also observed that Aβ deposition in
the spinal cord co-localized with this axonal damage and associated projection areas in
TgCRND8 mice [97,148]. Another study observed the onset of amyloid plaques in both gray
and white matter of the spinal cord in the 5xFAD mouse model, with plaques primarily
deposited in the spinal white matter, particularly in the ventral part of the dorsal column
corresponding to the corticospinal tract in rodents [103].

Human studies reported neuropathological findings in early-onset familial AD due
to an N135S/PSEN1 mutation. These patients present cognitive and motor deficits, such
as spastic dysarthria, limb spasticity, and seizures. Autopsy findings include evidence of
corticospinal tract degeneration [147]. Another study identified tau immunoreactivity in
neurons of the anterior horn of the spinal cord in AD patients, noting a lesser extent in the
intermediate zone and posterior horn [45,46,149].

Using DTI, researchers identified increased geometric microstructural properties of
white matter fiber orientation around the lateral ventricles, particularly in the corpus
callosum and parts of the corticospinal tract in AD. This increase may result from neuronal
loss, glial swelling, and the subsequent impact on enlarged perivascular spaces [150].

Current findings indicate a complex interaction between the corticospinal tract and
motor dysfunction in AD, but further research is needed to fully understand its impact,
underlying mechanisms, and the rate of progression. Additionally, investigating other
motor pathways contributing to motor deficits is crucial, as the corticospinal tract is likely
not the only affected system. Identifying these additional tracts and understanding their
roles may offer a more comprehensive view of the motor deficits associated with AD and
inform more targeted therapeutic approaches.

4.5. Cholinergic Dysfunction

Acetylcholine (ACh) is a crucial neurotransmitter for cognitive processes in the brain,
but it also controls motor functions and modulates neuromuscular activity [151]. A decrease
in acetylcholinesterase (AChE) activity has been reported in free mitochondrial fractions
of skeletal muscle in 3xTg-AD mice at 3, 6, and 12 months old compared to age-matched
controls [104]. Additionally, the authors found that AChE activity in skeletal muscle
is similar between non-transgenic 12-month-old mice and 6-month-old 3xTg-AD mice,
indicating that AD pathology promotes the early decrease in muscle AChE activity that
manifests with aging. A recent report has provided the first evidence of cholinergic
denervation in the skeletal muscle of 6-month-old Tg2576 mice, accompanied by a reduction
in the expression of nicotinic ACh receptors (nAChRs) and choline acetyltransferase [95].
Although none of these studies evaluate motor functions, it is evident that AD promotes
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early impairments in ACh metabolism and signaling in skeletal muscle, which are crucial
for neuromuscular transmission.

Changes in the vesicular ACh transporter (vAChT), which is expressed in nerve termi-
nals and modulates the transport of this neurotransmitter, are essential for motor deficits
in AD. For example, a recent positron emission tomography study in healthy subjects
aged 20 to 80 who were administered an [18F]-labeled vAChT ligand found a relationship
between older age and reduced ligand binding to vAChT in several brain regions involved
in motor function control [152]. Previously, reductions in vAChT binding affinity with
other ligands, such as 5-aminobenzovesamicol, have also been found in the temporal cortex
of AD patients and elderly healthy subjects [153]. Furthermore, this study’s binding affinity
values in AD patients are positively correlated with choline acetyltransferase activity in this
brain region, suggesting deficits in ACh synthesis and transport. Previous research in mice
with reduced vAChT levels has yielded interesting data [154]. The authors demonstrated
decreased expression levels of these transporters in the cortex, striatum, spinal cord, and
hippocampus, leading to impaired neuromuscular transmission. This finding suggests that
vAChT deficiency disrupts ACh transport from the brain to the muscles. These findings
point to motor dysfunction in AD involving the disruption of cholinergic transmission
from the brain to the NMJ due to defects in ACh transport.

4.6. Peripheral Nerve and Neuromuscular Dysfunction

Aging affects communication between neurons and muscles primarily due to struc-
tural changes in the NMJ, including denervation, NMJ instability, increased axonal de-
generation, and motor neuron death. These changes are partly due to the alteration in
the denervation–reinnervation cycles of skeletal muscles, impacting the components of
NMJs [155]. Animal studies have found axonopathy and abnormalities in the microstruc-
tures of the myelin sheaths, including progressive and significant swelling at the peripheral
level, which suggests the presence of myelinopathy in the disease [97,103]. Myostatin, also
known as growth differentiation factor 8, is a cytokine of the skeletal muscle and a member
of the TGF-β superfamily that acts as a negative modulator of myogenesis, affecting muscle
growth and size [156,157]. Myostatin deficiency regulates skeletal muscle metabolism,
mitochondrial function, motor axonal growth, motor unit size, and muscle innervation;
this protein’s expression may significantly contribute to motor deficits in AD [158,159].
In APP/PS1 mice, increased myostatin expression in the gastrocnemius muscle produces
atrophy, while elimination through short hairpin RNA treatment promotes muscle mass
and grip strength [99].

Interestingly, a recent clinical study found an association between higher serum levels
of myostatin and lower Aβ ratios in the brains of older adults, suggesting that myostatin
may become a potential biomarker for AD risk [160]. Unfortunately, these studies did
not evaluate locomotor activity despite myostatin’s critical role in the neuromuscular
system. Future research should incorporate physical evaluations when studying myostatin
and other disease markers. According to a previous report, myostatin and its precursors
also colocalize with Aβ in skeletal muscle because they can form complexes with this
peptide [161]. Moreover, in vitro evidence shows that the precursor protein of myostatin
misfolds and spontaneously aggregates as amyloid-like fibrils, inducing cytotoxicity in
myoblasts [162]. The biological relevance of this event in AD remains unclear. However, it
might be significant, especially since myostatin is also expressed in neurons, axons, and
oligodendrocytes within the brain [163]. In this context, myostatin pathways represent an
important research niche that warrants further investigation to clarify their role in motor
deficits in AD patients. Figure 1 summarizes the potential mechanisms of motor damage
across various movement-related structures and their possible relationship with previously
described motor impairments.
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5. Strategies and Potential Treatments for Motor Impairments in Alzheimer’s Disease
5.1. Drug Therapies

Pharmacological treatment for AD varies according to disease progression, with the
primary goal of improving cognitive symptoms. The main drug classes used are AChE
inhibitors, such as donepezil, galantamine, and rivastigmine, and N-methyl-D-aspartate
(NMDA) receptor antagonists, such as memantine [164]. AChE inhibitors improve memory
by increasing ACh availability. Clinicians prescribe donepezil and rivastigmine for mild to
severe stages, while galantamine is recommended for mild to moderate cases. Memantine,
by contrast, reduces excitotoxic neuronal damage and is used for moderate to severe
cases [165]. Despite these treatments, their effects on non-cognitive symptoms, including
motor alterations, remain poorly studied.

5.1.1. AChE Inhibitors

In patients with early AD, treatment with donepezil restores mitochondrial respiratory
function in skeletal muscle compared to untreated subjects [166]. Given that mitochon-
drial dysfunction is highly associated with muscle atrophy [167] and plays a role in AD
development [168], donepezil may prevent muscle atrophy and neuromuscular alterations
modulating mitochondrial activity. Also, it improves the number of steps, stride length,
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and cadence after treatment in early AD patients [169] and reduces dual-task walking costs
and walking speed in elderly MCI patients [170].

On the other hand, transdermal rivastigmine improved gait velocity under dual-task
conditions in patients with mild to moderate AD [171]. However, it does not significantly
improve single-task gait parameters like stride length and cadence [171]. These findings
suggest that rivastigmine may enhance motor function in situations requiring cognitive
and motor coordination, such as walking while performing a secondary task like counting
or naming animals.

Galantamine has shown potential for treating motor deficits. In vAChT knockdown
mice with severe motor impairments in grip strength tasks, pretreatment with AChE
inhibitors, including galantamine and physostigmine, improved performance [154]. These
findings suggest that galantamine’s role as an allosteric modulator potentiating nAChR may
contribute to its positive effects on motor function [172]. Like rivastigmine, galantamine
improves motor performance in dual-task conditions that combine cognitive and motor
tasks [173].

A new drug therapy called RJx-01, which combines galantamine with metformin, has
improved muscle integrity and function markers. It also prevents NMJ denervation, helping
to maintain muscle mass and strength and ultimately enhancing physical performance in
mouse models of sarcopenia caused by accelerated aging [174].

These observations suggest that drugs capable of inhibiting AChE activity, particularly
in skeletal muscle, and restoring ACh levels and transport in the terminal nerves of NMJs
can be potentially effective against motor deficits in AD. However, there is no evidence
related to such mechanisms in mouse models of AD treated with this type of drug, and more
research is needed to fully understand their impact and optimize their use for improving
motor function in patients.

5.1.2. NMDA Receptor Antagonist

Glutamate is the primary excitatory neurotransmitter in the brain, and its dysregu-
lation leads to excitotoxicity, which is highly associated with memory impairment and
neuronal loss in AD [175]. Glutamate transporters are also expressed in the NMJ, sug-
gesting that glutamatergic signaling in skeletal muscle plays a role in motor functions.
However, the underlying mechanisms remain unclear [176]. Remarkably, no evidence is
focused on glutamatergic signaling in the NMJ for AD. At the central level, glutamate
excitotoxicity in AD is prevented by treatment with memantine, contributing to alleviating
cognitive impairment [177]. Interestingly, one study showed in the Tg4-42 transgenic AD
mouse model that chronic memantine partially benefits motor performance, reducing
latency to fall in the balance beam task [178]. More research is needed to determine the
potential of drugs targeting glutamatergic signaling on motor deficits in AD patients and
preclinical models.

Finally, due to the presence of neuropsychiatric alterations, antipsychotic and antiepileptic
medications may be prescribed [179]. However, motor deficits associated with these
treatments have been observed. For instance, valproic acid, carbamazepine, clonazepam,
and phenytoin are associated with movement disorders that can be alleviated by dose
reduction or discontinuation of these medications [180]. Similarly, antipsychotics induce
movement disorders in patients with AD, known as extrapyramidal side effects, some of
which, such as bradykinesia, may worsen with the coadministration of acetylcholinesterase
inhibitors [181]. Therefore, a better understanding of motor deficits or movement disorders
in AD is crucial for improving pharmacological interventions and reducing side effects and
the exacerbation of motor disturbances.

5.2. Non-Pharmacological Therapy for Motor Impairments in AD
5.2.1. Physical Exercise

Numerous studies have proposed physical exercise as a non-pharmacological ther-
apeutic measure that positively impacts the development of AD pathophysiology and is
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associated with a reduced risk of developing it [16,182–184]. Exercise benefits both cogni-
tive and non-cognitive symptoms of AD. It reduces neuropathological markers, promotes
angiogenesis, increases cerebral blood flow, and enhances neurogenesis, synaptogenesis,
and the production of neurotrophic factors, leading to cognitive improvements. These
changes translate into better functionality, psychological well-being, physical performance,
and overall quality of life for patients [16,185–187].

Additionally, exercise has shown positive effects on the motor aspects of AD. Studies
in patients demonstrate that exercise improves balance, gait, and strength, reduces the
number of falls, and increases muscle mass and bone mineral density [188–190]. Studies
in animal models have shown that exercise interventions improve sensorimotor activity
and increase muscle mass and nuclei, suggesting that exercise can restore various motor
impairments of AD [191]. Although more research is needed to clarify the mechanisms
of exercise on motor alterations, the significant role of exercise in preventing and treating
the disease is evident, highlighting the need to meet recommended levels of physical
activity [186,192].

5.2.2. Alternative Treatments

There is a growing trend toward using alternative therapies like acupuncture to
treat health issues, including AD [193]. Studies have shown that acupuncture alleviates
several hallmarks of AD, such as neuroinflammation, oxidative stress, cholinergic signaling,
tauopathy, and apoptosis in the brain [193]. These effects may contribute to cognitive
improvements, with some evidence suggesting that acupuncture may be more effective
and safer than conventional medications [194]. Neuroimaging studies also highlight
acupuncture’s efficacy in motor-associated networks [195]. However, only a few studies
have specifically explored acupuncture’s contribution to motor function in AD patients.
Based on these findings, acupuncture may hold promise for addressing motor deficits in
AD, but further research is needed.

On the other hand, the effects of other non-pharmacological therapies, such as photo-
biomodulation, transcranial magnetic stimulation, and transcranial direct current stimula-
tion, on the disease’s motor symptoms are unknown. In patients with Parkinson’s disease,
non-invasive brain stimulation may be associated with increased reserve in the motor
domain, helping to maintain motor functionality despite the progression of the disease,
representing an essential area for research and therapeutic application [196,197].

5.2.3. Dietary and Nutraceutical Interventions

Chronic dietary interventions (~14 months), such as caloric restriction or intermittent
fasting in 3xTg-AD mice, have also delayed AD pathology and increased locomotor ac-
tivity [198]. Additionally, dietary interventions can have a direct impact on preventing
sarcopenia in the disease [199], highlighting the benefits of nutritional interventions as
a complementary therapy for AD-related motor dysfunction. A study in 3xTg-AD mice
demonstrated that chronic treatment from the third to the twelfth month of age with the
epinutraceutical bioproduct nosustrophine produces several neuroprotective effects on AD
pathology and improved motor coordination [200]. Therefore, early interventions at differ-
ent stages of the disease with nutraceuticals and protein-enriched diets represent another
potential therapeutic strategy against motor symptoms by delaying disease progression
and counteracting muscle mass loss.

6. Perspectives and Conclusions

This review examines motor symptoms in AD, including deficits in gait, cardiorespi-
ratory fitness, strength, coordination, balance, and posture. Although these impairments
are more pronounced in advanced stages, clinicians can detect them early in AD. Early
identification and monitoring of motor symptoms in AD patients are crucial, as they may
reflect significant disruptions in both central and peripheral motor control pathways. Rec-
ognizing motor biomarkers and incorporating motor assessments into AD management
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could enhance diagnostic accuracy, improve patient outcomes, and reduce healthcare costs,
although further research in this underexplored area is needed.

Accurate in vivo diagnosis of AD remains a challenge, prompting the development of
various imaging techniques, plasma and neurochemical biomarkers, and cognitive batteries
for detection across disease stages. However, incorporating gait, CRF, strength, and muscle
mass assessments can provide an essential predictive tool for AD development. These
assessments offer several advantages, including cost-effectiveness, ease of application,
and low financial burden. As such, motor signs should be implemented as biomarkers
and integrated into clinical practice for staging AD. More importantly, they can predict
functionality and disability, identifying critical windows for prevention and treatment.

Addressing motor symptoms in AD remains a therapeutic challenge. Future treat-
ments or novel drug developments must target motor control pathways and include motor
behavior assessments to maximize efficacy. Focusing on motor outcomes can significantly
improve patients’ functionality and quality of life and reduce mortality. Targeting motor
impairments will help decrease disability and lower disease management costs. Primary
prevention initiatives are essential, as healthy lifestyle habits and physical exercise play a
critical role in mitigating risk factors for AD.
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