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Abstract: Objectives: Teachers’ intention understanding ability reflects their professional insight,
which is the basis for effective classroom teaching activities. However, the cognitive process and
brain mechanism of how teachers understand students’ action intention in class are still unclear.
Methods: This study used event-related potential (ERP) technology to explore the cognitive neural
differences in intention understanding ability among teachers with different levels of knowledge
and experience. The experiment used the comic strips paradigm to examine the ability of expert
and novice teachers to understand students’ normative and non-normative classroom actions under
different text prompts (“how” and “why”). Results: The results revealed that in the late time window,
expert teachers induced larger P300 and LPC amplitudes when they understood students’ classroom
action intentions, while the N250 amplitudes induced by novice teachers in the early time window
were significantly larger. In addition, for both types of teachers, when understanding the intentions
behind students’ normative actions, the N250 amplitude was the most significant, while the P300 and
LPC amplitudes were more significant for non-normative actions. Conclusions: This study found
that teachers at varying professional development stages had different time processing processes
in intention understanding ability, which supported teachers’ brain electrophysiological activities
related to social ability.

Keywords: expert–novice teacher; understanding of intentions; classroom actions; teachers’ professional
insight; event-related potential

1. Introduction

Teaching expertise includes the application of professional knowledge, problem-
solving, pattern recognition, insight, and other cognitive components. Among them,
insight, as one of the most important components of teaching expertise, is mainly reflected
in the understanding of students’ intentions [1]. Intention understanding refers to a cogni-
tive model in which individuals can observe and understand the psychological state behind
others’ actions [2,3]. It consists of four stages: first, identifying actions; second, representing
the target behavior; third, understanding the causal relationship between actions and
intentions; and finally, generating perceptions and physical re-experiences [4–6]. In such a
complex environment as the classroom, teachers have the challenge to notice and interpret
many different events, which is crucial for effective classroom management [7]. In turn,
classroom management has been shown to have an impact on student achievement [8–10].

1.1. Influence of Expertise Level on Individual Action Recognition

Expertise, broadly defined as the proficiency or skill developed through extensive
experience or training in a particular domain, varies significantly across fields [11,12]. In ed-
ucation, teaching expertise goes beyond mere subject knowledge; it encompasses the ability
to anticipate, understand, and respond to the dynamic and often unpredictable classroom
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environment. This includes recognizing patterns in student behaviors and making timely,
effective decisions to facilitate learning [13]. Compared to novices, experts demonstrate
superior cognitive processing when handling complex information within their area of ex-
pertise. They interpret and respond to classroom situations with greater speed and accuracy,
relying on their advanced cognitive frameworks and experience. For instance, research in
other domains, such as chess, has shown that professional players employ more sophis-
ticated visual search strategies and exhibit enhanced pattern recognition abilities [14–16].
Advanced chess players also show heightened alpha EEG (electroencephalogram) activ-
ity during complex tasks, compared to novices [17]. Similarly, in tennis, experts display
faster and stronger activation of ERP (event-related potential) components during motion
perception tasks [18]. However, the cognitive demands of teaching involve additional
layers of complexity, including real-time decision making, managing live interactions, and
responding to the continuous flow of classroom stimuli.

In the field of teacher education, there are obvious differences between experts and
novice teachers in their cognitive processing of classroom teaching situation informa-
tion [1,19–22]. Specifically, compared to novices, expert teachers can more quickly identify
events in the classroom [20], pay attention to students’ actions earlier [23], and prevent
interference from students’ disruptive behavior by identifying behavior and event cues
as soon as possible [7,22]. It can be seen that expertise level has a significant impact on
teachers’ identification of students’ classroom behaviors. However, current research mainly
focuses on revealing the behavioral differences in teachers’ recognition patterns of students’
classroom behaviors, while the cognitive neural processes of more advanced action recogni-
tion patterns, that is, how teachers understand students’ action intentions in the classroom,
have not been fully elucidated.

1.2. Research Paradigm of Action Intention Understanding

The experimental paradigm of action intention understanding is to use specific re-
search designs and methods to deeply study the observer’s cognitive process of the inten-
tion behind other people’s actions. In previous studies using the comic strip paradigm,
in which subjects were asked to infer relationships and behavioral attributes between
two pictures, each trial typically consisted of two pictures; the priming stimulus was an
action preparation picture, and the target stimulus was an action execution picture. This
design allows researchers to explore how the actions of the person being observed in the
picture are performed [24–26].

When we observe a target performing an action, we generally receive two pieces of
information; one is how the target performs the action, and the other is why the target
performs the action [24,25]. For example, based on the action of “brushing teeth”, we can
obtain information: why the action is performed (e.g., “clean teeth”) and how to perform
it (e.g., “use a toothbrush”). However, previous research focused more on the specific
execution methods and paid less attention to the reasons behind the execution of actions.
In order to fill this research gap, the current study further expanded the experimental
paradigm and aimed to deeply explore the cognitive neural differences in “how” and
“why” behaviors are performed to more fully reveal the cognitive process of action intention
understanding.

In terms of experimental stimulation, this study used how/why text prompts as
the priming stimulus, and students’ classroom actions as the observation objects for the
target stimulation. Wang et al. classified not listening carefully as students’ problematic
non-normative actions, while behaviors that promoted clear attention were classified as
students’ normative actions [21]. At the same time, teachers will subconsciously identify
the normativeness of students’ behavior [27]. Therefore, this study subdivided students’
classroom actions into normative and non-normative behaviors to further explore teachers’
understanding of students’ action intentions and the potential impact of different actions
on teachers’ intention understanding.
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1.3. Theoretical Basis and Neural Mechanism of Action Intention Understanding

Embodied cognition theory provides a new perspective for studying the cognitive
processes underlying teachers’ initial perception and deep understanding of students’
classroom actions [28–31]. According to this theory, individuals deepen their understanding
of others’ action intentions through both observation and personal experiences [4,6]. This
process is particularly relevant in teaching expertise, where teachers utilize their own
pedagogical experiences to interpret students’ behaviors, allowing for swift, accurate
decision making in real-time classroom environments [32]. Embodied cognition plays a
critical role in expertise development, as experts—unlike novices—can draw upon both
sensory input and their extensive experience to create richer cognitive representations of
observed actions. In teaching, this enables expert teachers to not only interpret students’
behaviors but also to predict potential outcomes and guide their instructional responses
accordingly [33]. This highlights the unique demands of teaching expertise, which involves
managing live, dynamic interactions and interpreting a continuous flow of stimuli in
real time.

From a neurological perspective, the inference of others’ intentions within the frame-
work of embodied cognition can be elucidated through millisecond-level event-related
potential (ERP) techniques, which reveal the temporal dynamics of intention understanding.
Research shows that the main ERP components related to intention understanding include
the N250, P300, and late positive component (LPC) [34]. The N250 visual ERP component
produces a more pronounced attention-enhancing effect in the face of familiar stimuli.
This means that in the early stages of brain processing, there is a stronger attention-driven
response to familiar stimuli to enhance its processing and perception [35]. It has been found
that the posterior parietal region of the brain significantly triggers the N250 component
200–250 ms after stimulus presentation, when individuals observe others performing rea-
sonable actions compared to unreasonable actions [36]. P300 reflects the brain’s perception
of novel stimuli and processing of negative intentions [37,38]. Huang et al., by using the
comic strips paradigm, asked participants to judge the intentions of two characters as
friendly cooperative, hostile conflict, and neutral actions in succession [34]. The results
showed that 300 ms after stimulus presentation, negative hostile intentions induced a more
positive P300 than positive friendly and neutral intentions. LPC appears at a later stage
after the stimulus is presented, usually after 400 ms. Studies have shown that LPC is closely
related to processes such as emotional processing and social cognition [39]. LPC index is
widely used in the task of identifying communicative intention. Wang et al. found that the
amplitude of LPC induced by understanding communicative intention in an individual’s
brain was significantly larger than that of personal intention, while the amplitude of LPC
induced by personal intention was larger than that of physical intention [40]. This neural
evidence underscores the role of embodied cognition in understanding others’ intentions,
with specific ERP components reflecting distinct stages of cognitive processing during
intention understanding.

1.4. Study Hypotheses

In order to investigate the behavioral and cognitive neural differences of teachers
with different expertise level in understanding students’ classroom action intentions, we
recruited expert and novice teachers and linked the “how/why” text prompts with action
pictures, so that teachers were asked to infer students’ classroom action intentions, and we
used event-related potential technology to explore the neural mechanisms of this process.
Hence, we proposed four hypotheses:

Hypothesis 1. Based on the literature review, it is predicted that expert teachers, being more
familiar with classroom environments, will have faster reaction times and higher accuracy compared
to novice teachers when determining how and why students perform classroom actions. It is also
expected that expert teachers will demonstrate greater comprehensibility of students’ classroom
behaviors, both before and after the experiment.
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Hypothesis 2. Due to their higher professional expertise, expert teachers are expected to exhibit
significantly different ERP results compared to novice teachers, characterized by stronger neural
activation in response to understanding classroom action intentions.

Hypothesis 3. In the early stage of stimulus processing, expert teachers are anticipated to show
a stronger N250 amplitude for normative actions compared to non-normative actions, reflecting
their familiarity with normative behavior. At later stages of stimulus processing, the amplitudes of
P300 and LPC for non-normative actions are expected to be significantly larger than for normative
actions, with this effect being more pronounced for expert teachers due to their greater experience in
managing classroom behaviors.

Hypothesis 4. There will be a significant interaction between expertise level, text prompts, action
type, and brain regions/hemispheres, with expert teachers exhibiting more distinct neural patterns
in response to different classroom action types compared to novice teachers.

2. Materials and Methods
2.1. Participants

The study employed a 2 (expertise level: expert vs. novice) × 2 (text prompt: how vs.
why) × 2 (action type: normative vs. non-normative) mixed experimental design for the
behavioral data, with expertise level as a between-subjects variable and text prompt and
action type as within-subjects variables. For the EEG data analysis, we used a 2 (expertise
level) × 2 (action type/text prompt) × 3 (brain region) × 3 (hemisphere) design, reflecting
the full complexity of the experiment.

Initially, 46 teachers were recruited, but 8 participants were excluded due to large
artifacts in their EEG data [41], resulting in a final sample of 38 participants. Power
calculations using G*Power 3.1 software, with a more conservative effect size of f = 0.15,
indicated a minimum required sample size of 26 participants (13 per group) to achieve
adequate power (α = 0.05, power = 0.80; [42,43]). Our final sample of 38 participants
provides sufficient power for both behavioral and EEG analyses. All participants were right-
handed and had normal or corrected-to-normal vision. The ethics committee approved
the study, which was conducted according to the principles outlined in the Declaration
of Helsinki.

2.1.1. Expert Teachers

In accordance with previous studies [44–46], teachers were classified as experts if
they met the following criteria. (1) They were identified by school leaders or educational
authorities based on relevant characteristics of expert teachers, and (2) they had at least
ten years of teaching experience and were approved by the local government to hold a
professional title of Grade I or above. Expert teachers were selected from schools across
various cities in Zhejiang Province, China.

In this study, teachers were categorized as experts based on several established criteria
utilized by educational authorities. Expert teachers typically exhibit the following character-
istics: teaching experience: a minimum of ten years of teaching experience in their subject
area; degree requirements: advanced degrees (master’s or higher) in education or related
fields; professional development: active participation in ongoing professional development
programs; effectiveness in teaching: demonstrated effectiveness in enhancing student learn-
ing outcomes, often evaluated through standardized test scores and qualitative assessments
from peers and supervisors.

2.1.2. Novice Teachers

Novice teachers were selected according to the screening criteria established by ex-
isting national and international studies [45,46]. This group comprised senior college
students and newly qualified teachers. Senior college students were enrolled in education-
focused universities, had undergone teacher training, and completed over three months
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of practical experience in schools. Newly qualified teachers were classified as novices
based on established criteria set by educational authorities, indicating they had been in the
profession for less than five years. The senior students primarily attended normal universi-
ties, while the novice teachers were employed in various schools across different cities in
Zhejiang Province.

2.2. Materials

To enhance ecological validity, the experimental materials were taken with digital
cameras. Extant literature has shown that compared with cartoon pictures, photos of
real people have higher ecological validity [47–49]. The student actor was a male middle
school student (age = 15 years, height = 168 cm), and his hairstyle, figure, and dress
conformed to the typical characteristics of Chinese students. Students’ normative (e.g.,
sitting upright, listening attentively, raising their hand to speak) and non-normative (e.g.,
sleeping, playing on mobile phones, whispering) actions in class were mainly classified
according to Ding et al. [50]. The materials included 150 initial photos, half of which were
normative actions and half of which were non-normative actions. To exclude differences in
participants’ electroencephalographic (EEG) data caused by different physical attributes
and task difficulty levels, facial expressions and gaze direction were blurred and the
character’s body orientation was matched. All photos were sized to 472 × 354 pixels and
matched for luminance, contrast, and color saturation, using Adobe Photoshop 7.0. Twenty
teachers (age range: 26–43 years) were selected to evaluate the difficulty and normality
degrees of actions (score range: 1–5). No significant differences were found in the difficulty
(p > 0.05), but a significant difference was identified in the normality (p < 0.001). Finally,
70 pictures that met the requirements were selected (normative: 36, non-normative: 34, see
Figure 1; specific information on materials is shown in Appendix A).

Brain Sci. 2024, 14, x FOR PEER REVIEW 5 of 19 
 

of practical experience in schools. Newly qualified teachers were classified as novices 
based on established criteria set by educational authorities, indicating they had been in 
the profession for less than five years. The senior students primarily attended normal uni-
versities, while the novice teachers were employed in various schools across different cit-
ies in Zhejiang Province. 

2.2. Materials 
To enhance ecological validity, the experimental materials were taken with digital 

cameras. Extant literature has shown that compared with cartoon pictures, photos of real 
people have higher ecological validity [47–49]. The student actor was a male middle school 
student (age = 15 years, height = 168 cm), and his hairstyle, figure, and dress conformed 
to the typical characteristics of Chinese students. Students’ normative (e.g., sitting upright, 
listening attentively, raising their hand to speak) and non-normative (e.g., sleeping, play-
ing on mobile phones, whispering) actions in class were mainly classified according to 
Ding et al. [50]. The materials included 150 initial photos, half of which were normative 
actions and half of which were non-normative actions. To exclude differences in partici-
pants’ electroencephalographic (EEG) data caused by different physical attributes and 
task difficulty levels, facial expressions and gaze direction were blurred and the charac-
ter’s body orientation was matched. All photos were sized to 472 × 354 pixels and matched 
for luminance, contrast, and color saturation, using Adobe Photoshop 7.0. Twenty teach-
ers (age range: 26–43 years) were selected to evaluate the difficulty and normality degrees 
of actions (score range: 1–5). No significant differences were found in the difficulty (p > 
0.05), but a significant difference was identified in the normality (p < 0.001). Finally, 70 
pictures that met the requirements were selected (normative: 36, non-normative: 34, see 
Figure 1; specific information on materials is shown in Appendix A). 

  
(a) (b) 

Figure 1. Examples of experimental materials: (a) normative action; (b) non-normative action. 

2.3. Subjective Measurements 
Before the task, all participants were asked to report their individual teaching-related 

experience (e.g., teaching experience, professional title, teaching subject) to assess their 
professional competence, rate the comprehensibility of the student’s classroom actions (1 
= incomprehension, 7 = comprehension), and complete the Chinese version of the Inter-
personal Reactivity Index (IRI-C; Cronbach’s α of the IRI-C ranges between 0.61 and 0.85 
[50]) to evaluate their dispositional empathy, which consists of four dimensions: Empathic 
Concern (EC), Perspective Taking (PT), Fantasy (FS), and Personal Distress (PD). (1) Em-
pathic Concern (EC) is the tendency of individuals to respond with sympathy and atten-
tion to those in distress; (2) Perspective Taking (PT) is the tendency of individuals to take 
the ideas of others; (3) Fantasy (FS) is the individual’s empathetic response to a fictional 
character; (4) Personal Distress (PD) is the anxiety and discomfort that individuals expe-
rience when they see others suffering [51]. After the task, participants were asked to rate 

Figure 1. Examples of experimental materials: (a) normative action; (b) non-normative action.

2.3. Subjective Measurements

Before the task, all participants were asked to report their individual teaching-related
experience (e.g., teaching experience, professional title, teaching subject) to assess their
professional competence, rate the comprehensibility of the student’s classroom actions
(1 = incomprehension, 7 = comprehension), and complete the Chinese version of the
Interpersonal Reactivity Index (IRI-C; Cronbach’s α of the IRI-C ranges between 0.61
and 0.85 [50]) to evaluate their dispositional empathy, which consists of four dimensions:
Empathic Concern (EC), Perspective Taking (PT), Fantasy (FS), and Personal Distress (PD).
(1) Empathic Concern (EC) is the tendency of individuals to respond with sympathy and
attention to those in distress; (2) Perspective Taking (PT) is the tendency of individuals
to take the ideas of others; (3) Fantasy (FS) is the individual’s empathetic response to a
fictional character; (4) Personal Distress (PD) is the anxiety and discomfort that individuals
experience when they see others suffering [51]. After the task, participants were asked to
rate their comprehension of the student’s classroom actions again to compare whether their
ability to comprehend the student’s actions improved following the experiment.
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2.4. Experimental Procedure

All participants were required to complete 8 practice trials before the formal experi-
ment, and 8 action pictures were used as practice materials rather than formal experimental
materials. In each trial, a fixation point (“+”) of 500 ms was displayed first to remind
participants to concentrate and begin the experiment. Then, a 1500 ms text prompt was
presented. At the “how” level, participants needed to consider how the student executed
the action in class (e.g., “take out the pen from the pencil case”), and at the “why” level,
they needed to consider why the student executed the action in class (e.g., “the reason to
take out a pen is to take notes”). Then, participants were shown pictures of normative or
non-normative classroom actions for 2000 ms. Participants were asked to press “1” on the
keyboard if the classroom action was normative and “2” if it was non-normative. Finally,
participants were asked to rate the comprehensibility of the action on a seven-point scale
based on the text prompt (1 = incomprehension, 7 = comprehension), and then press the
key corresponding to their rating to move to the next trial (Figure 2). The presentation
order was pseudo-random, with a total of four blocks in the formal experiments, with
64 trials under each block (32 trials each for normative and non-normative actions). The
entire experiment lasted 30–40 min; the study used E-prime 3.0 for programming. A Dell
LED computer monitor (13.3 inches, 60 Hz refresh rate, 2560 × 1600 resolution) was used.
Participants were 50 cm away from the screen.
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Figure 2. Experimental procedure used in the study. Each trial consisted of a specific sequence: a
fixation point was presented for 500 ms, followed by either a “how” or “why” text prompt, which
was displayed for 1500 ms in a random order across trials. Subsequently, photographs of students
engaged in normative and non-normative actions were presented for 2000 ms. After viewing the
photographs, participants made a key press judgment regarding the actions and then rated the
comprehensibility of both the text prompt and the student photographs.

2.5. Electrophysiological Recording and Analysis

EEG data were recorded using the 64-channel Brain Product equipment according
to the extended international 10–20 system. The sampling frequency was 500 Hz, AC
acquisition was adopted, the filter bandpass was 0.1~100 Hz, and the impedance between
all electrodes and scalp was maintained below 5 kΩ. During EEG recording, all electrodes
used FCz as the reference electrode. During offline analysis, they were converted to whole
brain averages for re-reference. Offline signal processing was performed using EEGLAB
13.0 and the ERPLAB Toolbox v10.04 [52,53]. A filter with a bandpass of 0.1~30 Hz was
used to remove high-frequency noise. Independent component analysis (ICA) was used
to reject blinks and eye movement artifacts. All trials in which EEG voltages exceeded a
threshold of ±75 µV were excluded from the analysis. EEG data were segmented in epochs
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from 200 ms before to 1000 ms after stimulus onset. The moments when the picture of the
intended level of the starting stimulus and picture of the action type of the target stimulus
appeared were marked. According to the experimental conditions, the ERP waveform was
superimposed to obtain the average total waveform of each participant.

Based on previous research on action intention understanding [34,40,49,54], we con-
ducted an observation and analysis of the average EEG data across all trials. From this
analysis, we selected nine electrode sites for further examination: F3, Fz, F4, C3, Cz, C4,
P3, Pz, and P4. The time window of the N250 wave was 170–270 ms after stimulation, the
time window of the P300 wave was 270–450 ms, and the LPC time wave window was
450–750 ms. Since early components are relatively sharp and late components are relatively
gentle, early components were measured by the peak value and LPC was measured by
average amplitude.

We utilized SPSS 22.0 to perform repeated measures ANOVAs with a 2 (expertise
level: expert vs. novice) × 2 (text prompt: how vs. why) × 2 (action type: normative
vs. non-normative) design. The dependent variables included response time, accuracy,
and comprehensibility for the behavioral data. For EEG data, to avoid false positive
results, we analyzed the EEG data in two parts, and we excluded trials with errors from
the EEG data to maintain the quality and accuracy of the results. In the first part, a
2 × 2 × 3 × 3 repeated measures analysis of variance (ANOVA) was conducted on N250,
P300, and LPC, with expertise level as the between-subjects factor variable, and action
type, brain region, and hemisphere as within-subjects factor variables. In the second part, a
2 × 2 × 3 × 3 repeated measures ANOVA was performed on N250, P300, and LPC, with
expertise level as the between-subjects factor variable, and text prompt, brain region, and
hemisphere as within-subjects factor variables. The Greenhouse–Geisser correction was
applied to adjust the degrees of freedom when the assumptions of sphericity were violated.
Post hoc comparisons were conducted using ANOVA with a False Discovery Rate (FDR)
adjustment based on the adjusted p-values.

3. Results
3.1. Subjective Measurements

The independent samples t-test results showed significant differences between the
expert and novice teachers in the three dimensions of the IRI-C scale (Table 1); expert
teachers scored significantly higher than novice teachers in perspective taking (PT), fantasy
(FS), and empathy concern (EC; ps < 0.001), but no significant difference was found in
personal distress (PD) (p = 0.500). A two-factor repeated measures ANOVA was conducted
on expertise level and comprehension of students’ classroom actions before and after the
experiment. The results showed that the main effects of expertise level and test time were
significant (ps < 0.05). Expert teachers scored significantly higher than novice teachers
for comprehensibility of students’ classroom actions, and the degree of comprehensibility
of students’ classroom actions was significantly higher after the experiment compared
with before.

Table 1. Descriptive statistics for psychological measurements (M ± SD).

Expert Teacher Novice Teacher

M ± SD M ± SD

PT 1 21.05 ± 2.272 17.89 ± 2.923
FS 22.32 ± 3.845 17.84 ± 2.794
EC 24.37 ± 3.515 18.47 ± 1.775
PD 15.74 ± 4.012 14.89 ± 3.588

Pre-test 5.68 ± 0.946 4.74 ± 0.991
Post-test 6.11 ± 0.737 5.11 ± 1.049

1 Pre- and Post-test in the comprehensibility of classroom action. PT: perspective taking; FS: fantasy; EC: empathy
concern; PD: personal distress.
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The interaction between expertise level and test time was not significant, F(1, 36) = 0.019,
p = 0.890, ηp

2 = 0.001 (Table 2). In summary, the subjective measurement report results
support part of Hypothesis 1, that is, expert teachers have a higher comprehensibility of
students’ classroom action before and after the experiment than novice teachers.

Table 2. Two-factor repeated measures ANOVA for expertise level and test time.

SS df MS F p ηp
2

Expertise level 18.02 1 18.02 16.70 0.001 *** 0.32
Test time 2.96 1 2.96 4.34 0.044 * 0.11
Expertise level × Test time 0.01 1 0.01 0.02 0.894 0.001

* means p < 0.05, the difference is significant; *** means p < 0.001, the difference is extremely significant.

3.2. Behavioral Results

Table 3 shows the results for reaction time, accuracy, and comprehensibility of text
prompts on actions. For reaction time, the main effect of text prompt was significant,
F(1, 36) = 4.93, p < 0.05, ηp

2 = 0.12, with reactions being faster at the “how” level
(733 ± 195.47 ms) than the “why” level (756.96 ± 209.07 ms). Regarding accuracy rate, the
results showed a significant main effect of action type, F(1, 36) = 13.17, p < 0.01, ηp

2 = 0.27,
with the accuracy rate being higher for non-normative actions (95.89 ± 5.31%), compared
with normative actions (87.64 ± 12.02%). The interaction between text prompt and action
type was significant, F(1, 36) = 5.76, p < 0.05, ηp

2 = 0.14. Simple effects analysis showed
that the accuracy rate was higher at the “how” level (89.06 ± 1.83%) than at the “why”
level (86.23 ± 2.10%) for normative actions. For non-normative actions, the difference
between levels was not significant (p = 0.260). The comprehensibility of text prompts on
actions results showed that the main effect of text prompt was significant, F(1, 36) = 11.18,
p < 0.01, ηp

2 = 0.24 (Table 3), with comprehensibility being higher at the “how” level
(6.08 ± 0.96) than the “why” level (5.93 ± 1.05). The main effect of action type was significant,
F(1, 36) = 22.48, p < 0.001, ηp

2 = 0.38, with comprehensibility being higher for normative ac-
tions (6.45 ± 0.55) than for non-normative actions (5.56 ± 1.15). The main effect of expertise
level is not significant, F(1, 36) = 2.133, p = 0.153, ηp

2 = 0.056. The three-factor interaction is
not significant (ps > 0.05).

Table 3. Reaction time (ms), accuracy (%), and comprehensibility results of two groups.

Expert (M ± SD) Novice (M ± SD)

Normative Non-Normative Normative Non-Normative

how-RT 717.03 ± 145.69 768.39 ± 145.74 722.98 ± 232.18 723.60 ± 247.07
why-RT 754.28 ± 160.02 774.69 ± 144.69 744.68 ± 258.22 754.19 ± 261.54

how-ACC 88.08 ± 13.28 83.34 ± 7.00 90.05 ± 8.78 97.70 ± 2.29
why-ACC 84.95 ± 12.23 95.07 ± 6.32 87.50 ± 13.59 97.45 ± 3.13

how-comprehensibility 6.67 ± 0.43 5.76 ± 0.94 6.37 ± 0.53 5.52 ± 1.27
why-comprehensibility 6.56 ± 0.52 5.67 ± 1.02 6.21 ± 0.64 5.29 ± 1.36

In contrast, these results do not support Hypothesis 1, that expert and novice teachers
differ in response time and accuracy. The reason for this result may be that during the
experimental procedures, both types of teachers combined text prompts to form rapid
explicit behavior judgments on students’ actions. Therefore, it is necessary to further
examine the time processing process of the two types of teachers’ intention understanding
based on EEG results.

3.3. Electrophysiological Results

To examine the effects of expertise level and action type on EEG activity, we conducted
a 2 × 2 × 3 × 3 repeated measures analysis of variance (ANOVA) on the N250, P300, and
LPC components. Expertise level was treated as the between-subjects factor, while action
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type, brain region, and hemisphere were included as within-subject factors. The specific
results are as follows.

3.3.1. N250 Component

As shown in Figure 3, the N250 component was observed in the 170–270 ms time win-
dow. Novice teachers exhibited significantly larger N250 amplitudes (0.36 ± 0.22 µV) com-
pared to expert teachers (1.65 ± 0.22 µV), with a main effect of expertise level,
F(1, 36) = 17.23, p < 0.001, ηp

2 = 0.32. Normative actions also induced larger N250 ampli-
tudes (0.92 ± 0.16 µV) than non-normative actions (1.90 ± 0.16 µV), with a main effect of
action type, F(1, 36) = 4.70, p = 0.037, ηp

2 = 0.12.
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Significant interactions between expertise level and brain region (F(2, 72) = 3.70,
p = 0.300, ηp

2 = 0.09) showed that novice teachers elicited more negative N250 amplitudes
in frontal and central regions compared to expert teachers (ps < 0.001). Furthermore, the
interaction of action type and brain region (F(2, 72) = 4.08, p = 0.021, ηp

2 = 0.10) and action
type and brain hemisphere (F(2, 72) = 7.36, p < 0.001, ηp

2 = 0.17) were significant. In the
frontal and central region, normative actions induced a more negative N250 amplitude
than non-normative actions (ps < 0.001). Normative actions elicited larger N250 amplitudes
in the left hemisphere and central line (ps < 0.001), while non-normative actions induced
stronger amplitudes in the right hemisphere (p < 0.05).

3.3.2. P300 Component

As shown in Figure 3, the P300 component was observed within the 270–450 ms time
window. Expert teachers exhibited significantly larger P300 amplitudes (1.63 ± 0.21 µV)
compared to novice teachers (0.64 ± 0.21 µV), demonstrating a main effect of expertise
level, F(1, 36) = 11.37, p < 0.001, ηp

2 = 0.24. Additionally, non-normative actions resulted in
larger P300 amplitudes (1.26 ± 0.16 µV) than normative actions (1.01 ± 0.15 µV), with a
main effect of action type, F(1, 36) = 8.94, p = 0.005, ηp

2 = 0.20.
Significant interactions were observed between expertise level and brain region,

F(2, 72) = 4.21, p < 0.05, ηp
2 = 0.11; simple effects analysis showed that expert teachers

elicited larger P300 amplitudes in the frontal and central regions compared to novice teachers
(ps < 0.01). Furthermore, the interactions of action type and brain region (F(2, 72) = 10.92,
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p < 0.001, ηp
2 = 0.23) and action type and brain hemisphere (F(2, 72) = 21.69, p < 0.001,

ηp
2 = 0.38) were also significant. Specifically, in the frontal and central regions, non-

normative actions induced larger P300 amplitudes compared to normative actions
(ps < 0.001). Non-normative actions elicited larger P300 amplitudes in the left hemisphere
and along the central line (ps < 0.001), while normative actions resulted in stronger am-
plitudes in the right hemisphere (p < 0.05). Interestingly, the interaction of action type,
brain hemisphere, and brain region was significant, F(4, 144) = 3.34, p = 0.012, ηp

2 = 0.09.
At a certain electrode points (F3, Fz, C3, Cz), non-normative actions induced larger P300
amplitudes than normative actions (ps < 0.001), while at C4 and P4, normative actions
induced larger P300 amplitudes than non-normative actions (ps < 0.001).

3.3.3. Late Positive Component

As shown in Figure 3, LPC was observed within the 270–450 ms time window. Expert
teachers exhibited significantly larger LPC amplitudes (1.07 ± 0.20 µV) compared to novice
teachers (0.50 ± 0.20 µV), demonstrating a main effect of expertise level, F(1, 36) = 3.85,
p = 0.048, ηp

2 = 0.097. Additionally, non-normative actions resulted in larger LPC ampli-
tudes (0.99 ± 0.16 µV) than normative actions (0.59 ± 0.15 µV), with a main effect of action
type, F(1, 36) = 14.10, p = 0.001, ηp

2 = 0.28.
Significant interactions were observed between expertise level and action type,

F (1, 36) = 3.92, p = 0.045, ηp
2 = 0.105; simple effects analysis showed that expert teachers

elicited larger LPC amplitudes in the normative action condition compared to
novice teachers (p < 0.05). Furthermore, the interactions of action type and brain region
(F(2, 72) = 8.86, p < 0.001, ηp

2 = 0.20) and action type and brain hemisphere
(F(2, 72) = 18.67, p < 0.001, ηp

2 = 0.34) were also significant. Specifically, in the frontal
and central regions, non-normative actions induced larger LPC amplitudes compared to
normative actions (ps < 0.001). Non-normative actions elicited larger LPC amplitudes in the
left hemisphere, center line and right hemisphere (ps < 0.05). Surprisingly, the interaction of
action type, brain hemisphere, and brain region was significant, F(4, 144) = 3.83, p = 0.005,
ηp

2 = 0.10. At certain electrode points (F3, Fz, C3, Cz), non-normative actions induced
larger LPC amplitudes than normative actions (ps < 0.001), while at P4, normative actions
induced larger LPC amplitudes than non-normative actions (ps < 0.001). Consistent with
the previous P300 amplitude, in the left fronto-central area of the brain, especially at the F3,
Fz, C3, and Cz electrode points, the LPC amplitude of expert teachers was more positive
than that of novice teachers. The LPC amplitude of teachers’ understanding of students’
intentions for non-normative actions was more positive than that for normative actions.

Overall, the ANOVA analysis of the first four factors supports Hypotheses 2, 3, and
partially Hypothesis 4. Significant differences in ERP results were found between expert
and novice teachers when interpreting students’ classroom action intentions. Specifically,
normative actions elicited a more pronounced N250 amplitude than non-normative actions,
while non-normative actions led to larger P300 and LPC amplitudes compared to normative
ones. Moreover, there was a significant interaction between expertise level, action type,
and brain region.

To examine the effects of expertise level and text prompts on EEG activity, we con-
ducted a second 2 × 2 × 3 × 3 repeated measures analysis of variance (ANOVA) on the
N250, P300, and LPC components. Expertise level was treated as the between-subjects
factor, while text prompts, brain region, and hemisphere were included as within-subject
factors. The specific results are as follows.

3.3.4. N250 (A Second Repeated Measures ANOVA)

The results, as shown in Figure 4, indicate that the main effects of expertise level and
text prompts were not significant (ps > 0.05). However, there was a significant interaction
between expertise level and brain region, F(2, 72) = 8.85, p < 0.001, ηp

2 = 0.20. Simple effects
analysis revealed that novice teachers exhibited a larger N250 amplitude in the frontal
region compared to expert teachers (p < 0.001), while expert teachers showed a larger N250
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amplitude in the parietal region (p < 0.05), with no significant differences in the central
region. Moreover, the interaction of expertise level, brain region, and brain hemisphere
was significant, F(4, 144) = 3.04, p = 0.19, ηp

2 = 0.08. In the frontal lobes, at the F3 and F4
electrode points, novice teachers had a more negative N250 amplitude than expert teachers
(ps < 0.05), while expert teachers had a larger N250 amplitude at the P3 and P4 electrode
points (ps < 0.05). Like the first four-factor ANOVA analysis, whether text prompts are
used as priming stimuli or student action types are used as target stimuli, in the frontal
lobes of the brain (especially at the F3 and F4 electrode points), it was found that teachers’
expertise levels yielded differences in understanding students’ classroom action intention,
and the N250 amplitude of novice teachers was more negative than that of expert teachers.
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3.3.5. P300 (A Second Repeated Measures ANOVA)

As shown in Figure 4, the results indicated a significant main effect of text prompts,
F(1, 36) = 5.76, p = 0.022, ηp

2 = 0.13. The “why” prompt (0.93 ± 0.12 µV) elicited larger
P300 amplitudes than the “how” prompt (0.73 ± 0.13 µV; p < 0.01). There was also a
significant interaction between text prompt, brain region, and hemisphere, F(2, 72) = 6.21,
p < 0.001, ηp

2 = 0.15. Simple effects analysis showed that the “why” prompt induced
larger P300 amplitudes at the F3, C3, and P3 electrodes compared to the “how” prompt
(ps < 0.05), while at the F4 electrode, the “how” prompt induced a larger P300 amplitude
than the “why” prompt (p < 0.001). Similar to the findings from the four-factor ANOVA
analysis, in the left hemisphere, particularly at the F3, C3, and P3 electrode points, the P300
amplitude for understanding why students perform certain actions was more positive than
for understanding how they perform those actions.

3.3.6. LPC (A Second Repeated Measures ANOVA)

As shown in Figure 5, the results revealed a significant main effect of expertise level,
F(1, 36) = 4.41, p = 0.043, ηp

2 = 0.11, where expert teachers (1.07 ± 0.13 µV) exhibited
larger LPC amplitudes than novice teachers (−0.23 ± 0.13 µV; p < 0.05). The interaction
between expertise level, brain region, and hemisphere was also significant, F(4, 144) = 2.72,
p = 0.032, ηp

2 = 0.07. Simple effects analysis showed that expert teachers induced larger LPC
amplitudes at electrode sites F3, Fz, C3, and P3 compared to novice teachers
(ps < 0.05).
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Consistent with the results of the four-factor ANOVA analysis, regardless of whether
text prompts or student action types were employed, expert teachers consistently exhibited
more positive LPC amplitudes than novice teachers in the left fronto-central brain region,
particularly at the F3, Fz, C3, and P3 electrode sites. In summary, the second four-factor
ANOVA analysis partially confirmed Hypothesis 4, revealing a significant interaction
between expertise level, text prompts, and neural activity in teachers’ brains.

3.3.7. Topographical Map

This study focuses on the differences between expert and novice teachers in under-
standing normative and non-normative classroom actions, and this difference is confirmed
by brain topography (Figure 6). On the one hand, there is a trend of stepwise activation
enhancement in the 170–270 ms, 270–450 ms, and 450–750 ms time windows, indicating
that the teacher understands the student’s intention to a larger degree at late activation.
On the other hand, expert teachers have larger brain activation than novice teachers in the
270–450 ms and 450–750 ms time windows, which is the same as the ERP results.
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normative action, (C) Topographic map of novice teacher under normative action, (D) Topographic map
of novice teacher under non-normative action.
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4. Discussion

This study used the comic strips paradigm to explore the behavioral and cognitive
neural differences in intention understanding between expert and novice teachers. Our
subjective measurement results show that expert teachers have a significantly higher com-
prehensibility of student classroom action before and after the experiment than novice
teachers, and score higher on PT, FS, and ES on the IRI-C scale; behavioral results show that
expert teachers and novice teachers had no significant differences in reaction time and accu-
racy rate, but there were significant differences in ERP results. Specifically, expert teachers
showed larger P300 and LPC in the later stages of classroom action-type processing, while
novice teachers showed larger N250 in the early stages. Furthermore, students’ normative
actions induced more negative N250 amplitudes, whereas non-normative actions induced
more positive P300 and LPC amplitudes. Teachers must engage in many cognitive activities
to guide student learning [55], and professional development helps identify meaningful
patterns in the classroom, which in turn enables teachers to improve interactions with
students [56]. The results of this study further extend this idea, and teachers must not only
be able to distinguish and identify students’ actions in the classroom, but also understand
the intentions and reasons behind them.

Expert teachers consistently scored higher than novice teachers on perspective tak-
ing, fantasy, and empathy concern, in line with previous research showing that expert
teachers possess higher empathy and cognitive flexibility due to their extensive teaching
experience [57]. This study also found that expert teachers had a better understanding
of students’ classroom actions post-experiment, corroborating earlier findings that expert
teachers possess richer classroom knowledge, enabling them to process complex infor-
mation more efficiently and recognize meaningful patterns in classroom interactions [58].
However, contrary to expectations, no significant differences in behavioral performance
(reaction time and accuracy) were found between expert and novice teachers. This lack
of a significant behavioral difference could be attributed to the specific structure of the
EEG task, which required rapid judgments based on a 1500 ms text prompt followed by a
2000 ms student action stimulus. This short timeframe for processing may have masked
differences in explicit behavior performance, despite the underlying cognitive differences
revealed by the ERP data.

ERP results indicate that novice teachers exhibited larger N250 amplitudes in response
to classroom actions, particularly in the fronto-central regions of the brain. The N250 com-
ponent is linked to the brain’s predictive processing system [59], where larger amplitudes
are indicative of greater prediction error or heightened arousal when encountering unfamil-
iar stimuli. Novice teachers, due to their relative inexperience, are more likely to experience
discrepancies between expected and actual classroom actions, resulting in the larger N250
amplitudes. This supports the notion that novice teachers may face greater cognitive chal-
lenges in interpreting students’ behaviors, as they must allocate more cognitive resources
toward making sense of classroom interactions. In contrast, normative actions—those that
align with teachers’ expectations—elicited more negative N250 amplitudes, indicating that
familiar behaviors are processed with less cognitive effort. This mirrors findings from
studies on face recognition [60–62], where familiar faces elicit larger N250 responses due to
their ability to attract and hold attention more effectively.

Expert teachers, on the other hand, showed larger P300 and LPC amplitudes in the
later stages of processing students’ actions (270–750 ms post-stimulus). These components
are associated with deeper cognitive processing and the integration of knowledge. The
P300 amplitude, in particular, is modulated by prior knowledge and experience [63]. In
this study, expert teachers, with their rich classroom experience, demonstrated greater
cognitive activation when processing student behaviors, especially non-normative ac-
tions. These unexpected or non-standard classroom behaviors require more attention and
cognitive resources to interpret, explaining the larger P300 amplitudes [18]. The LPC,
reflecting higher-order social cognitive processes such as theory of mind [40], also showed
larger amplitudes in expert teachers, indicating that they engage in more complex cog-
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nitive evaluations of students’ actions. This aligns with previous research suggesting
that expert teachers process classroom interactions at a deeper level [7], utilizing their
knowledge and experience to make sense of students’ intentions. Non-normative student
behaviors—those that do not conform to classroom expectations—elicited larger P300 and
LPC amplitudes than normative actions. The P300 component is sensitive to unexpected
events, and larger amplitudes are observed when individuals encounter stimuli that violate
their expectations [64–66]. In classroom settings, non-normative behaviors require teachers
to expend more cognitive effort to understand students’ underlying intentions, particu-
larly those of more active or disruptive students, as opposed to quieter ones [67]. This
deeper level of cognitive engagement is reflected in the larger P300 and LPC responses in
expert teachers.

The behavioral results indicate that teachers’ response times to “how” prompts are
significantly faster than those for “why” prompts, with higher accuracy in their judg-
ments regarding students’ action intentions at the “how” level. This finding suggests
that lower-level prompts are easier to process. In contrast, the EEG results reveal that
the P300 amplitude induced by “why” prompts is significantly greater than that induced
by “how” prompts. Research indicated that understanding the intentions behind “why”
questions primarily activates brain regions associated with theory of mind, such as the ven-
tromedial prefrontal cortex [68]. This processing is influenced by cognitive load, whereas
understanding “how” predominantly engages areas related to the mirror neuron system,
such as the inferior parietal lobule, which is less affected by cognitive demands. In this
experiment, understanding “how” requires teachers to recognize students’ actions at a
basic level, while comprehending “why” students engage in certain behaviors necessitates
deeper cognitive processing, involving critical thinking about the underlying motivations
for those actions. Consequently, grasping the reasons behind students’ behaviors demands
additional cognitive effort, thereby consuming more cognitive resources from teachers.

Future Research

Our study offers some promising preliminary findings on the potential participation
of the brain in the social capability of expert and novice teachers. Our results also suggest
future research directions. Firstly, given the improvement in teachers’ perceived compre-
hensibility of students’ classroom actions and dispositional empathy, future studies should
plan and analyze the effect of interventions aimed at strengthening the training of novice
teachers’ social capacity. They might be provided with practical opportunities to work on
their perceptions and interpretations of, and responses to, classroom information, as well
as their understanding of classroom teaching to flexibly respond to various uncertainties.
Approaches such as reflective practice (e.g., [69]) and teacher collaboration (e.g., [70]) might
become fertile ground for future research on the topic in relation to teacher professional
development. Secondly, from the perspective of emotion and motivation, future research
might provide new insights into the mechanism of teachers’ intention understanding ability.
Thirdly, considering that Berliner points to cultural differences in the criteria that are set to
define an expert teacher, cross-cultural similarities and differences might be addressed in
subsequent studies [58]. Fourthly, future research should consider if the findings of this
study about the intention understanding ability of expert teachers are extended to (and
related to) other teaching expertise areas (e.g., whether expert teachers’ selective attention
and knowledge-based reasoning in professional insight will have the same impact on
the brain). Overall, expanding the educational neuroscience research on teachers’ social
abilities might help to improve teaching practice. In the future, studies in experimental
and natural contexts should complement each other to ensure the ecological validity of the
findings, especially considering that the interpretation of normative and non-normative
actions might be context-dependent.
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5. Conclusions

This study combined behavioral and ERP techniques to explore the dynamic process-
ing time course of teachers’ brains in understanding students’ classroom action intentions.
We found that, compared with novices, expert teachers demonstrated different patterns
of brain activity, as reflected in the P300 and LPC amplitudes during the late time win-
dow. Additionally, novice teachers exhibited a stronger N250 amplitude in the early time
window, indicating a potentially heightened response to normative actions. Notably, the
N250 amplitude was more pronounced for normative actions, whereas the P300 and LPC
amplitudes were significantly larger for non-normative actions. From the perspective of
cognitive neuroscience, this study shows that expert teachers produce late and sustained
processing in understanding students’ classroom action intentions, and text prompts and ac-
tion types are important indicators that affect teachers’ understanding of student classroom
action intentions.
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Appendix A. Experimental Materials

We selected 10 teachers (half male and half female, age = 26–43), and used the E-Prime
procedure to judge the normalization of students’ classroom actions (normative action,
press the “F” key; non-normative action, press the “J” key). Then, the teacher was asked to
evaluate the difficulty of the judgment on a five-point scale according to his or her own
feelings (1 = very easy, 5 = very difficult). Pictures with reaction time of more than 2000 ms
and accuracy rate of less than 70% were eliminated.

An independent sample t-test was used to test the task difficulty. The result shows
that there is no significant difference in task difficulty (t = 1.28, p > 0.05; normative action:
M ± SD = 1.38 ± 0.33; non-normative action: M ± SD = 1.29 ± 0.29).

We selected another 10 teachers (half male and half female, age = 27~42), and evaluate
the degree of normative or non-normative degree of each group of photos by on a five-point
scale (1 = very non-normative, 5 = very normative). The independent sample t-test results
show that the two conditions have significant differences (t = 33.27, p < 0.001). The photo
score under the non-normative condition (M ± SD = 1.42 ± 0.27) was less than that of
the normative condition (M ± SD = 4.27 ± 0.44), and finally, five photos with a rating
of about 3 points were excluded (four for normative actions and one for non-normative
actions). Finally, 70 images that met the requirements were screened out (normative:
36, non-normative: 34). Among them, eight groups were used as practice experimental
materials and were not used as formal experimental materials.
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