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Abstract: Background/Objectives: Slow oscillation (SO) brainwaves observed during sleep have
been shown to reflect the process of memory consolidation, that underlies the critical role of sleep in
learning, memory, and other cognitive functions. Closed-loop auditory stimulation (CLAS) uses tones
presented in phase with SOs to increase their amplitude and number, along with other brainwave
signatures related to memory consolidation. Prior studies have found that CLAS maximizes the
ability to perform rote memorization tasks, although this remains controversial. The present study
examined whether CLAS affects a broader range of learning tasks than has been tested previously,
including a rote language learning task requiring basic memorization and also two discovery learning
tasks requiring insight, hypothesis testing, and integration of experience, all processes that benefit
from memory consolidation. Methods: Twenty-eight healthy participants performed language and
discovery learning tasks before sleeping in our laboratory for three continuous nights per week over
two weeks, with verum or control CLAS using a prototype NeuroGevity system (NeuroGeneces, Inc.,
Santa Fe, NM, USA) in a crossed, randomized, double-blind manner. Results: Language learning
showed a 35% better word recall (p = 0.048), and discovery learning showed a 26% better performance
(p < 0.001) after three continuous nights of CLAS vs. control. EEG measures showed increased SO
amplitude and entrainment, SO-spindle coupling, and other features that may underlie the learning
benefits of CLAS. Conclusions: Taken together, the present results show that CLAS can alter brain
dynamics and enhance learning, especially in complex discovery learning tasks that may benefit
more from memory consolidation compared with rote word pair or language learning.

Keywords: electroencephalogram; EEG; sleep; learning; long-term memory; memory consolidation;
neuromodulation

1. Introduction

Memory consolidation is a fundamental process that processes newly acquired in-
formation and integrates it into long-term memory stores. Memory consolidation occurs
during sleep, particularly during slow-wave sleep (SWS), a stage characterized by slow
oscillations (SOs) in the electroencephalogram (EEG), which are large, low-frequency EEG
waves in the 0.1–1 Hz range. The critical role of sleep in memory consolidation has been
extensively documented in many previous studies, with disruptions in sleep adversely
affecting memory retention and other cognitive function [1].

Memory consolidation during sleep is a complex process involving the reactivation
and replay of memories, where neurons in the hippocampus and neocortex display the co-
ordinated reactivation of firing patterns that were previously evoked by waking experience.
This activity is coincident with sharp wave-ripples (SWRs) observed in the hippocampus,
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which are also synchronized with spindle activity in the neocortex [2,3]. Memory consolida-
tion also involves the integration of new and old information [4,5] and emotional memory
processing [6]. SOs originating from the neocortex act to synchronize other brain rhythms,
such as thalamocortical spindles and hippocampal ripples, which are essential for the trans-
fer of information from the hippocampus to long-term storage sites in the neocortex [7], and
thus play a crucial role in coordinating the reactivation and redistribution of memory traces.
These cognitive and neuronal aspects of memory consolidation are thought to contribute to
the strengthening of memory traces, integration and abstraction of knowledge, emotional
regulation, and creativity, among other cognitive functions.

Recent advances in cognitive neuroscience have explored various interventions to
enhance memory consolidation during sleep in order to enhance these cognitive processes.
We have previously used closed-loop transcranial alternating current stimulation (CL-
tACS) to enhance SOs [8,9]. Small alternating electric currents were applied to the scalp
at the same phase and frequency as endogenous SOs in order to increase their number
and amplitude, leading to improved memory consolidation, as evidenced by improved
recognition and retrieval after sleep, and also improved sleep quality [10]. The theoretical
basis for CL-tACS stems from the hypothesis that by reinforcing slow oscillations through
precisely timed stimulation, CL-tACS facilitates this inter-regional communication and
enhances the memory consolidation process. While we and others have shown this to
be efficacious, the complexity of applying current at the same phase and frequency of
endogenous SOs makes this method difficult to use in practice, and is impractical to use at
home independently by an end user.

Another promising approach is the use of closed-loop auditory stimulation (CLAS),
which involves delivering short (~50 msec) auditory cues synchronized in time with the
rising or positive phase of SOs. This method has been shown to effectively amplify SOs,
thereby enhancing the consolidation of declarative memories. Several prior studies have
demonstrated the efficacy of CLAS in augmenting memory performance. For instance, Ngo
and colleagues [11] found that presenting short bursts of pink noise during the up-state or
positive phase of SOs significantly improved word-pair retention in healthy adults.

Prior studies using CLAS have primarily used rote learning paradigms such as the
Paired Associates Task, which involves learning word pairs, while more complex forms of
learning have not previously been examined or have failed to produce significant memory
benefits [12]. One type of learning that has not been previously attempted with CLAS is
called discovery learning, where participants take the lead in the learning process and must
create and test hypotheses about the best way to solve the learning task. Participants are
not given any explicit clues but must learn to solve the task through the course of training
by actively interacting with task stimuli, recollecting details of prior stimulus events and
feedback (which indicated whether they had made a correct or incorrect response), then
generating and testing hypotheses regarding the best way to solve the task.

In this paper, we aimed to investigate the effects of multi-night CLAS on memory
consolidation during sleep, focusing on its potential to enhance memory performance in
a number of declarative learning tasks that have not been previously attempted while
using CLAS. These tasks were used to assess whether CLAS was able to benefit both real-
world learning, in this case, foreign language learning, as well as whether CLAS benefits
the memory distillation and consolidation processes required for discovery learning [4].
By leveraging rigorous experimental protocols, we sought to provide a comprehensive
understanding of how CLAS can be optimized for cognitive enhancement, education, and
therapeutic interventions.

2. Materials and Methods
2.1. Participants

Twenty-eight participants (18–40 years of age) were recruited through social media,
email, online website listings, and physical bulletins and flyers. Exclusion criteria included
current intoxication or illness at intake or during the study, self-reported chronic brain or
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mental illness including epilepsy, migraine, substance dependence or addiction, a history
of head injury with loss of consciousness for over 30 min, metal implants or non-removable
metal piercings that could interfere with EEG, uncorrected vision or hearing impairment
(assessed by testing in the lab), a helper animal, medications, or drugs with the potential to
significantly affect sleep or brain activity, sleep disorders including a regular need to get
out of bed during the night, and incompatible work or other schedules. Subjects who had
previously learned Japanese or Mandarin or who had previously performed the discovery
learning tasks used here were also excluded. Also, a number of participants were excluded
from the analysis due to missing data (did not participate in all data collection sessions)
due to unanticipated personal, work, or school-related issues, illness (such as COVID-19),
and technical or other problems. In total, data from 20 participants were used for analysis.

2.2. Procedure

Procedures are illustrated in Figure 1. First, eligible participants were brought into
the laboratory for an intake session, which began with reading and signing a consent form.
Next, participants were assessed using the Big Five Inventory 10 for personality [13] and
the Shipley-2 IQ test [14]. Sleep patterns and fatigue were assessed using the Owl Lark
Self-Test [15], Fatigue Severity Scale [16], Epworth Sleepiness scale [17], Athens Insomnia
scale [18], Pittsburgh Sleep Quality Index [19], and Stanford Sleepiness scale [20]. All visits
included the Karolinska Sleep Diary questionnaire [21] for the previous night’s sleep.
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Figure 1. Shows sequence of procedures (A) and balancing of conditions across weeks (B).

Subjects were scheduled for six overnight sessions in the lab, divided into two sets of
three nights each (referred to here as weeks) with at least one night in between weeks, with
each using verum or control CLAS, with condition order randomized between subjects.

For stimulation and task conditions, 10 subjects began with control, 10 with verum,
10 started with Japanese, 10 with Mandarin, and 10 started with PRETXT, 10 with DAR-
WARS. In keeping with the crossed within-subject design, subjects received the opposite
stimulation condition (e.g., verum vs. control) and opposite tasks (e.g., Mandarin vs. Japanese
for the Language Learning task and DARWARS vs. PRETXT for the Discovery Learning
task) on the second week.

Each night began with the experimenters setting up the sleep laboratories with fresh
bedsheets, ensuring that the computers were set up with questionnaires, tasks, and an active
internet connection. After arrival on the first evening, participants performed the Karolin-
ska Sleep Diary regarding their quality of sleep for the previous night, and participants
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completed a Pre-sleep Survey Form on each evening that asked about caffeine, alcohol, and
other drug use for that day, as well as their current level of sleepiness and general mood
state for the day. Once completed, participants performed the Language Learning Training
Task and then the Language Learning Test described below. Participants then got ready for
bed (change clothes, wash face, brush teeth, etc.). The NeuroGevity Headband was then
applied by the participants themselves, with the experimenter watching to ensure that it
was applied correctly. The recording electrodes were placed on the left and right forehead
at approximately 10–20 sites Fp1 and Fp2, although the exact 10–20 placement was not
verified. The ground was placed in the middle of the forehead, and the reference electrode
was on the left mastoid, with the experimenter ensuring the headband was correctly placed
and comfortable for the participant. The EEG signal was tested, and the recording started.
A wake-up time was agreed between the experimenter and participant, and the participant
turned off their phone along with any other wireless devices that could interfere with the
NeuroGevity system and placed them away from the bed.

The following morning, the Experimenter knocked and entered at the prearranged
time, woke the participant if not already awake, stopped EEG the recording, and removed
the headband. The participant performed their morning routine and then completed the
Karolinska Sleep Survey, Karolinska Sleep Diary, and Post-sleep survey forms for the prior
night. The Post-Sleep survey asked questions about sleep quality, whether the participant
heard “clicking” from the NeuroGevity system overnight, their level of comfort, and any
side effects from wearing the headband overnight. Participants then completed another
Language Learning Test and performed the Discovery Learning Training Task and testing
blocks for that day. Once completed, the participant left for the day, returning for two more
evenings that week, which followed the same plan. For the morning after the third night,
only Language and Discovery Learning testing blocks were performed, with no Discovery
Learning training (as no more CLAS treatments were scheduled for the following nights
that week). For the second week, the same plan was repeated with training using the other
language and the other Discovery Learning Task, with task order randomized between
subjects. On the final morning after testing, participants were debriefed, reimbursement
was arranged, and they exited the study.

2.3. Language Learning Task

The Language Learning Task was selected to examine if CLAS benefits the real-world
need for accelerated language learning [22], and also due to its similarity to the Paired
Associates Task used in many previous CLAS and CL-tACS sleep memory consolidation
studies [12]. The Language Learning Task used here was similar to [23]. The Language
Learning Task was given before bed on each study night. Each Japanese or Mandarin word
was paired with the equivalent English word, with one set of three nights using Japanese
and the other set of three nights using Mandarin, with the order of the specific language
and stimulation condition across the two weeks randomized across participants.

Participants performed two Language Learning training blocks and one test block
each night before sleep, and another test block was given each morning after waking up.
During each training block, 50 English/Foreign language word pairs were shown once
in randomized order. Each pair lasted on the screen for 10 s. Participants were required
to type the corresponding English word while the foreign word was presented on screen
for 10 s. During test sessions, participants were presented with foreign words one at a
time without the English equivalent word and were asked to type the recalled English
equivalent word from memory. All 50 trained words were presented once in each test block
in a randomized order.

Performance accuracy during testing was assessed by comparing the typed word with
the correct word. Typed responses were judged by the experimenter as correct if they
exactly matched the correct word or if the typed response was intended by the participant
to be the correct word but differed slightly due to a typing error (e.g., typing letters slightly
out of order, such as “ie” instead of “ei”, making a phonetically similar replacement such
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as the letter “c” for “s” or “k”, etc.). The experimenter assessing response accuracy was
blind to the stimulation condition.

2.4. Discovery Learning Tasks

Two discovery learning tasks were used here: the DARWARS Learning Task [24] and
PRETXT Learning Task [25]. One discovery learning task was trained during two mornings
over the first week (after the first two nights of verum or control CLAS), and the other
discovery learning task was trained during the same two mornings on the following week,
with task order and stimulation condition randomized across subjects. The final test blocks
occurred the morning after the third night of sleep without an additional training block. The
discovery learning task training was performed in the morning after the language learning
test block was completed in order to minimize the potential for interactions or disruptions
between the two learning tasks and also to test whether CLAS would benefit from the
consolidation of information learned many hours before sleep and stimulation. For both
discovery learning tasks, participants actively engaged in exploring and problem-solving
to discover new knowledge on their own. This method contrasts with direct instruction
learning tasks, where information is provided, and participants are asked to memorize it by
rote, such as in the Paired Associates Task used in many prior sleep memory consolidation
studies [12], and also the Language Learning Task used in the current study.

2.4.1. DARWARS Task

The DARWARS task has been used in a variety of previous studies from our laboratory
to examine the effects of brain stimulation on learning during wakefulness [24,26–28] and
during sleep [8,9]. This is the first study we are aware of using CLAS as a stimulation
modality with any discovery learning task. Stimuli were developed from the DARWARS
virtual reality environment [29]. Five-second video clips taken from the DARWARS training
environment were captured for use as feedback in the task. Six hundred still images were
extracted from these videos and edited to include or remove specific target objects. For
each of the images containing target objects, a corresponding image was created which did
not contain a hidden target object. The images were arranged in random order and were
not presented to participants in matched target object/no target object pairings.

Before training on the first morning, participants were tested for their baseline ability
to detect target objects using a test block with no feedback. Participants were then trained
to detect the target objects, and after training, the participants were immediately tested
again. Pre- and post-training test blocks consisted of 50 images that were presented without
feedback. Training consisted of 11 min blocks of 60 trials, each of which included an image
and appropriate audiovisual feedback. Each image was presented for 2 s with an inter-trial
interval that averaged 6 s. Testing occurred immediately after training and again the next
morning after sleep. On the first two mornings, participants received one baseline block,
two training blocks, and one test block. On the third, final morning, participants received
4 test blocks.

On the first morning, participants were given the following instructions: “Today, you
will be viewing a series of images taken from a virtual program used to train soldiers
headed to the Middle East. For each image, you will be making a decision as to whether
or not you think there is a threat present in the image. To begin with, you will complete
a baseline measure, followed by two training sessions. The training sessions differ in
that after each response you make; you will be shown a short video clip displaying the
consequences of your decision. After that, you’ll be given one more test measure similar to
the previous ones. Then, you will simply fill out some exit questionnaires, and you will be
all done. Do you have any questions?”. After the Baseline Test was completed, training
began with the following instructions: “We will now begin the training phase. Again, the
training session differs in that, after each response, you will be given feedback through a
short video clip displaying the consequences of your decision”.
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Learning was accomplished by hypothesis testing and feedback. Participants were
instructed to look for target threat objects and to respond as accurately as possible within
two seconds when making their responses to the stimuli. No instruction is given to indicate
what the target objects might look like, but it could be inferred from the response videos
and memory of the image presented immediately prior. Thus, participants discovered
the correct and incorrect responses to each image after receiving audiovisual feedback at
the end of each training trial. Four outcomes were possible: If a concealed target object
was present in the image but was missed by the subject, the feedback movie showed the
outcome, e.g., a sniper attack or bomb blast occurring, which the subject could use to infer
the nature of the missed target object and then detect the same or similar target object on
subsequent trials. At the same time, the computer-generated voice-over indicated that the
target object had been missed but gave no specific information as to the identity of the
target object. If a concealed target object was present and detected, the response movie
showed the scene progressing without harm, and the voiceover compliments the subject for
their performance. If a concealed target object was not present, and the subject incorrectly
indicated that it was present, the voice-over chastised the subject for their mistake. Finally,
when there was no target present and the subject indicated this correctly, the voice-over
praised the subject. See Figure 2 for example images.
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Figure 2. Example images presented to participants in the DARWARS task. The left of the figure
contains example target-absent images and the right contains analogous target-present images. The
cut-out boxes are used here for display purposes only and were not present in the actual task. The
right boxes show target-present images (roadside IEDs, remote-controlled car bombs, and snipers)
with the objects magnified.

2.4.2. PRETXT Task

This task was administered similar to our prior research [24] and followed a similar
structure to the DARWARS Task described above. The PRETXT task focused on learning to
understand and categorize pictures of European streets into two categories separated by
an arbitrary rule. In order to continue using this task, the rule will not be divulged here,
but the categories can be disclosed upon reasonable request to the corresponding author.
Pictures were static street segment views. Each trial consisted of one street image presented
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for 2.5 s. Following a baseline pre-training (50 trials without feedback), each training block
had 60 trials in which participants received accuracy feedback following each response.
Learning was accomplished by hypothesis testing and feedback. The training was followed
by another 50 trials without feedback. The baseline test took 6 min, the training portion
20 min, and the test portions 6 min. See Figure 3 for example images.
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Participants were given the following instructions before the first Baseline Test Block:
“Today, you will be viewing a series of pictures of European streets. For each image, you
will be making a decision as to whether or not you think the picture represents category
“1” or category “2”. To begin with, you will complete a baseline measure, followed by
two training sessions. The training sessions differ in that after each response you make,
you will receive feedback following your decision. After, you’ll be given a test measure
similar to those you will have completed prior to training”. For the PRETXT Training Block,
participants were given the following instructions: “We will now begin the training phase.
Again, the training session differs in that, after each response, you will be given feedback
through a short video clip displaying the consequences of your decision”.

2.5. Stimulation

During sleep, the NeuroGevity system recorded EEG using two electrodes on the
forehead vs. a reference electrode placed on the left mastoid. The system analyzed ongoing
EEG for the presence of SOs, and when an SO was detected on verum nights, the system
presented a short (50 ms) pink noise tone pip timed to occur shortly before the positive
peak of the SO. The target timing of the tone pip was 15◦ before the peak of the SO. The
tone pips were set not to exceed 40 dB, which was strong enough to be heard but weak
enough not to wake up the participant. On control nights, the EEG recording was the same,
but no audible tone pips were produced. On verum nights, each initial SO stimulation was
followed by a second one in real-time if a follow-on SO was detected immediately after
the first SO (after the final positive-to-negative zero-crossing of the initial SO). Detection of
subsequent SOs was then paused for 2.5 s, and the process repeated throughout the night.

2.6. EEG and Stimulus Algorithm Analysis

We assessed the neural and behavioral effects of CLAS by testing whether acoustic
stimulation altered EEG signatures during sleep and whether it increased participant recall
of information tested after sleep when compared with the control. Scoring of sleep stages
was performed using an algorithm consistent with official guidelines [30], specifically
developed for automatic sleep stage classification using prefrontal EEG data in accordance
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with the design of the NeuroGevity system. This eliminated the need for manual sleep
stage scoring. The sleep stage classification algorithm was developed in Python and
used a deep Convolutional Neural Network and Long Short-Term Memory (CNN-LSTM)
network, similar to the DeepSleepNet model architecture for the sleep stage classification
based on a raw single-channel EEG [31]. The model was trained on large amounts of
10 second epochs of labeled single-channel prefrontal EEG using subsets of the Montreal
Archive of Sleep Studies (MASS) [32], Cleveland Family Study (CFS), Home Positive
Airway Pressure (HomePAP) [33], Study of Osteoporotic Fractures (SOF) [34], and MrOS
Sleep Study [35] datasets. The Fp1 and Fp2 channels were resampled from 250 Hz to
125 Hz, followed by averaging and band-pass filtering between 0.1 and 40 Hz to form
a single virtual prefrontal EEG channel. The algorithm was validated on a held-out test
set of multi-site PSG recordings for 5-stage classification, where each epoch is classified
as either wakefulness (W) or one of the four sleep stages as defined by the American
Association of Sleep Medicine (AASM) [30]: sleep stage 1 (N1—light sleep), sleep stage 2
(N2—non-REM sleep), sleep stage 3 (N3—SWS), and sleep stage REM (R). An accuracy of
84% (Cohen’s κ = 0.78) was achieved. In sleep recordings collected within the scope of this
study, outputs from this sleep stage classification model were used to extract an array of
basic sleep macrostructure measures. Also, information about sleep stages was used to
calculate other metrics (e.g., for offline detection of SOs, for assessing the distribution of the
delivered stimuli across sleep stages, etc.). In addition, a number of additional metrics were
obtained from analysis and sleep scoring of the EEG recordings, including recording length
(RL)—the length of the EEG record, from start in the evening to finish in the morning,
total sleep time (TST)—the total time asleep based on sleep scoring, sleep-onset latency
(SOL)—the time between going to bed and the first sleep time detected based on sleep
scoring, and wakefulness after sleep onset (WASO)—time spent in wakefulness between
first falling asleep and the final morning waking time. The results of these analyses are
shown in the “Sleep Macrostructure” section of Table 1.

Table 1. Shows the aggregated values of the variables of interest by treatment (verum, control).
Definitions of the variables listed are described in the methods section above. The unadjusted p-
values derived from the two models, i.e., the full and the reduced, are shown. The full model included
Week (first, second), Night (1 to 3) nested within Week, and treatment (verum vs. control) as the
fixed effects. The reduced model included only treatment as the fixed effect. Results showed several
interesting patterns that were consistent in both the full and the reduced models, which show large
effects of CLAS on EEG during sleep.

Variable of Interest

Treatment Unadjusted p-Value of Treatment
Effect Size

MetricControl 5 Verum 5
Fixed Effects: Week,

Trial (Nested),
Treatment

Fixed Effects:
Treatment

Main EEG Variables
Stimulation-ratio-2-to-all, M ± SD 0.131 ± 0.049 0.224 ± 0.055 <0.001 * <0.001 * 1.700 6

p2p, M ± SD 199 ± 18.4 206 ± 19.9 <0.001 * <0.001 * 0.360 6

SOSP, M ± SD 3.91 ± 0.936 4.11 ± 0.926 0.003 * 0.005 * 0.215 6

p2p-1, M ± SD 199 ± 18.0 203 ± 19.4 0.023 * 0.021 * 0.211 6

SOSP-1, MD (IQR) 3.67 (1.72) 3.89 (1.59) 0.035 * 0.047 * 0.113 7

p2p-2, M ± SD 199 ± 21.1 214 ± 22.8 <0.001 * <0.001 * 0.676 6

SOSP-2, MD (IQR) 3.22 (1.62) 3.73 (1.58) <0.001 * <0.001 * 0.361 7

SO-RMS-rel1, MD (IQR) 0.819 (0.059) 0.978 (0.090) <0.001 * <0.001 * 0.828 7

SPN-RMS-rel1, M ± SD 1.12 ± 0.034 1.20 ± 0.053 <0.001 * <0.001 * 1.650 6
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Table 1. Cont.

Variable of Interest

Treatment Unadjusted p-Value of Treatment
Effect Size

MetricControl 5 Verum 5
Fixed Effects: Week,

Trial (Nested),
Treatment

Fixed Effects:
Treatment

Sleep Macrostructure
RL, M ± SD 8.19 ± 0.619 8.45 ± 0.700 0.186 0.152 0.391 6

TST, M ± SD 6.79 ± 0.808 6.76 ± 1.08 0.719 3 0.708 3 0.031 6

SOL, MD (IQR) 0.333 (0.502) 0.182 (0.514) 0.647 2 0.504 2 0.021 7

WASO, MD (IQR) 0.562 (1.10) 0.812 (1.19) 0.409 2 0.332 2 0.079 7

W, MD (IQR) 0.878 (1.67) 1.10 (1.25) 0.523 2 0.418 2 0.109 7

N1, MD (IQR) 0.209 (0.206) 0.213 (0.188) 0.219 2 0.150 2 0.077 7

N2, M ± SD 3.20 ± 0.496 3.29 ± 0.694 0.178 3 0.183 3 0.143 6

N3, MD (IQR) 1.58 (0.700) 1.69 (0.616) 0.117 0.129 0.079 7

REM, M ± SD 1.57 ± 0.497 1.55 ± 0.451 0.929 0.951 0.042 6

Distribution of Stimulation by
Sleep Stage
W-stim, MD (IQR) 9.5 (13.2) 10.35 (40.5) 0.621 1 0.464 1 0.051 7

N1-stim, MD (IQR) 0.167 (0.333) 0 (0.667) 0.571 4 0.425 4 0.040 7

N2-stim, MD (IQR) 126 (191) 117 (254) 0.684 2 0.589 2 0.028 7

N3-stim, MD (IQR) 544 (246) 544 (397) 0.217 1 0.252 1 0.036 7

REM-stim, MD (IQR) 1 (5.58) 0.833 (11.9) 0.418 1 0.515 1 0.080 7

Stimulation Algorithm
Performance Metrics
N-all-stims, MD (IQR) 731 (440) 687 (647) 0.432 1 0.525 1 0.041 7

N-2nd-stims, MD (IQR) 88.2 (75.6) 134 (149) <0.001 * 1 <0.001 * 1 0.327 7

N-SOs, MD (IQR) 1065 (431) 1132 (792) 0.735 1 0.756 1 0.002 7

Precision, MD (IQR) 0.774 (0.129) 0.772 (0.103) 0.768 3 0.909 3 0.041 7

Recall, M ± SD 0.459 ± 0.089 0.443 ± 0.089 0.112 3 0.152 3 0.180 6

Early, M ± SD 0.144 ± 0.059 0.154 ± 0.068 0.200 2 0.269 2 0.148 6

On-time, M ± SD 0.752 ± 0.058 0.756 ± 0.067 0.775 3 0.490 3 0.060 6

Late, M ± SD 0.104 ± 0.037 0.090 ± 0.038 0.002 * 0.002 * 0.372 6

Phase mean, M ± SD 72.2 ±5.79 70.2 ± 6.23 <0.001 * <0.001 * 0.328 6

Phase std, M ± SD 31.6 ± 5.10 30.0 ± 5.25 0.022 * 1 0.043 * 0.309 6

* Statistically significant based on the BH-FDR controlling procedure; 1 Data logarithmically transformed. 2 Data
fourth root transformed. 3 Data square transformed. 4 Results were verified after excluding one outlier data
point. 5 Descriptive statistics calculated over data generated by participants and treatment. 6 Hedge’s g for paired
samples. Data aggregated by participant and treatment. 7 Non-parametric effect size metric r. Data aggregated by
participant and treatment.

EEG was analyzed for a variety of characteristics [11,12,36], including (1) The propor-
tion of second auditory stimulation, which is a measure of SO entrainment (stimulation-
ratio-2-to-all). A measure of 0.5 is the highest possible value, meaning 50% of stimulations
were second stimulations, i.e., each initial SO stimulation was followed by a second (follow-
on) SO detection and stimulation. (2) Average peak-to-peak SO amplitude for all true
positive stimuli (p2p). (3) Average absolute SO-spindle coupling for all true positive
stimuli (SOSP). For each true positive stimulus, SO-spindle coupling was assessed using
the time-frequency windows method introduced by McConnel and colleagues [37]. The
time-frequency window was defined by the 11–16 Hz frequency range (e.g., spindle fre-
quency range) and ±0.25 s relative to the SO positive peak. (4) Average peak-to-peak
SO amplitude for initial stims only (p2p-1). (5) Average SO-spindle coupling for initial
stims only (SOSP-1). (6) Average peak-to-peak SO amplitude for second stims only (p2p-2).
(7) Average SO-spindle coupling for second stims only (SOSP-2). (8) Average relative SO
band (0.25–4 Hz) power following a stimulus (SO-RMS-rel1). For each stimulus, the SO
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band signal Root-Mean-Square (RMS) value in the period of 2 s after the stimulus delivery
(t = 0 in Figure 4) was divided by the SO band EEG signal RMS value in the period of 2 s
before the stimulus delivery. (9) Average relative spindle band (11–16 Hz) power following
a stimulus (SPN-RMS-rel1). For each stimulus, the spindle band (11–16 Hz) EEG signal
RMS value in the period of 2 s after the stimulus delivery was divided by the spindle band
EEG signal RMS value in the period of 2 s before the stimulus delivery. The results of these
analyses are shown in the “Main EEG Variables” section of Table 1.
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Figure 4. (A) Mean (±SD) 0.25–4 Hz filtered EEG signal, averaged across subjects, time-locked
to the first auditory stimulus (t = 0 s) for the Stim and Control conditions. (B) Mean (±SD) of the
11–16 Hz filtered (spindle band) EEG signal amplitude envelope (based on the Hilbert transformation),
averaged across subjects, time-locked to the first auditory stimulus (t = 0 s) for the Stim and Control
conditions. For each stimulus, the mean spindle activity value in the 2 s period before the stimulus
delivery was subtracted (which is then reflected in the y-axis values).

Analysis of the stimulation algorithm function was also performed. To detect SOs in
the offline analysis, the EEG data was filtered using high-order zero-phase 0.25–4 Hz filter-
ing. SOs detection criteria were duration criteria (corresponding to 0.5–1.5 Hz frequency
range) and amplitude criteria (negative peak amplitude exceeding −80µV in negativity
and peak-to-peak amplitude exceeding 120 µV) [11]. All such waveforms in the N2 and
N3 sleep stages were considered offline-detected SOs. Hilbert transformation was used
to compute the instantaneous phase within all offline-detected SOs. Also, a number of
other stimulation algorithm performance metrics were calculated, with the target phase
located at the middle of the 45–105◦ range, i.e., 75◦. These metrics included: (1) The total
number of triggered stimuli over the night (N-all-stims). (2) The total number of triggered
second (follow-on) stimuli (N-2nd-Stims). (3) The total number of offline-detected SOs
(N-SOs). (4) The number of true positive stimuli (stimuli falling within an offline-detected
SO) and (5) The ratio between the number of true positive stimuli and the number of all
triggered stimuli (Precision). (6) The ratio between the number of true positive stimuli
(stimuli falling within an offline-detected SO) and the total number of offline-detected SOs
(Recall). (7) The ratio between the number of stimuli falling within the target 45–105◦ phase
range and the total number of true positive stimuli (On-time). (8) The ratio between the
number of stimuli falling in the <45◦ phase range and the total number of true positive
stimuli (Early). (9) The ratio between the number of stimuli falling in the >105◦ phase range
and the total number of true positive stimuli (Late). (10) The mean instantaneous phases of
the offline-detected SOs at the time of the stimulation for all true positive stimuli (Phase
Mean). (11) The standard deviation of the instantaneous phases of the offline-detected SOs
at the time of the stimulation for all true positive stimuli (Phase Std). The results of these
analyses are shown in the “Stimulation Algorithm Performance Metrics” section of Table 1.
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2.7. Behavioral Analytical Strategy

Learning scores demonstrating the effect of stimulation on consolidation in the Lan-
guage Learning and Discovery Learning tasks were calculated by taking the number of
correct answers obtained in the morning after sleep. We conducted a descriptive analysis of
the variables of interest based on data aggregated by participant and treatment (verum vs.
control nights). Second, we used linear mixed-effects model analysis to assess differences
in variables of interest between the two treatment conditions. Analysis was based on two
models, full and reduced. The full model included Week (first, second), Night (1 to 3)
nested within Week, and treatment (verum vs. control) as the fixed effects. The participant
was the random effect. The reduced model included only treatment as the fixed effect.
Transformations of the dependent variables were applied to improve the statistical models’
fit. Table A1 (see Appendix A) shows the kurtosis and skewness of the model’s residual,
both in their initial form and after the transformation was applied. In one case, however,
the transformation was not effective, and we omitted one extreme value for the assessment
of the number of nighttime stimulation events (the extreme value was over five standard
deviations from the central tendency of the corresponding data). Overall, though, this
shows that transformation helped to reduce kurtosis and skewness.

The next step of the analysis was focused on the effect of treatment on performance
variables, i.e., variables of the Language Learning Task and Discovery Learning Tasks. The
mixed effects analysis for the Language Learning Task assessed the effect of treatment on
the correct number of responses in terms of English words correctly typed in response
to the foreign word prompt. Language (Japanese and Mandarin), week (1 vs. 2), night
(nested within a week), and treatment (verum vs. control) were the fixed effects, and
Subject was the random effect, using data obtained from 19 participants, with 1 dataset
lost due to technical difficulties specific to the Language Learning task. The dependent
variable was the number of correct responses from the test block obtained the morning
after sleep, subtracting the corresponding number of correct responses in the first evening
test block (baseline).

Also, a mixed effects analysis was used to assess the effect of treatment on Discovery
Learning task scores. Task (DARWARS, PRETEXT) and treatment (verum vs. control)
were the fixed effects, and the participant was the random effect, using data obtained from
18 participants, with two datasets lost due to technical difficulties specific to the Discovery
Learning tasks. The dependent variables were the test block scores obtained in the morning
after the second night of treatment, the evening before the third night of treatment, and the
morning after the third night of treatment. Test scores were adjusted by subtracting the
baseline test block score obtained on the first day.

Statistical analysis was conducted with JMP statistical software (JMP Pro 17; SAS Insti-
tute; Cary, NC, USA). Data normality was assessed with the Shapiro-Wilk W test. Summary
data are reported as mean ± standard deviation (M ± SD) or median—MD (interquartile
range—IQR) as appropriate. An alpha level of 0.05 was used to determine statistical signifi-
cance. Post-hoc statistical significance was assessed using the Benjamini–Hochberg False
Discovery Rate (BH-FDR) controlling procedure with q = 0.20 [38]. Effect size analysis
was conducted on data aggregated by participants and treatment based on Hedges’ g and
Cohen’s d [39].

3. Results

Twenty subjects were tested, with 8 males, 11 females, and 1 nonbinary. The average
age was 21.95 y.o. (SD 4.12). Participants were slightly above average in intelligence, with
an average AQ standard score using the Shipley-2 of 111.3 (SD 12.6), Vocabulary 109.7
(SD 10.4), and Abstraction 109.0 (SD 12.1), with the population average for this test being
100. The average rating for the Karolinska Sleep Diary was 23.33 (2.0 SD), for the Athens
Insomnia Scale 3.75 (2.05 SD), for the Epworth Sleepiness Scale 6.60 (3.44 SD) and Fatigue
Severity Scale 31.85 (8.09 SD). All values were within the normal range, although with
some evidence of mild fatigue before starting this study, as the Fatigue Severity Scale score
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of 31.85 is near the threshold of 36 to be considered suffering from fatigue and needing
further evaluation by a physician [16].

3.1. Stimulation Algorithm Performance Metrics

There was a median of 682 stimulation events per participant per night. Analysis of the
distribution of stimulation events by sleep stage showed that the majority (approximately
80%) occurred during N3 stage sleep, with approximately 18.5% occurring during stage N2
sleep (or 25% of the total number occurring during the N3 stage), with the remaining 1.7%
occurring during other sleep stages and the waking state. There was little or no difference
between verum and control CLAS nights, which were determined using the same algorithm
but without any audible stimulation events being presented during control nights. The
number of second stims (N-2nd-stims) was a median of 88.2 for control and 134 for verum,
a 52% increase, suggesting that the algorithm detected a greater number of follow-on SOs
in the verum condition due to the effects of stimulation.

3.2. EEG Results

A variety of EEG effects were observed in the present dataset. Significant differences
were observed for all tested EEG measures, including the SO peak-to-peak amplitude
(p2p), for both the initial SO (p2p-1) and subsequent SO after stimulation (p2p-2). SO
RMS amplitude (SO-RMS-rel1) increased by 19.4%, and spindle amplitude (SPN-RMS-rel1)
increased by 7.1% with stimulation. Spindle amplitude (SPN-RMS-rel1) showed the largest
effect size (Hedges’ g of 1.65) of any EEG amplitude measure measured here. Stimulation-
ratio-2-to-all (the number of second SOs that were detected immediately following the
initial SO) increased by 71%, with a Hedges’ g of 1.70. Figure 4 shows the average EEG
time-locked to the auditory stimulus. In general, the verum stimulus changed the SO
amplitude relative to control at a number of time points in both the low bandpass SO range
(Figure 4A), where it produced a longer series of approximately 1 Hz SOs, which slowly
diminished in amplitude. In the spindle-frequency range (Figure 4B), a second peak of
spindle frequency power can be observed at approximately 1 s. after the first peak. All
of these EEG changes with stimulation suggest that the NeuroGevity system was able to
evoke changes in a variety of EEG signatures related to memory consolidation.

3.3. Behavioral Performance Results

A mixed effects analysis was used to assess the effects of CLAS on the Language
Learning Task, as assessed by the correct number of responses during testing. Language,
trial (nested within language), and treatment were the fixed effects, whereas participant was
the random effect (n = 18, with data from two subjects removed due to technical difficulties).
The dependent variable was the transformed number of adjusted correct number responses
in the last morning after subtracting the corresponding number of correct responses in the
first evening baseline test. The transformation improved skewness from −0.27 to −0.05.
Imputation was applied to two missing responses by their expected value. Results showed
that the number of correct responses in the stim condition was higher compared to the
control condition (p = 0.048) with an effect size of 0.374 (Hedges’ g for paired samples with
data aggregated by participant and treatment). The corresponding Cohen’s d effect size
is approximately 0.393. Percentage-wise analysis of data aggregated by participant and
condition showed that the verum condition had a 35% higher improvement compared to
the control condition.

A mixed effects analysis was used to assess the effect of treatment on Discovery
Learning Task scores, with DARWARS and PRETEXT scores analyzed together. Task
(DARWARS, PRETEXT) and treatment were the fixed effects, whereas participant was the
random effect (n = 18, with data from two subjects removed due to technical difficulties).
The dependent variable was the test score in the morning after the second night of treatment
(after all training was completed), the evening before the third night of treatment, and the
morning after the third night of treatment. Test scores were adjusted by subtracting the
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score of the first day (baseline test). Results showed that scores in the stim condition were
larger compared to the control condition (p < 0.001), with an effect size of 0.272 (Hedge’s
g for data aggregated by participant and treatment). A Hedges’ g of 0.272 corresponds
to a Cohen’s d of approximately 0.286. Percentage-wise analysis of data aggregated by
participant and condition showed that the stim condition had a 26% higher improvement
compared to the control condition. The size of the dataset was not sufficient to examine the
relationship between the EEG measures and the behavioral measures obtained.

4. Discussion

Memory consolidation during sleep is a multifaceted process that involves several
cognitive and neuronal mechanisms. This study aimed to investigate the effects of CLAS on
memory consolidation, focusing on its potential to alter EEG during sleep and to enhance
declarative memory performance across a variety of learning tasks. Our findings suggest
that CLAS can significantly alter EEG signatures related to memory consolidation and
can improve memory consolidation, as evidenced by enhanced recall and recognition
performance in the morning after sleep in both Language Learning using Japanese and
Mandarin and two different Discovery Learning Tasks.

In contrast to our present findings, many prior CLAS studies of memory enhancement
that have used learning tasks beyond memorization of word pairs have failed to find
significant effects, even with significant changes in EEG markers of memory consolidation,
such as SOs and spindles. For instance, Leminen et al. [40] compared four different
memory tasks, including finger tapping, picture recognition, and face-name association
tasks, but found that only a word-pair memory task showed a significant effect of CLAS.
Henin et al. [41] did not find a significant effect of CLAS in a virtual reality spatial navigation
task. Ong et al. [42] found no effects of CLAS on declarative memory encoding. While
experimental differences in how CLAS was applied in these prior studies compared with
the current study may be important, it could also be that the forms of learning examined in
these prior studies did not take full advantage of the memory distillation and integration
of experience offered by the memory consolidation process, which is required by discovery
learning. Indeed, the hypothesis development and testing required by these learning tasks
are unique, and nothing similar has been examined before using CLAS.

The cognitive aspects of memory consolidation during sleep involve the reactivation
and replay of memories, synaptic homeostasis, integration of new with old information,
and emotional memory processing. These processes are facilitated by neuronal activities
such as SWRs in the hippocampus, which are synchronized with spindle activity in the neo-
cortex. This coordinated reactivation during SWS is thought to help transfer memory traces
from the hippocampus to the neocortex, thus stabilizing them into long-term storage [2].
Additionally, synaptic homeostasis theory posits that sleep helps maintain overall synaptic
balance by downscaling less important synapses, which prevents saturation and allows
for the more significant synapses to be strengthened [43,44]. This process is crucial for the
integration and abstraction of knowledge, enhancement of procedural skills, emotional
regulation, and creativity [2,3].

This study adds to the growing body of literature demonstrating the effectiveness
of CLAS to enhance learning and memory. By delivering auditory cues synchronized
with SOs during sleep, CLAS effectively amplifies these oscillations, thereby improving
the consolidation of declarative memories. Previous studies have shown that CLAS can
enhance paired associates learning, while other studies have failed to find other forms of
learning that have benefited from CLAS [12]. The magnitude of memory enhancement from
CLAS using the same DARWARS discovery learning task was similar to or slightly larger
than that obtained using CL-tACS during sleep in prior studies from our laboratory [8,9].
While this prior work using CL-tACS has shown promise in laboratory settings, translating
this technology to practical, at-home use has remained a challenge. The complexity of
applying electrical stimulation precisely timed to the phase and frequency of endogenous
SOs made this method currently impractical for independent use by end users. On the other
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hand, CLAS is far easier to apply, only requiring the algorithm to time the presentation of
short tones relative to the large, slow oscillations that occur during memory consolidation.
The technology used in the present study focused on developing a user-friendly CLAS
device and protocols that could be easily implemented outside the laboratory environment
in the users’ homes or other venues.

EEG data collected here are consistent with the idea that the cognitive and neuronal
mechanisms underlying the behavioral enhancement using CLAS may involve the re-
activation and replay of memories, synaptic homeostasis, and the synchronization of
hippocampal and neocortical activity. While further research is needed to refine this tech-
nology and explore its broader effects and applications, CLAS represents a promising
approach for enhancing memory consolidation and cognitive function.

Limitations

There were a number of limitations in the current study. One was that a full dataset
could only be acquired from 20 participants, with incomplete data from another 8 due to
technical and other issues and data from a further 1–2 participants removed due to technical
issues before each analysis was completed. While effect sizes were reasonably large for
some measures, a larger sample may have allowed analysis of more details regarding the
relationships between specific EEG and algorithmic measures and the amount of learning
and other behavioral measures. A larger sample in future studies might also allow for
analysis of the relationships between individual differences among participants, such as
health, age, sleep patterns, genetics, and others, and their responses to CLAS. Also, the
relatively small p-value obtained for the Language Learning task (p = 0.048) was barely
below the significance threshold of p < 0.05 and might easily have turned out to be non-
significant with slight variations in the final collected dataset. In fact, most prior CLAS
studies have shown fairly small effects or none at all [12], which ultimately suggests that the
conflicting results between memory consolidation studies are due to individual variability
in the effects of CLAS, at least for word-pair-related tasks. Our use of 3 continuous nights
of stimulation for Language Learning may have increased the effect size overall, resulting
in a 35% improvement in language learning, but with a marginal level of significance. The
level of significance for the Discovery Learning tasks was much larger (p < 0.001), showing
that there may be other learning tasks aside from word-pair learning, which are more
consistently sensitive across individuals to the memory consolidation benefits provided
by CLAS. However, the effect size of CLAS for Discovery Learning was 27% smaller than
for Language Learning, but we must also consider that only two training sessions and
subsequent nights of CLAS were used for Discovery Learning, as opposed to three for
Language Learning (50% more). Thus, while it’s difficult to make direct comparisons
between the two types of learning tasks as used here, it does appear that even with fewer
training sessions, the Discovery Learning task benefits more per night of CLAS than the
Language Learning task. Future studies should examine what other types of learning
tasks benefit the most from their use and also work to identify what individual differences
predict the magnitude of response to CLAS, both of which may lead to more effective
applications and methods of CLAS.

5. Conclusions

In this study, participants showed significant improvements in memory performance
on both Language Learning and Discovery Learning Tasks following nights with verum
CLAS compared to control conditions. Specifically, participants demonstrated better recall
of Japanese and Mandarin word pairs and improved performance on the DARWARS and
PRETXT discovery learning tasks. These results are consistent with previous findings while
also suggesting that CLAS can facilitate the memory distillation and consolidation processes
required for both language learning and more complex discovery learning tasks that require
both insight and hypothesis testing. The lack of positive memory effects found in many
previous CLAS studies [12] may be related to the type of learning being performed. It is
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possible that students and professionals who are required to learn tasks and information
that involve memory distillation, hypothesis development and testing, and other cognitive
functions related to the memory consolidation process might benefit most from the use of
CLAS. The similarity of discovery learning to hypothesis development and required testing
by many professionals, including scientists and engineers, criminal and legal experts,
business entrepreneurs, medical professionals, journalists, and other professions requiring
critical thinking. This suggests that CLAS may be helpful for improving performance and
achieving greater success in these endeavors. However, testing in these populations will be
required to confirm this.

Further studies are needed to explore the long-term effects of CLAS on memory
consolidation in a wider variety of learning tasks and its potential both for real-world
learning and therapeutic applications. For instance, CLAS may be a safe and effective
method to enhance learning in classroom and training environments. It could also be further
investigated as an intervention for individuals with dementia and other forms of memory
impairment. There is also the possibility of combining CLAS with other methods that
have been found to increase learning and memory, such as the application of transcranial
direct current stimulation (tDCS) during training [24,25]. While tDCS applied while awake
produces large effects, it lacks the potential benefits of enhanced memory consolidation
during sleep offered by CLAS. Along with more intensive neuroimaging measures to
assess the underlying mechanisms, analysis of participant differences that predict greater
sensitivity to the learning benefits of CLAS, and improved optimization of the parameters
of CLAS, together, these efforts could lead to more effective cognitive enhancement and
therapeutic interventions.
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Appendix A

Table A1. Improvements in the linear mixed-effects model (LMM) residuals by applying an adjust-
ment method (supplemental information to Table 1).

Full LMM (Fixed Effects: Week, Trial [Nested], Treatment) Reduced LMM (Fixed Effects: Treatment)
Initial Model Adjusted Model Initial Model Adjusted Model

Variable of Interest Adjustment
Method Residuals’

Skewness
Residuals’
Kurtosis

Residuals’
Skewness

Residuals’
Kurtosis

Adjustment
Method Residuals’

Skewness
Residuals’
Kurtosis

Residuals’
Skewness

Residuals’
Kurtosis

Main variables
Stimulation-ratio-2-
to-all None 0.64 0.90 NA NA None 0.64 0.77 NA NA

p2p None 0.73 0.31 NA NA None 0.76 0.42 NA NA
SOSP None 0.51 −0.47 NA NA None 0.50 −0.37 NA NA
p2p-1 None 0.70 0.12 NA NA None 0.73 0.23 NA NA
SOSP-1 None 0.50 −0.45 NA NA None 0.49 −0.39 NA NA
p2p-2 None 0.57 0.03 NA NA None 0.58 0.16 NA NA
SOSP-2 None 0.51 −0.39 NA NA None 0.52 −0.13 NA NA
SO-RMS-rel1 None 0.69 1.71 NA NA None 0.70 1.92 NA NA
SPN-RMS-rel1 None −0.07 2.02 NA NA None −0.04 1.85 NA NA
Sleep macrostructure
RL None −0.17 2.19 NA NA None −0.27 2.91 NA NA
TST Note 3 −1.72 3.80 −0.87 0.83 Note 3 −1.95 4.69 −0.99 1.13
SOL Note 2 3.65 19.0 −0.29 −0.58 Note 2 3.81 20.4 −0.34 −0.64
WASO Note 2 2.42 7.36 0.87 0.19 Note 2 2.59 7.99 0.92 0.16
W Note 2 2.37 6.74 0.81 0.26 Note 2 2.49 7.29 0.78 0.16
N1 Note 2 1.10 0.60 −0.14 −0.09 Note 2 1.22 0.86 −0.09 −0.02
N2 Note 3 −1.04 1.58 −0.20 0.10 Note 3 −1.09 1.62 −0.18 −0.12
N3 None −0.03 0.08 NA NA None −0.14 0.24 NA NA
REM None −0.32 0.02 NA NA None −0.32 −0.13 NA NA
Distribution of
stimulation by sleep
stage
W-stim Note 1 3.11 14.9 0.38 −0.53 Note 1 3.82 19.7 0.50 −0.37
N1-stim Note 4 6.45 53.2 3.04 10.9 Note 4 6.77 56.8 3.16 11.1
N2-stim Note 2 0.83 −0.10 −0.03 −1.00 Note 2 0.83 −0.16 −0.05 −1.04
N3-stim Note 1 1.75 2.42 −0.04 0.60 Note 1 1.74 2.37 −0.17 0.87
REM-stim Note 1 3.18 12.5 0.99 −0.11 Note 1 3.50 15.0 1.02 −0.07
Stimulation
algorithm
performance metrics
N-all-stims Note 1 1.49 1.47 0.12 −0.11 Note 1 1.49 1.43 0.04 0.01
N-2nd-stims Note 1 1.99 3.31 0.22 0.07 Note 1 2.00 3.40 0.18 −0.01
N-SOs Note 1 1.64 1.97 −0.03 1.05 Note 1 1.63 1.96 −0.13 1.27
Precision Note 3 −1.87 4.35 −1.29 2.00 Note 3 −1.96 4.61 −1.33 2.11
Recall Note 3 −0.73 0.53 −0.22 −0.46 Note 3 −0.75 0.35 −0.21 −0.62
Early Note 2 1.40 3.72 0.22 0.28 Note 2 1.40 3.72 0.22 0.22
On-time Note 3 −1.10 2.10 −0.72 0.91 Note 3 −1.16 2.26 −0.77 0.99
Late None 0.028 −0.67 NA NA None 0.05 −0.66 NA NA
Phase mean None −0.41 −0.22 NA NA None −0.40 −0.27 NA NA
Phase std Note 1 0.51 −0.01 0.08 −0.28 None 0.59 0.08 NA NA

Note 1: Data logarithmically transformed. Note 2: Data fourth root transformed. Note 3: Data are squared. Note
4: Results after excluding one outlier data point.
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