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Abstract: Non-muscle invasive bladder cancer (NMIBC) accounts for approximately 70–75% of all
bladder cancer cases. The standard treatment for high-risk NMIBC involves transurethral tumour
resection followed by intravesical Bacillus Calmette–Guerin (BCG) immunotherapy. While BCG
immunotherapy is both safe and effective, it frequently leads to the development of lower urinary
tract symptoms (LUTS) such as urinary urgency, frequency, dysuria, and pelvic discomfort. These
symptoms can significantly diminish patients’ quality of life and may result in the discontinuation of
BCG treatment, adversely affecting oncological outcomes. Despite the considerable clinical impact of
BCG-induced LUTS, the underlying mechanisms remain unclear, hindering the implementation or
development of effective treatments. This review provides novel insights into the potential mecha-
nisms underlying BCG-induced LUTS, focusing on the integrated roles of afferent and efferent nerves
in both normal and pathological bladder sensation and function. Specifically, this review examines
how the body’s response to BCG—through the development of inflammation, increased urothelial
permeability, and altered urothelial signalling—might contribute to LUTS development. Drawing
from known mechanisms in other common urological disorders and data from successful clinical
trials involving NMIBC patients, this review summarises evidence supporting the likely changes
in both sensory nerve signalling and bladder muscle function in the development of BCG-induced
LUTS. However, further research is required to understand the intricate mechanisms underlying the
development of BCG-induced LUTS and identify why some patients are more likely to experience
BCG intolerance. Addressing these knowledge gaps could have profound implications for patients’
quality of life, treatment adherence, and overall outcomes in NMIBC care.

Keywords: bladder cancer (BCa); NMIBC; Bacillus Calmette–Guérin (BCG); cystitis; LUTSs; afferent
sensitisation

1. Introduction
1.1. Bladder Cancer

Bladder cancer is the 10th most prevalent cancer globally [1–3]. The risk of bladder can-
cer increases with age, with the incidence being double in white populations compared to
African American populations [1,4]. Smoking is estimated to contribute to the development
of 50% of bladder tumours and remains the most significant risk factor for patients [4,5].

Approximately 75% of bladder cancers are diagnosed as non-muscle invasive bladder
cancer (NMIBC), while 25% present as muscle-invasive (MIBC) or metastatic disease [6].
NMIBCs are classified based on both the depth of tumour invasion and the histological
presentation of the cancer cells as either carcinoma in situ (CIS), Ta, or T1 [7]. CIS and Ta
tumours are confined exclusively to the superficial urothelial lining of the bladder whilst T1
tumours invade the subepithelial connective tissue, encompassing the lamina propria, but
not the detrusor muscle [7]. MIBC is diagnosed when cancers infiltrate the detrusor muscle.
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NMIBC is associated with a 5-year survival rate of 75–85% vs. 27–50% for MIBC [2,3,5].
However, NMIBC is associated with high recurrence (up to 80%), and approximately
40–50% of cases advance to MIBC [8]. MIBC is more lethal than NMIBC due to its higher
likelihood of metastasising to lymph nodes and other organs [2,3,9]. Therefore, it is impera-
tive that NMIBC is rapidly detected and treated prior to progression.

1.2. BCG Immunotherapy for NMIBC

Intravesical Bacillus Calmette–Guerin (BCG) immunotherapy is the most effective
and ‘gold standard’ adjuvant treatment in intermediate-to-high-risk non-muscle invasive
bladder cancer (NMIBC) patients following transurethral resection of the bladder tumour
(TURBT) [10,11]. BCG is initially administered as an induction series of six once-weekly
instillations and is typically followed by a BCG maintenance schedule for up to three
years [12–14].

Following BCG instillation in the bladder, live BCG attaches to the urothelium via
interactions between the fibronectin attachment protein on the BCG cell wall and the fi-
bronectin present on tumour cells, leading to internalisation by urothelial cancer cells [15].
BCG adherence to the urothelium triggers an immune response within hours of instillation.
This includes the release of an array of cytokines and chemokines from urothelial and
antigen-presenting cells, which attract granulocytes and mononuclear cells to the blad-
der [16]. The immune response to BCG is characterised by granulomas in the bladder
wall, consisting of clusters of macrophages, dendritic cells, lymphocytes, neutrophils, and
fibroblasts [15–17]. This local migration of polymorphonuclear leukocytes into the tumour
microenvironment is a crucial component of the therapeutic effect of BCG via the initiation
of tumour cell death, although the specific mechanisms responsible have not yet been
elucidated [11,12,15]. Repeated instillations during BCG induction enhance the immune
response: the overall result is a significant and sustained localised immune response in the
bladder urothelium and lamina propria that is crucial to its efficacy [11,12,15,18–20].

1.3. Adverse Effects of BCG Immunotherapy

BCG intravesical therapy is generally safe, with few patients experiencing serious
systemic side effects that necessitate immediate discontinuation, including BCG dissem-
ination to other sites via the bloodstream [21–23]. However, despite this positive safety
profile, approximately 80% of patients develop significant BCG-related cystitis (bladder
inflammation) [21,24–26]. BCG cystitis commonly appears within hours of BCG adminis-
tration and typically co-occurs with the development of debilitating lower urinary tract
symptoms (LUTS), including urinary urgency, urinary frequency, pelvic pain, and dysuria
(painful urination) [23,27–29]. Mild-to-moderate BCG cystitis can be an indicator of an
effective immune response, and the LUTS usually resolve within 48–72 h after each BCG
infusion [30]. However, symptoms typically recur with each subsequent BCG instillation,
and both the symptom severity and duration tend to increase with continued therapy, sig-
nificantly impacting patients’ quality of life [21,23,30–32]. Prevention strategies, including
a reduced BCG dose and shortened or modified BCG maintenance, can be utilised to keep
patients on their BCG schedule [27] as persistent symptoms can have a significant impact
on oncological outcomes. Up to 20% of patients discontinue BCG treatment due to the
severity of their LUTS, most commonly within the first year. These patients are classified
as BCG intolerant and have a significantly increased risk of cancer progression [24,33,34].
Limited effective treatment options are available for patients that are BCG intolerant, and
radical cystectomy (complete bladder removal) is the primary recommended option [35].
However, radical cystectomy is associated with significant morbidity and has long-lasting
impacts on patients’ quality of life [36,37]. Alternate intravesical treatment options include
chemotherapy with Mitomycin C, Gemcitabine, and Anthracyclines such as Epirubicin [38].
The immune checkpoint inhibitor pembrolizumab [39] is used in advanced-stage clinical
trials for NMIBC. However, whether these treatments offer advantageous side effect profiles
compared to BCG is currently unknown.
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Future therapeutic refinements in early-stage development include nanostructured
vehicles (nano- and micro-scale) for intravesical drug delivery; these extend the retention
time and enhance the permeability of BCG into the urothelium [40]. One such model
system utilising a biotin–streptavidin strategy inhibits cancer progression and prolongs
survival in pre-clinical rat/mouse models [41]. The impact of this delivery modification on
side effects has not been explored and remains a long way from clinical translation.

Despite the known impact of BCG-induced side effects on patients’ quality of life and
treatment adherence, there is no standard-of-care treatment to aid in the relief of BCG-
induced LUTS. The development of effective adjunct therapies to treat or prevent BCG-
induced LUTS has been limited by a lack of understanding of the mechanisms that drive
these side effects. The objective of this review was to explore this significant knowledge
gap and summarise the latest clinical and pre-clinical data to provide insights into the
mechanisms that likely contribute to the development of BCG-induced LUTS. To achieve
this, we performed a comprehensive literature search of major research repositories, and
articles were selected for inclusion using existing expert knowledge of the mechanisms
underlying the development of LUTS in a range of bladder disorders. We correlated
the mechanisms known to underlie the development of LUTS in other common urinary
disorders with the mechanisms underlying BCG efficacy, providing considerations for
future research and clinical intervention. Understanding the mechanisms responsible for
BCG-induced LUTS could have profound implications for NMIBC patients, providing
an avenue for targeted adjunct therapies that will improve quality of life and treatment
adherence.

2. Mechanisms Underlying the Development of LUTSs During BCG Immunotherapy

BCG-induced LUTS, including urinary urgency, urinary frequency, pelvic pain, and
dysuria overlap considerably with the symptomology of a range of common bladder dis-
orders including urinary tract infection (UTI), interstitial cystitis/bladder pain syndrome
(IC/BPS), and overactive bladder (OAB) syndrome [42,43]. Whilst the mechanisms un-
derlying the development of LUTS in UTI, IC/BPS and OAB have not been completely
elucidated, numerous lines of evidence support changes in the excitability of bladder-
innervating sensory (afferent) nerves and altered bladder contraction properties as crucial
common factors [44,45]. Below we summarise the evidence that bladder afferent hyper-
sensitivity may underlie the development of LUTS following BCG instillation, and the
mechanisms that may drive the development of bladder afferent hypersensitivity during
BCG immunotherapy for NMIBC.

2.1. Neural Control of Bladder Sensation and Function

Normal bladder function, characterised by urine storage and periodic urination (mic-
turition), is achieved through the coordinated relaxation and contraction of the smooth
muscle within the bladder wall and urethra, and the striated muscles of the outflow region
and pelvic floor [46,47]. The coordination of bladder muscle function relies on the syn-
chronised activity of the autonomic, sensory, and somatic nervous systems and has been
comprehensively described in excellent reviews [47,48].

The bladder is innervated by a complex network of sensory (afferent) and efferent
nerves [49,50]. Bladder afferent nerves terminate throughout the bladder wall, with endings
located in the detrusor smooth muscle, lamina propria, and urothelium. These nerves are
classified based on both their location and sensitivity to mechanical stimuli [42,51] (Figure 1).
Bladder afferents located within the detrusor smooth muscle (muscular afferents) are highly
sensitive to mechanical stretch (mechanosensory afferents), allowing for the detection
of bladder fulness as the bladder wall stretches to accommodate increasing volumes of
urine [52,53]. In contrast, bladder afferents terminating within the urothelium (mucosal
afferents) are predominantly stretch insensitive [53,54]. Due to their lack of sensitivity to
stretch, the primary stimulus from the bladder, the role of mucosal afferents in signalling
during normal bladder function is unclear. However, it is proposed that the unique
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position of mucosal afferent endings close to the bladder lumen allows for an additional
layer of sensory resolution, including the detection of changes in the bladder mucosal
environment in response to infection, inflammation or the disruption of the urothelial
barrier [53]. To achieve these diverse mechano- and chemo-sensitive roles, bladder afferents
possess a variety of receptors and ion channels that integrate signals from this complex
environment [53–55] and increase or decrease neuronal excitability to generate a variety of
physiological and pathophysiological bladder sensations.
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Figure 1. Structure and innervations of the bladder wall. The bladder is innervated by a complex
network of sensory (afferent) and efferent nerves. Bladder afferent nerves terminate throughout the
bladder wall, with endings located in the detrusor smooth muscle, lamina propria, and urothelium.
As the bladder fills with urine, the bladder wall stretches, and mechanosensory afferent fibres
embedded within the detrusor smooth muscle are activated. These afferent nerves, with cell bodies
located in the dorsal root ganglia (DRG), travel through the pelvic and hypogastric/splanchnic
nerves, synapsing in the dorsal horn of the lumbosacral (LS, L5-S1) and thoracolumbar (TL, T10-L2)
regions of the spinal cord. Sensory signals arriving at the spinal cord synapse are transduced by
second-order neurons to terminate in the periaqueductal gray (PAG), a brainstem hub for integrating
sensory inputs from the spinal cord and descending input from higher brain centres. Changes in the
excitability of bladder-innervating sensory nerves can thus directly impact bladder sensation and
bladder function. Created in BioRender. Grundy, L. (2024) [53] www.BioRender.com/h79i418.

As the bladder fills with urine, the bladder wall stretches, and mechanosensory affer-
ent fibres embedded within the detrusor smooth muscle are activated [52]. These afferent
nerves, with cell bodies located in the dorsal root ganglia (DRG), travel through the pelvic
and hypogastric/splanchnic nerves, synapsing in the dorsal horn of the lumbosacral (LS,
L5-S1) and thoracolumbar (TL, T10-L2) regions of the spinal cord [47,54]. Sensory signals
arrive at the spinal cord synapse and are transduced by second-order neurons to terminate
in the periaqueductal gray (PAG), a brainstem hub for integrating sensory inputs from the
spinal cord and descending input from higher brain centres [42,47,54] (Figure 1). When
bladder volumes are low, bladder afferent signals are of low intensity and are responsible
for activating central networks via the PAG that stimulate urine storage via the efferent
inhibition of smooth muscle contraction in the bladder [56,57]. As the bladder continues
to fill, afferent signals increase in intensity [52,54]. Once afferent signals increase above
an individualised threshold, a conscious awareness of bladder fulness develops. At this
point, switching from urine storage to voiding is dependent on a variety of psychological,
situational, and social stimuli, which determine the appropriateness to urinate [47,48].
If permitted, the PAG receives appropriate cortical input and subsequently activates the
pontine micturition centre (PMC) to stimulate parasympathetic efferent nerves to initiate
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the simultaneous contraction of the detrusor and the relaxation of the urethra to induce uri-
nation [47,48]. As a consequence, disruptions in the tightly regulated processes governing
bladder afferent nerve excitability can have significant impacts on both bladder sensation
and function and are considered central to the development of LUTS in various bladder
disorders, including IC/BPS, OAB, and UTI [44,45,53]. The similarity in LUTS presentation
after BCG immunotherapy and in other common bladder conditions suggests that shared
underlying disruptions to the sensory pathways governing bladder sensation and function
may contribute to the development of LUTS during BCG treatment for NMIBC.

2.2. Sensitisation of Bladder Afferent Nerves During Inflammation

Intravesical BCG, as described briefly above and in detail elsewhere, evokes a sus-
tained and substantial immune response characterised by the recruitment of various im-
mune cells and heightened levels of multiple cytokines [11,15]. Inflammation is an essential
biological mechanism that serves as a protective response against a variety of threats,
including infections and tissue damage [58]. In response to these threats inflammation
increases, helping to marshal a protective response to promote infection clearance or tis-
sue repair [59,60]. Inflammation is also associated with the development of exaggerated
sensations such as pain and forms a crucial component of the host response to injury and
infection by initiating protective behaviours [60–62]. Similarly, inflammation in the bladder
manifests as heightened sensation, including urinary urgency, pelvic pain, dysuria, and
exaggerated bladder function, which are highly prevalent in inflammatory bladder condi-
tions such as IC/BPS, UTI and chemotherapy-induced cystitis [42,63]. As these symptoms
overlap considerably with the symptoms of BCG cystitis, similar neuro-immune interac-
tions may underlie the development of bladder symptoms following BCG immunotherapy
for NMIBC, but these are yet to be explored.

A key mechanism underlying the development of inflammation-induced pathophysi-
ological sensation is the sensitisation of sensory nerves to physiological stimuli [64–67]. In
animal models of cystitis, where the direct interrogation of sensory signalling is possible
and has been studied, animals exhibit bladder afferent hypersensitivity to distension and
bladder dysfunction, providing a link between exaggerated signalling in the bladder and
the development of a pathological phenotype [63]. Bladder afferents, like those of other
organs, have chemo-sensitive properties, and can be sensitised directly by inflammatory
mediators [44]. Cytokines, and mast cell mediators including histamine and nerve growth
factor (NGF), can directly sensitise bladder afferents to induce hyperexcitability when
exposed to physiological stimuli [68–71] and provoke hyperinnervation by sensory and
sympathetic nerves [63,72,73]. NGF from mast cells can also promote antidromic neuropep-
tide secretion from peripheral afferent terminals, including substance P and calcitonin
gene-related peptide, which contribute to neurogenic inflammation and the neuroplasticity
of peripheral afferent circuits [42,74,75]. There are no studies exploring the changes in
urinary NGF levels in BCG-induced cystitis; however, mast cells are present in NMIBC
tumours [76,77] and are considered to play a key immunomodulatory role during BCG
therapy [77]. BCG can also directly induce the release of cytokines from the bladder and
urothelial cells in vitro [15,78,79], with many of these implicated in the sensitisation of
bladder afferents [69] (Figure 2). Furthermore, the levels of histamine and inflamma-
tory cytokines are elevated in the urine of patients undergoing BCG therapy [15,80,81],
providing the fundamental basis for enhanced neuro-immune interactions during BCG im-
munotherapy. Despite these correlations, further research is required to determine whether
BCG-induced inflammation can directly sensitise bladder afferents.
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Figure 2. Proposed peripheral mechanisms underlying BCG-induced bladder hypersensitivity and
dysfunction. Following BCG instillation into the bladder (1), live BCG attaches to the urothelium
via the fibronectin present on tumour cells (2). BCG adherence to the urothelium triggers the
release of cytokines and chemokines (3), stimulating immune cell infiltration into the urothelium
(4) to initiate tumour cell death. Inflammation in the urothelium promotes GAG layer dysfunction
and urothelial barrier breakdown (5), allowing urine, BCG, and commensal bacteria to reach the
bladder interstitium. The urinary solutes and inflammatory mediators released from urothelial and
immune cells have the potential to sensitise bladder afferent (6) and efferent (7) endings. Bladder
afferent hypersensitivity increases peripheral drive to the spinal cord, leading to exaggerated bladder
sensation and function. Exaggerated bladder sensation and function are proposed as key mechanisms
underlying the development of LUTS. Created in BioRender. Grundy, L. (2024) [53] www.BioRender.
com/a16d912.

2.3. Altered Urothelial Permeability

The bladder and urinary tract are lined by the urothelium, one of the most imperme-
able transitional epithelium structures within the body. The urothelial barrier is crucial to
the maintenance of bladder homeostasis, protecting the underlying interstitium of the blad-
der from the toxic waste metabolites and bacteria present in urine [82,83]. The urothelium
comprises three cell layers: the basal layer, partially differentiated intermediate cells, and
highly specialised apical cells [84,85]. Apical cells create a virtually impermeable barrier
that is maintained by tight junctions, hydrophobic uroplakin plaques and a dense layer of
glycosaminoglycan (GAG) on the apical surface that minimises the reabsorption of toxic
urine components including ammonia, urea, potassium, and the attachment of bacteria to
urothelial cells [82,86,87]. Damage to the bladder’s GAG layer, such that urothelial perme-
ability increases, allows urine solutes to penetrate the bladder tissue and has been shown
to directly sensitise bladder afferents [88] and contribute to the development of bladder
pain and dysfunction in animal models of cystitis [89,90]. Furthermore, increased urothelial
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permeability promotes inflammation [91], which, as outlined above, can have profound
impacts on bladder afferent excitability. Patients diagnosed with IC/BPS often exhibit
diminished urothelial barrier integrity, which is characterized by the reduced expression of
molecular markers of tight junction proteins [92–95]. This is considered a key factor in the
development of lower urinary tract symptoms (LUTS) in IC/BPS patients [95].

Experimental evidence directly implicating BCG immunotherapy in urothelial barrier
breakdown is limited; however, NMIBC patients undergoing BCG therapy have elevated
levels of cytokines and albumin within the urine in the first 12 h after BCG treatment,
indicating urothelial leakage [15,19]. Furthermore, intravesical BCG treatment causes
the long-term downregulation of uroplakins in a mouse model, which is consistent with
urothelial barrier dysfunction [96]. It is also important to consider that patients with NMIBC
will undergo multiple cystoscopies that could damage the urothelium. Furthermore,
TURBT alone will damage the integrity of the urothelial barrier and is a major reason for
the break between TURBT and starting BCG therapy [97]. Another mechanism that likely
impacts urothelial integrity during BCG immunotherapy is the development of chronic
inflammation. The chronic inflammation observed in IC/PBS contributes to impaired
urothelial homeostasis and abnormal function [98]. As such, if the inflammatory stimulus
is persistent, inflammation and permeability can perpetuate each other. Therefore, as
BCG immunotherapy induces an intense but persistent local inflammatory reaction in the
bladder wall [15], BCG-induced inflammation may also promote an increase in urothelial
permeability around the bladder tumour (Figure 2).

Supporting an increase in urothelial permeability as a contributing factor in the patho-
physiology of BCG-induced LUTS, treatments that improve urothelial barrier function and
are effective in treating LUTS in IC/PBS have also been utilised with some success in treat-
ing BCG-induced LUTS. Notably, agents such as Hyaluronic Acid (HA) and Chondroitin
Sulfate (CS) [99,100] show clinical efficacy in treating LUTS following BCG immunother-
apy [101–103]. The early repair of the GAG layer using intravesical HA and CS can signif-
icantly improve urinary urgency, bladder pain, frequency, and voided volume [101,104],
indicating that increased urothelial permeability may represent a key mechanism underly-
ing the development of BCG-induced LUTS (Figure 2).

2.4. Altered Urothelial Neurotransmission

In addition to functioning as an impermeable barrier, multiple lines of evidence in-
dicate that the urothelium is a mechanosensory organ that can detect and respond to
chemical and mechanical stimuli [105]. In response to stimulation, urothelial cells secrete a
variety of signalling molecules including neurotrophins, neuropeptides, ATP, acetylcholine,
prostaglandins, prostacyclin, nitric oxide, and cytokines, which enable communication
with underlying afferent and efferent nerves, smooth muscle cells, interstitial cells, and in-
flammatory cells [105–109]. Several studies have implicated changes in urothelial mediator
release and the development of LUTS in OAB and IC/PBS [108–111].

The primary method of communication in the urothelium is hypothesised to be via
non-neuronal ATP, and its activation of bladder afferents nearby [112–114]. ATP is released
from the urothelium in response to stretch, and enhanced ATP release from urothelial cells
has been identified in IC/PBS patients and is correlated with painful sensations and bladder
overactivity [108,109,115,116]. Furthermore, preclinical studies have demonstrated that
chronic bladder inflammation increases ATP release from the urothelium and strengthens
purinergic signalling in bladder afferents [117]. ATP is secreted during immunogenic cell
death, and there is a correlation between inflammation and ATP release from epithelial cells,
including the urothelium [117,118]. As BCG immunotherapy is associated with significant
inflammation, as well as changes in the integrity of the urothelium, it is surprising that the
altered release of urothelial neurotransmitters has not been explored in either humans or
by utilising animal models of BCG treatment in the context of LUTS (Figure 2).
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2.5. Altered Bladder Contractility

Bladder relaxation during urine storage and efficient bladder contraction during
urine evacuation are essential for ensuring regular micturition. Bladder muscle function
is under the control of efferent nerves, which can be influenced by the local bladder
environment, as well as by the intensity of the afferent signal that feeds into the central
circuits mediating efferent output [47,54]. Multiple lines of evidence support that increased
detrusor contractions during the filling phase of micturition are a major component of the
pathophysiology underlying the development of LUTS in OAB [119].

Research on the effects of BCG immunotherapy on bladder contractility is limited;
however, some patients will experience urge incontinence during BCG infusion, contribut-
ing to BCG intolerance [120,121], indicating that BCG can rapidly impact bladder function
in some patients. The mechanisms underlying this have yet to be explored, but the relative
speed of the effect indicates either a reflex mechanism involving afferent nerves or direct
local actions within the bladder wall [47,48] (Figure 2). Clinical studies have explored the
contribution of exaggerated bladder function from an intervention perspective. Antimus-
carinics are the mainstay of treatment for OAB; however, randomized controlled trials
investigating the effectiveness of oxybutynin in treating BCG-induced LUTS are scarce and
yield mixed results. A triple-blind, placebo-controlled study involving 60 patients receiving
BCG infusions found that oxybutynin significantly alleviated BCG-induced LUTS, includ-
ing urgency and dysuria [122]. However, a separate randomized trial of 50 BCG-naïve
patients, who were administered oxybutynin alongside BCG infusions, showed increased
urinary frequency and dysuria compared to those who received a placebo with BCG [123].
Mirabegron, a B3-adrenoreceptor agonist that provides relief for OAB through the increased
relaxation of the bladder during filling [124], has been shown to improve LUTS in NMIBC
patients undergoing BCG immunotherapy [125]. Specifically, mirabegron significantly
improved the OAB symptom score, nocturia, micturition urgency, urinary incontinence,
pain and patient compliance and prognosis [125], suggesting that increased bladder con-
traction or tone during bladder filling may be a fundamental mechanism underlying the
development of LUTS following BCG immunotherapy for NMIBC. Botulinum neurotoxin
type A (BoNT/A), a neurotoxin that blocks signalling at the neuromuscular junction [126]
and is clinically effective in relieving OAB by reducing bladder contraction [127], has also
been explored for relieving the side effects of BCG cystitis. Few studies have reported
the positive effects of injecting BoNT/A into the bladder in patients with refractory BCG
cystitis or BCG intolerance due to urge incontinence [128,129].

The mechanisms driving altered bladder muscle function during BCG immunother-
apy are unknown, but a variety of biological processes that have been discussed in this
review can influence the efferent regulation of bladder relaxation/contraction, including
suburothelial inflammation, exaggerated afferent signalling, altered urothelial transmitter
release, and heightened sensitivity to contraction-mediating transmitters. Further research
is required to understand the relative importance of these complex interacting mechanisms
in the context of the side effects of BCG.

3. Conclusions

BCG immunotherapy for NMIBC is commonly associated with the development of
bladder side effects that can significantly impact patients’ quality of life and treatment
adherence. Effectively managing or preventing these LUTS could significantly enhance
patient well-being during and after NMIBC treatment, while also improving treatment
compliance, particularly in BCG-intolerant patients. However, this review highlights
that the development of such effective adjunct therapies is severely hindered by our
limited understanding of the mechanisms behind BCG-induced LUTS. By exploring the
similarities between other urological disorders and BCG-induced cystitis, this review
provides crucial insights into a variety of underlying mechanisms that may contribute to
BCG-immunotherapy-induced LUTS, including the development of exaggerated bladder
sensory signalling, detrusor muscle hypercontractility, increased urothelial permeability,
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and altered urothelial signalling. Future research must focus on unravelling the specific
role that these pathophysiological processes play in the development of LUTS following
BCG immunotherapy. This knowledge could pave the way for developing adjunctive or
modified therapies to complement BCG immunotherapy, potentially reducing the LUTS
associated with NMIBC treatment to improve patients’ quality of life during treatment and
treatment adherence.
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