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Abstract: Astrocytes, vital support cells in the central nervous system (CNS), are crucial for main-
taining neuronal health. In neurodegenerative diseases such as Alzheimer’s disease (AD), astrocytes
play a key role in clearing toxic amyloid-β (Aβ) peptides. Aβ, a potent neuroinflammatory trigger,
stimulates astrocytes to release excessive glutamate and inflammatory factors, exacerbating neuronal
dysfunction and death. Recent studies underscore the role of Rho GTPases—particularly RhoA,
Rac1, and Cdc42—in regulating Aβ clearance and neuroinflammation. These key regulators of
cytoskeletal dynamics and intracellular signaling pathways function independently through distinct
mechanisms but may converge to modulate inflammatory responses. Their influence on astrocyte
structure and function extends to regulating endothelin-converting enzyme (ECE) activity, which
modulates vasoactive peptides such as endothelin-1 (ET-1). Through these processes, Rho GTPases
impact vascular permeability and neuroinflammation, contributing to AD pathogenesis by affecting
both Aβ clearance and cerebrovascular interactions. Understanding the interplay between Rho
GTPases and the cerebrovascular system provides fresh insights into AD pathogenesis. Targeting Rho
GTPase signaling pathways in astrocytes could offer a promising therapeutic approach to mitigate
neuroinflammation, enhance Aβ clearance, and slow disease progression, ultimately improving
cognitive outcomes in AD patients.

Keywords: Alzheimer’s disease; amyloid-β (Aβ); Aβ clearance; Rho GTPases; astrocytes; endothelin-
converting enzyme; neprilysin

1. Introduction
1.1. Astrocytes and Aβ Clearance

Astrocytes, the most abundant glial cell type in the central nervous system (CNS), play
a pivotal role in maintaining neuronal health and function [1]. They are in close contact
with cerebral blood vessels and neurons through their foot process structures, forming
a key network across the blood–brain barrier, and play an indispensable role in main-
taining the homeostasis of the CNS. These cells not only provide nutritional support for
neurons, but also regulate ion balance, secrete neurotrophic factors, and play an important
role in removing metabolic waste [2–5]. Their diverse functions include providing struc-
tural support, regulating ion homeostasis, and participating in neurotransmitter clearance.
Increasing evidence suggests that astrocytes actively contribute to the pathogenesis of
multiple neurological disorders. In particular, astrocytes have an important role in waste
removal processes because their foot process structures form glial limitans around cerebral
blood vessels, helping to remove the accumulation of harmful substances such as amyloid
β protein (Aβ) [6,7]. Aβ is one of the key pathological features of Alzheimer’s disease (AD)
and is usually accumulated significantly in neurodegenerative lesions [8]. In 2012, Jeffrey
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et al. showed that astrocytes effectively limit the spread of Aβ in the brain parenchyma by
regulating the fluidity of cerebrospinal fluid and brain interstitial fluid, thereby playing
a vital role in regulating the metabolic balance of Aβ in the brain [9]. In recent years,
increasing evidence has highlighted the significance of astrocytes in the clearance of Aβ

peptides, a hallmark of AD [10–13].

1.1.1. Astrocyte Reactivity and Functions

Morphological changes: reactive astrocytes often exhibit hypertrophy and hyperplasia,
accompanied by increased expression of glial fibrillary acidic protein (GFAP), a hallmark
marker of astrocyte activation [14]. These morphological changes can lead to the formation
of glial scars, which may impede neuronal regeneration and plasticity [15,16].

Altered gene expression: reactive astrocytes upregulate the expression of a variety of
genes, including inflammatory cytokines, chemokines, and growth factors [17–20]. Some
of these factors, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), can
exacerbate neuroinflammation and contribute to neurodegeneration [21–23]. However,
other factors, such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived
neurotrophic factor (GDNF), may have neuroprotective effects [24,25].

Functional modifications: reactive astrocytes can exhibit altered ion channel and
transporter expression, leading to changes in their ability to regulate extracellular ion
concentrations and neurotransmitter levels [26–29]. They may also release neurotoxic
substances, such as glutamate and reactive oxygen species (ROS), which can damage
neurons [30,31].

1.1.2. Astrocyte-Mediated Aβ Clearance Mechanisms

Phagocytosis: astrocytes can directly engulf and degrade Aβ through phagocytosis.
This process involves the recognition of Aβ by specific receptors on the astrocyte surface,
followed by internalization and lysosomal degradation [32–34].

Endocytosis: astrocytes can internalize Aβ through endocytosis, a process that in-
volves the formation of vesicles that transport Aβ into the cell [35–37]. Once inside the cell,
Aβ can be degraded by lysosomal enzymes or transported to the perivascular space for
clearance [38,39].

Perivascular clearance: astrocytes play a critical role in perivascular clearance, a
process by which Aβ is transported from the brain parenchyma to the cerebrospinal fluid
(CSF) via the perivascular space. Astrocytes extend their endfeet, to wrap around blood
vessels, forming a tight junction that regulates the exchange of substances between the blood
and the brain [9]. Aβ can be transported from the brain parenchyma to the perivascular
space through these endfeet and then cleared into the CSF [40].

Secretion of Aβ-degrading enzymes: astrocytes can secrete a variety of enzymes,
including neprilysin, insulin-degrading enzyme (IDE), and matrix metalloproteinases
(MMPs), that can degrade Aβ. These enzymes can cleave Aβ into smaller, less toxic
fragments, thereby reducing its neurotoxicity [12,41,42].

1.1.3. Impaired Astrocyte Function and Aβ Accumulation

In AD, astrocyte function becomes impaired, leading to reduced Aβ clearance and
increased Aβ accumulation [43]. This impairment may be due to a variety of factors,
including oxidative stress, inflammation, and genetic mutations [18,44,45]. As a result, Aβ

accumulates in the brain parenchyma, forming plaques that disrupt neuronal communica-
tion and contribute to neurodegeneration.

1.1.4. Therapeutic Implications

Understanding the role of astrocytes in Aβ clearance has important therapeutic impli-
cations for AD. By targeting astrocyte function, it may be possible to enhance Aβ clearance
and slow disease progression. Potential therapeutic strategies include the following:
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Pharmacological interventions: developing drugs that can enhance astrocyte function,
such as by increasing the expression of Aβ-degrading enzymes or reducing inflammation [46].

Cell therapy: transplanting healthy astrocytes into the brain to replace damaged
or dysfunctional astrocytes [47]. Using gene therapy to deliver genes that can enhance
astrocyte function or reduce Aβ production [48].

In conclusion, astrocytes play a crucial role in Aβ clearance, and impaired astrocyte
function contributes to Aβ accumulation and AD pathogenesis. By understanding the
mechanisms underlying astrocyte-mediated Aβ clearance, we may be able to develop novel
therapeutic strategies for AD.

1.2. Rho GTPases in Astrocyte
1.2.1. Rho GTPases in Cellular Functions

Rho GTPases, a family of small GTPases, are molecular switches that cycle between
an inactive GDP-bound state and an active GTP-bound state. This dynamic regulation
allows them to control a wide range of cellular processes, including cell proliferation,
differentiation, migration, and adhesion [49]. They are particularly crucial in regulating the
actin cytoskeleton, a complex network of proteins that provides structural support to cells
and enables various cellular functions, such as cell motility and division [50].

One of the most critical roles of Rho GTPases lies in the regulation of the actin cy-
toskeleton, a dynamic network of actin filaments that provides structural support to cells
and enables various cellular functions, such as cell motility, division, and morphogenesis.
Rho GTPases influence actin dynamics through several mechanisms:

Actin polymerization: Rho GTPases, particularly Ras homolog family member A
(RhoA) and Rac1, can directly interact with actin-binding proteins, such as the Arp2/3 com-
plex, to promote actin polymerization [51,52]. This leads to the formation of actin filaments,
which are essential for cell shape and motility [53].

Stress fiber formation: RhoA is a key regulator of stress fiber formation, which pro-
duces contractile bundles of actin filaments [54]. The activation of RhoA leads to the
activation of Rho-associated kinase (ROCK), which phosphorylates the myosin light chain,
promoting myosin–actin interactions resulting in stress fiber formation [55,56].

Lamellipodia and filopodia formation: Ras-related C3 botulinum toxin substrate
1 (Rac1) and cell division control protein 42 homolog (Cdc42), respectively, are key reg-
ulators of lamellipodia and filopodia formation [57–59]. These membrane protrusions
are essential for cell migration and invasion. Activation of Rac1 and Cdc42 leads to the
activation of various actin-binding proteins, such as WASP and WAVE, which promote
actin polymerization and the formation of these protrusions [60,61].

Endocytosis and exocytosis: Rho GTPases also play a role in regulating endocytosis
and exocytosis, processes that involve the formation and fusion of membrane-bound
vesicles. For example, Rac1 and Cdc42 are involved in clathrin-mediated endocytosis,
while RhoA is involved in exocytosis [62–65].

1.2.2. Rho GTPases in Diseases

Dysregulation of Rho GTPases has been implicated in a variety of human diseases,
including cancer [66], cardiovascular disease, and neurodegenerative disorders. For exam-
ple, aberrant activation of RhoA has been linked to tumor invasion and metastasis, while
aberrant activation of Rac1 has been linked to autoimmune diseases [67,68]. In neurodegen-
erative diseases, such as AD and Parkinson’s disease, dysregulation of Rho GTPases has
been implicated in neuronal cell death and synaptic dysfunction [69,70]. Given their critical
role in various cellular processes and their involvement in numerous diseases, Rho GTPases
have emerged as attractive therapeutic targets. Several strategies are being explored to
target Rho GTPases, including the following:

Small-molecule inhibitors: these compounds can directly inhibit Rho GTPases or their
downstream effectors [71,72].
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RNA interference: RNA interference can be used to knock down the expression of Rho
GTPases [73]. For example, lentiviral vector-mediated shRNA targeting RhoA was applied
to cultured Schwann cells to suppress RhoA expression [74].

Gene therapy: gene therapy can be used to overexpress or downregulate Rho GTPases.
The designed vector, such as bacterial enzyme C3-ADP ribosyl transferase (C3), blocks
RhoA from becoming active and helps axons grow and regenerate, which promotes out-
growth [75]. By targeting Rho GTPases, it may be possible to develop novel therapies for a
wide range of diseases. However, further research is needed to fully understand the com-
plex roles of Rho GTPases in cellular processes and to develop safe and effective therapies.

1.2.3. Rho GTPases in the CNS

In the central nervous system (CNS), Rho GTPases play a pivotal role in neuronal
development, synaptic plasticity, and neurodegenerative diseases [76–78]. They regulate
several key processes, including the following:

Axon guidance and growth cone dynamics: in the nervous system, Rho GTPases play
a pivotal role in neuronal development and regeneration by regulating the cytoskeleton,
with particular importance in dendrite and axon growth [79–84]. During axon guidance,
Rho, Rac, and Cdc42 GTPases serve as key modulators of neuroplasticity. RhoA activation
increases myosin II activity, resulting in axon retraction and growth cone collapse. Con-
versely, Rac1 and Cdc42 promote axon extensions by driving the formation of lamellipodia
and filopodia. Through these mechanisms, Rho GTPase signaling regulates actin filament
dynamics in growth cones, enabling them to respond effectively to guidance cues [85].

Rho GTPases also mediate growth cone responses to neurotrophic factors. For instance,
the activation of Trk and p75 receptors can either prompt actin filament aggregation or
reduce RhoA activity, thereby shaping the pseudopodia structures of growth cones [86,87].
Highly conserved in eukaryotes, Rho GTPases primarily control neuronal migration by
orchestrating the assembly and actin rearrangement and microtubule cytoskeletons. Rho
GTPases regulate cell polarity, adhesion, and directional migration during the formation
of cortical neuron layers and the patterning of brain circuits, facilitating the development
of cortical structure and establishing functional neural connections [88]. These roles make
Rho GTPases indispensable as cytoskeletal regulators in nervous system development.

Dendritic spine morphology and synaptic plasticity: Rho GTPases influence the
formation, maturation, and elimination of dendritic spines, which are the sites of synaptic
contact between neurons. They also regulate synaptic plasticity, the ability of synapses
to strengthen or weaken in response to activity. The Rho family of small GTPases are
essential regulators of synaptic plasticity, influencing synaptic development through actin
cytoskeleton remodeling. Key members, including Rac1, Cdc42, and RhoA, along with
their effectors, play crucial roles in spine formation, spine morphology, receptor trafficking,
and the processes underlying synaptic plasticity, learning, and memory. The activation of
Rac1 and Cdc42 leads to an increase in immature spines. Some of these spines mature via a
Rac1-dependent pathway, while others are pruned through a RhoA-dependent mechanism.
This supports selective growth and balanced synaptic regulation [89].

In the active state, Rho GTPases engage with downstream effectors to orchestrate
spine morphology and synapse development [90]. Studies have identified various GEFs
and GAPs within the Rho family as essential for spine morphogenesis. Rho GTPases are
regulated by GEFs (guanine nucleotide exchange factors), which facilitate the exchange of
GDP for GTP to activate the GTPases, and by GAPs (GTPase-activating proteins), which
accelerate GTP hydrolysis to inactivate them [90]. Within the spine, GEFs are pivotal in
regulating the actin cytoskeleton by modulating Rho GTPase activity. The activation of
Rac and Cdc42 supports the formation and growth of synapses and spines, whereas RhoA
restrains excessive synaptic development, maintaining a dynamic balance in excitatory
synapses [13]

Neuroinflammation: Rho GTPases are involved in the inflammatory response in the
CNS, regulating the activation of microglia and astrocytes. Inflammation in the central
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nervous system (CNS) activates the small GTPase RhoA and its downstream effector
ROCK. Activation of this pathway not only directly leads to neuronal damage and cell
death, but also promotes the shrinkage and loss of neural processes and synapses [91]. In
the CNS inflammatory response, the participation of astrocytes and microglia exacerbates
neuronal damage, and the RhoA/ROCK signaling pathway plays a key role in regulating
the functions of these glial cells and immune cells. Studies have shown that the activation
of the RhoA/ROCK pathway induces neurodegeneration in the CNS [92,93].

Under neuroinflammatory conditions, heparan sulfate proteoglycans (CSPGs) re-
leased by astrocytes interact with myelin-associated inhibitor Nogo receptors, activating
the RhoA/ROCK pathway and leading to axonal growth cone collapse [94]. Studies by
Fujita et al. showed that the activation of RhoA/ROCK induces cytoskeletal reorganization,
inhibiting neurite growth and leading to growth cone collapse [95]. In contrast, the inhibi-
tion of the RhoA/ROCK pathway promotes neurite regeneration and recovery. This was
further verified by Zhang et al.’s study: by inhibiting ROCK activity with Fasudil, neuronal
recovery and a significant reduction in the proliferation of reactive astrocytes after cerebral
ischemia/reperfusion injury were observed [96,97].

In summary, the RhoA/ROCK pathway plays an important role in neuronal injury and
neurodegeneration by regulating glial cell activation and neurotoxic phenotype transition
in CNS inflammation. Inhibiting this pathway not only helps reduce neuronal damage
caused by neuroinflammation but also promotes neuronal regeneration and CNS repair.

1.2.4. Rho GTPases in Regulating Astrocyte Morphology

Rho GTPases are essential regulators of astrocyte morphology, function, and reactivity.
Holtje et al. found that Rho plays an inhibitory role in astrocyte neurite formation during
astrocyte stellation [98]. By selectively inhibiting Rho’s downstream effector ROCK with
Y27632, they observed accelerated wound healing, enhanced polarized neurite formation,
and increased astrocyte migration toward the lesion site, suggesting that Rho negatively
regulates astrocyte neurite growth and migration responses after injury [90]. Etienne-
Manneville et al. further showed that Rho influences the microtubule cytoskeleton during
astrocyte migration, while Rac is essential for neurite development and maintenance in mi-
grating astrocytes [99]. Additionally, Cdc42 is critical for forming neurites that contribute to
the elongated morphology of astrocytes [99]. This implies that Rac facilitates cell elongation
by directly affecting microtubule dynamics or modulating microtubule-dependent pro-
cesses. Supporting this, Daub et al. showed that Rac may regulate microtubule dynamics
by phosphorylating p65PAK, which inhibits the microtubule-destabilizing protein [100].

These findings collectively suggest that Rho, Rac, and Cdc42 have distinct roles in
astrocyte morphology and migration, with Rho acting as a negative regulator, while Rac and
Cdc42 contribute to neurite elongation and stability by modulating the microtubule cytoskeleton.

1.2.5. Rho GTPases in Regulating Astrocyte Function and Reactivity

Rho GTPases also regulate a variety of astrocyte functions, including the following:
Gliotransmitter release: astrocytes release gliotransmitters, such as glutamate and

ATP, which can modulate neuronal activity. Rho GTPases have been identified as key
regulators of exocytosis and may play a role in modulating the exocytosis of these glio-
transmitters [101,102].

Water and ion homeostasis: astrocytes play a crucial role in maintaining water and ion
homeostasis in the brain [103,104]. Rho GTPases regulate the expression and activity of ion
channels and transporters, which are essential for this function [105,106].

Neuroinflammation: as mentioned earlier, Rho GTPases are involved in the inflam-
matory response in the CNS, including the activation of astrocytes. Inhibition of the
RhoA/ROCK pathway can significantly reduce reactive gliosis, reduce the over-activation
of astrocytes, and induce their expression of pro-survival genes [107–110]. Profilin 1 (PFN1),
as one of the downstream effectors of RhoA/ROCK, may play a neuroprotective role by
affecting the polarization of microglia. Ermei et al. indicated that knocking down PFN1 can
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promote the neuroprotective polarization of microglia, which may be achieved through
the inhibition of RhoA/ROCK [111,112]. In addition, NF-κB, a downstream effector of
ROCK, plays an important role in the neurotoxic phenotype conversion of microglia. Zhang
et al. found that inhibiting the RhoA/ROCK/NF-κB pathway can prevent microglia from
polarizing to neurotoxic subtypes, promoting their transformation into neuroprotective phe-
notypes, and help them recover from brain damage under inflammatory conditions [113].
This activation can lead to the release of inflammatory cytokines and chemokines, which
may contribute to neurodegeneration.

In response to injury or disease, astrocytes undergo a process known as reactive
astrogliosis. This process involves changes in astrocyte morphology, gene expression, and
function. Rho GTPases play a critical role in regulating reactive astrogliosis [114]. For
example, the activation of RhoA can promote the formation of glial scars, which can limit
tissue damage but can also hinder neuronal regeneration [115]. In contrast, loss of Rac1 can
promote neurogenesis and synaptogenesis [116]. Rho GTPases are essential regulators of
astrocyte function and reactivity. By understanding the role of Rho GTPases in astrocytes,
we can gain insights into the mechanisms underlying neurodegenerative diseases and
develop novel therapeutic strategies. Targeting Rho GTPases may provide a promising
approach to modulate astrocyte function and promote neuroprotection.

1.3. Rho GTPases in Aβ Clearance

Given that Rho GTPases are dysregulated in AD, several studies have investigated the
relationship between Rho GTPases, amyloid precursor protein (APP) synthesis, and Aβ

production across various cell lines. For instance, in primary hippocampal neurons from
mice, the inhibition of Rac1 negatively regulates APP gene synthesis [117] and reduces Aβ42
production by altering γ-secretase substrate selectivity, leading to increased processing of
Notch1 instead of APP [118].

The dysregulation of Rho GTPase signaling has been linked to impaired Aβ clearance
and the progression of AD. For instance, age-related changes in Rho GTPase activity
can contribute to decreased astrocytic and microglial function, leading to diminished
Aβ clearance and increased deposition of neurotoxic aggregates. Moreover, genetic and
pharmacological modulation of Rho GTPases has shown promise in preclinical models,
suggesting that maybe targeting these signaling pathways could enhance Aβ clearance and
provide therapeutic benefits in AD [119–121].

Thus, in the following sections, we discuss the mechanisms by which astrocyte-
associated Rho GTPases facilitate Aβ clearance from the brain, particularly focusing on the
role of Rho GTPases in Aβ clearance enzymes in astrocytes. Additionally, we explore the
potential of astrocyte Rho GTPases as therapeutic targets for disease modification in AD.

2. Aβ Clearance Enzymes in Astrocytes

In AD, the accumulation of Aβ is a hallmark pathological feature, with astrocytes
playing a crucial role in its clearance through various mechanisms. Astrocytes first help
reduce Aβ deposition in the brain by transferring Aβ from the brain parenchyma to the
perivascular space, a process dependent on the functional integrity of the neurovascular
unit [122]. Additionally, Aβ can be transported across the blood–brain barrier (BBB) and
cleared out of the brain, helping to mitigate its neurotoxicity [123,124]. Astrocytes also
contribute by clearing Aβ from the brain’s lymphatic system, thus reducing Aβ-associated
damage through their clearance functions [9,125]. In particular, astrocytes degrade Aβ by
secreting proteases, such as neprilysin (NEP) and ECEs (ECE-1 and ECE-2) as Aβ-degrading
enzymes. These enzymes cleave Aβ peptides at specific sites, inactivating or transforming
them to reduce their toxicity and accumulation [126,127].

2.1. NEP

NEP is a key Aβ-degrading enzyme primarily located in hippocampal neurons in
the CA1-3 region [128,129] and in reactive astrocytes, but is found less frequently in mi-
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croglia [130,131]. Studies have shown that elevated NEP levels in AD patients can reduce
Aβ 42 [132]. Furthermore, Kim et al. found that exercise-induced hormones significantly
increased NEP release in astrocytes, effectively reducing Aβ levels [11]. NMDA antagonists
inhibit NEP’s role in Aβ degradation, reducing the ability of astrocytes to manage exoge-
nous Aβ [133]. Other studies have shown that astrocyte transplantation can promote Aβ

clearance, while NEP inhibitors can negatively affect Aβ clearance efficiency [10]. However,
NEP plays a key role in the clearance of extracellular Aβ, while ECEs primarily degrade Aβ

intracellularly [134]. Rho GTPases are molecular switches that relay extracellular signals
into the cell, where they initiate intracellular events.

2.2. ECE-1

Multiple studies provide evidence that ECEs in astrocytes assist Aβ clearance and
may protect against AD. Eckman et al. demonstrated that ECE-1 and ECE-2 can degrade
Aβ in vitro and in vivo, with reduced ECE activity leading to increased amyloid plaque for-
mation. This was one of the first studies to suggest ECE’s role in regulating Aβ levels in the
brain [135]. Iwata et al. confirmed that decreased ECE activity results in Aβ accumulation
in animal models [136]. Subsequent research by Padilla et al. and Palmer et al. emphasized
astrocyte ECE’s essential role in clearing Aβ from brain capillaries, highlighting astrocyte
ECEs as key to Aβ breakdown, particularly in the perivascular space [137,138].

ECE-1 is a membrane-bound protein that plays a critical role in mediating vasocon-
striction during inflammatory responses or tissue injury. It achieves this by converting large
precursor molecules of endothelin-1 (ET-1) into their biologically active forms. ECE-1 is
primarily localized in endosomal compartments and has been shown to exhibit activation
in endothelial cells in response to Aβ [138,139].

The presence of Aβ oligomers is particularly concerning, as these aggregates can dis-
rupt cerebral blood flow in capillaries. This disruption is mediated through the production
of ROS, which subsequently triggers the release of ET-1 [140]. Elevated levels of ET-1 can
have detrimental effects on neurovascular function and exacerbate neuroinflammatory
processes within the brain. Specifically, overexpression of ET-1 in astrocytes has been linked
to heightened neuroinflammatory damage, worsening the overall pathological state [141].
Interestingly, research has indicated that inflammatory responses lead to the activation of
reactive astrocytes, particularly in conditions like focal multiple sclerosis lesions, which
are identified as primary sources of ET-1. In contrast, astrocytes that remain unaffected
do not display significant ET-1 activity [142] (Figure 1). This differential expression under-
scores the role of reactive astrocytes in the context of neuroinflammation and highlights the
complex interplay between neuroinflammatory factors and glial cell responses.
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Further investigations into inflammatory mediators, such as interleukin-1 beta (IL-1β),
revealed that these cytokines can significantly upregulate ET-1 production in astrocytes.
Conversely, compounds like resveratrol showed potential in inhibiting ET-1 production,
suggesting promising therapeutic avenues to mitigate neuroinflammation and associated
vascular dysfunction [143]. By exploring the pathways involving ECE-1, researchers
may uncover new strategies for treating neurodegenerative diseases characterized by
inflammation and impaired blood flow.

2.3. ECE-2

ECE-2 is predominantly expressed in neurons but is also found in specific populations
of astrocytes and microglia [144,145]. This enzyme plays a crucial role in the metabolism
of neuropeptides and has been implicated in various neurobiological processes. Studies
utilizing ECE-2 knockout mice demonstrated that the absence of this enzyme leads to sig-
nificantly increased levels of Aβ in the brain. This accumulation of Aβ is closely associated
with cognitive impairments, resulting in notable deficits in memory and learning [139,146].
Interestingly, in patients diagnosed with AD, research showed that the levels of ECE-2
mRNA are elevated. This increase may be a compensatory response to the accumulation
of Aβ and reduced cerebral blood flow often observed in AD [145]. The relationship be-
tween ECE-2 and Aβ levels is complex. While ECE-2 deficiency appears to contribute to
elevated Aβ levels, it is essential to consider that other contributing factors may play a
more significant role in this process. For instance, the pathological environment created
by neuroinflammation and vascular dysfunction in AD may influence the dynamics of
Aβ accumulation independently of ECE-2 level [147–150]. Thus, while the relationship
between ECE-2 and Aβ accumulation is noteworthy, it is crucial to recognize that the
mechanisms underlying Aβ deposition in AD are multifactorial.

Future research should aim to clarify the precise role of ECE-2 in the context of
neurodegenerative diseases and explore potential therapeutic interventions that target this
enzyme to mitigate cognitive decline associated with Aβ accumulation. Understanding
these intricate pathways could pave the way for novel strategies in the treatment of AD.

Collectively, these studies affirm that ECE-1 and ECE-2, particularly within astrocytes,
significantly contribute to Aβ degradation, potentially reducing the risk of amyloid plaque
formation in the brain.

3. Rho GTPase Family and Their Signaling Pathways Regulating Aβ Clearance Enzymes

The Rho GTPase family may effectively regulate the activity of astrocyte ECEs through
multiple signaling pathways, affecting the function of the endothelin system. Astrocytes
regulate the expression and release of ECEs by releasing proinflammatory factors and
oxidative stress molecules, changing the level of endothelin, and playing a key role in
the pathological process of the nervous system [151–153]. The following are the specific
mechanisms and pathological effects of Rho GTPase family members regulating astrocyte
ECE and its related signaling pathways.

3.1. RhoA/ROCK

The RhoA/ROCK signaling pathway affects the morphology, adhesion, and activation
state of astrocytes by regulating the remodeling of the cytoskeleton. When RhoA activates
ROCK, the contraction and reorganization of the cytoskeleton are enhanced, making
astrocytes more active under inflammatory or oxidative stress conditions, promoting the
release of ECEs [154]. Research by Minamino et al. showed that the enhanced ECE activity
can catalyze the production of more endothelin and activate surrounding endothelin
receptors, regulate local vascular tension, and aggravate inflammatory responses and ECE-
1 may promote the occurrence and development of atherosclerosis through the autocrine
and paracrine mechanisms of endothelin-1 and blocking ECE-1 can effectively reduce this
promoting effect [155].
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Studies have shown that inhibiting ROCK can reduce reactive gliosis and increase the
expression of astrocyte pro-survival genes [93,98,156,157], and this regulation is essential
for the health of the nervous system. Kimura et al. showed that upregulation of the
RhoA/ROCK pathway is closely related to a series of pathological processes in ischemic
stroke and spinal cord injury [158], including neuronal apoptosis, neuroinflammation, BBB
dysfunction, astrogliosis, and axonal growth inhibition. Animal models and clinical trials
have demonstrated that that ROCK inhibitors, such as Fasudil and VX-210, can reduce
apoptosis, neuroinflammation, oxidative stress, and axonal growth inhibition in ischemic
stroke and spinal cord injury [159–161].

In addition, inhibiting the RhoA/ROCK pathway may have deleterious effects on
neuroinflammation, BBB dysfunction, neuronal apoptosis, astrogliosis, and axonal injury
after ischemic stroke. Wen et al. demonstrated that the inhibition of the RhoA/ROCK
pathway with Y-27632 can significantly improve cerebral ischemia/reperfusion injury [162].

These findings provide a new perspective for understanding the dual role of the
RhoA/ROCK signaling pathway in neuropathology and offer potential intervention targets
for the future treatment of ischemic injury.

3.2. Rac1

The production of brain ET-1, which increases in brain disorders, is involved in the
pathophysiological response of the nervous system. Barker et al. have concluded that
the brain of AD patients has an increased amount of ET-1 in the temporal cortex of the
brain [163]. Rac1 plays an important role in oxidative stress response, mainly by regulating
the production of ROS [164]. Rac1 promotes the generation of ROS by activating NADPH
oxidase, increasing the oxidative stress level of astrocytes [165–167], which may affect
the expression and secretion of ECEs [168,169]. At the onset of neuroinflammation, Rac1-
mediated ROS generation is vital, as it activates and boosts pro-inflammatory signaling
ECE activity, and increases endothelin production [170,171].

Therefore, in neurodegenerative diseases such as AD, the activation of Rac1 may be
closely related to the generation of ROS and the upregulation of ECEs in astrocytes, leading
to increased endothelin levels, aggravated neuroinflammation, and oxidative stress, thus
causing further damage to neurons.

3.3. Cdc42

Cell division control protein 42 homolog (Cdc42) plays an important role in astrocyte
migration and morphological regulation, especially by controlling the cytoskeleton, and
regulating the formation of cell pseudopods and cell extensibility, enhancing the migration
ability of astrocytes [172,173]. The activity of Cdc42 can enhance the migration and reactiv-
ity of astrocytes [99]. Especially with brain trauma, astrocytes will migrate to the damaged
area and release ECEs to regulate local blood vessels and assist in repair. In models of neural
injury [174,175] and in patients with stroke, traumatic brain injury, and neurodegenerative
diseases, such as AD, brain levels of ET-1 are significantly elevated [176–178].

Immunohistochemical studies showed that ET-1 in the damaged brain is mainly
produced by brain microvascular endothelial cells and reactive astrocytes [179,180]. Studies
have shown that factors such as TNF-α, IL-1β, thrombin, and hypoxia can induce brain
microvascular endothelial cells and astrocytes to secrete ET-1, and ET-1 itself can also
stimulate astrocytes to further produce ET-1 [181–184]. However, excessive release of ECEs
may lead to excessive vasoconstriction, further triggering ischemia and delaying the tissue
recovery process. In brain trauma models, the activation of Cdc42 promotes the migration
of astrocytes to the injured area and induces vascular responses through the activation of
the endothelin system to support the repair of the injured area [185–188].

In summary, Rho GTPase family members RhoA, Rac1, and Cdc42 regulate the activity
of ECEs and the endothelin system in astrocytes through multiple signaling pathways,
affecting vascular regulation and inflammatory response. These regulatory mechanisms
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show specific patterns in different pathological states, revealing the potential target value
of Rho GTPase signaling in neuropathological processes (Figure 2).
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4. Conclusions

The role of Rho GTPases in the central nervous system has received increasing atten-
tion, especially their regulatory role in astrocyte function and the mechanisms of neurode-
generative diseases. Astrocytes are the most abundant glial cells in the central nervous
system and play an important role in maintaining homeostasis, providing metabolic sup-
port to neurons, and clearing neurotoxic substances such as Aβ.

The accumulation of Aβ is a major feature of AD and is directly related to the signifi-
cant neurodegenerative process. The complex interactions between Rho GTPases, astrocyte
ECE activity, and Aβ clearance reveal the high complexity of astrocyte responses in neu-
rodegenerative diseases. Studying the dynamic regulatory mechanisms of these signaling
pathways may not only deepen the understanding of astrocyte function, but also provide
novel therapeutic strategies to enhance Aβ clearance.

Studying how Rho GTPases regulate the activity of astrocytes will not only help to
reveal these mechanisms, but also may provide potential therapeutic targets for AD and
similar diseases. RhoA, Rac1, and Cdc42 in the Rho GTPase family are the focus of research,
which significantly affects the morphology and function of astrocytes. These GTPases
maintain the structural integrity and plasticity of astrocytes by regulating cytoskeletal
dynamics. The RhoA/ROCK signaling pathway has been shown to promote astrocyte
activation, enhance the secretion of proinflammatory factors, and regulate the activity of
ECE under inflammatory conditions. Enhanced ECE activity leads to increased ET-1 levels,
which, as a potent vasoconstrictor involved in neuroinflammation, can aggravate neuronal
damage and promote the progression of neurodegenerative diseases. Rac1 indirectly
affects the clearance of Aβ by regulating the generation of ROS in astrocytes, affecting
oxidative stress and the expression level of ECE. The accumulation of ROS also enhances the
inflammatory response, forming a feedback loop that further weakens the neuroprotective
function of astrocytes. In contrast, Cdc42 plays a key role in the migration of astrocytes and
the response to injury. Its ability to regulate the formation of cellular processes promotes
the migration of astrocytes to the site of injury and enhances the efficiency of Aβ clearance.

Future studies should focus on the refined analysis of the signal specificity of Rho
GTPases in different pathological states and their regulatory networks, and explore strate-
gies for the combined regulation of RhoA, Rac1, and Cdc42 to achieve optimal therapeutic
effects. This will provide an important scientific basis for the development of targeted in-
tervention methods for AD and other neurodegenerative diseases and open new directions
for innovative therapies based on regulating astrocyte function.
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