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Abstract: Background/Objectives: Accurately classifying Electroencephalography (EEG) signals is
essential for the effective operation of Brain-Computer Interfaces (BCI), which is needed for reliable
neurorehabilitation applications. However, many factors in the processing pipeline can influence
classification performance. The objective of this study is to assess the effects of different processing
steps on classification accuracy in EEG-based BCI systems. Methods: This study explores the
impact of various processing techniques and stages, including the FASTER algorithm for artifact
rejection (AR), frequency filtering, transfer learning, and cropped training. The Physionet dataset,
consisting of four motor imagery classes, was used as input due to its relatively large number of
subjects. The raw EEG was tested with EEGNet and Shallow ConvNet. To examine the impact
of adding a spatial dimension to the input data, we also used the Multi-branch Conv3D Net and
developed two new models, Conv2D Net and Conv3D Net. Results: Our analysis showed that
classification accuracy can be affected by many factors at every stage. Applying the AR method, for
instance, can either enhance or degrade classification performance, depending on the subject and
the specific network architecture. Transfer learning was effective in improving the performance of
all networks for both raw and artifact-rejected data. However, the improvement in classification
accuracy for artifact-rejected data was less pronounced compared to unfiltered data, resulting in
reduced precision. For instance, the best classifier achieved 46.1% accuracy on unfiltered data, which
increased to 63.5% with transfer learning. In the filtered case, accuracy rose from 45.5% to only
55.9% when transfer learning was applied. An unexpected outcome regarding frequency filtering
was observed: networks demonstrated better classification performance when focusing on lower-
frequency components. Higher frequency ranges were more discriminative for EEGNet and Shallow
ConvNet, but only when cropped training was applied. Conclusions: The findings of this study
highlight the complex interaction between processing techniques and neural network performance,
emphasizing the necessity for customized processing approaches tailored to specific subjects and
network architectures.

Keywords: artifact rejection; brain-computer interface; electroencephalography; motor imagery;
faster; CNN

1. Introduction

Brain-computer Interfaces (BCI) represent a rapidly evolving research field. As de-
picted in Figure 1, the general structure of these systems consists of physiological mea-
surements of the brain, digitizing and processing the signal, and finally, giving commands
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based on the classification of the received data. These devices could provide significant
help to people with different serious disabilities; however, reliable classification accuracy is
essential for use in real life [1,2]. Non-invasive EEG measurements can be conducted more
easily than invasive ones because they do not require surgery preparation. On the other
hand, the classification accuracy is poorer due to the distortion from the various tissues
between the source and the recording electrode and the lower resolution.
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Figure 1. The general structure of a BCI system. Acquired data are digitized and go through
preprocessing, such as artifact rejection. Afterward, a classifier decides what the intention of the user
is and gives a control command based on the decision.

An important aspect to consider when working with EEG signals is the presence of ar-
tifacts. Artifacts refer to unwanted signals that contaminate the EEG recordings, potentially
introducing significant distortions that can affect the analysis of underlying neurological
phenomena [3]. It is also important to note that artifact rejection (AR) algorithms may
interact with various classification methods, the interaction of which has not been well
identified to date. We have limited knowledge about the extent to which artifact rejection
improves (or deteriorates) the classification accuracy of various machine learning methods.
Moreover, small variations in feature extraction methods may also play an important role
in the classification accuracy of a BCI system. It is also unknown how small computational
changes in the feature extraction methods affect the overall classification accuracy of the
whole system. Finally, subjects interacting with a BCI system may not use similar strategies
to achieve control over the given mental imagery task. Also, their brain anatomy and
function may differ. Thus, their EEG parameters may also be different with respect to
the same task; therefore, individual variations may well have a considerable effect on the
classification accuracy of a BCI system. In this work, we examined how changes in the
processing pipeline modify the classification accuracy of a BCI system, including individual
subject variations. As the specific features that neural networks learn from are not well
understood, it is possible that training the classifier interacts with the removal of artifacts
and small changes in the processing pipeline. Furthermore, it cannot be guaranteed that
the AR method filters out all artifactual components. It is also interesting to consider that
networks trained on polluted data may also focus on the artifacts.
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1.1. EEG Artifacts

Considering the field of EEG, two distinct categories of artifacts are recognized: physi-
ological/biological and non-physiological. The latter can be caused by the measurement
instrument, meaning faulty electrodes, powerline- and environment noise, high impedance
of electrodes, cable, or body movement artifacts. These can be mostly avoided by a precise
recording system and strict recording procedures [4].

Physiological artifacts may arise from various sources, including cardiac activity, pulse,
respiratory patterns, and glossokinetic effects. The two most significant contributors to
physiological artifacts are Electrooculograms (EOG) and Electromyograms (EMG). EOGs
can come from ocular movements such as eye blinking, eye movement, and eye flatter,
while EMGs can result from chewing, clenching, swallowing, sniffing, and talking [3,5].

It is important to remove artifacts from the EEG signal prior to processing, as they can
potentially interfere with the interpretation of the original data.

1.2. Artifact Rejection for Imaginary Movement EEG Classification

To remove artifact contamination, a filtering algorithm needs to be employed. In the
academic literature, several methods have been proposed for this purpose, of which the
Independent Component Analysis (ICA) is one of the most frequently utilized mathematical
methods [6–8]. In addition to ICA, other methods such as Wavelet Transformation [9],
Canonical Correlation Analysis [10], Empirical-Mode Decomposition [11], and further
Hybrid approaches [4] are also commonly employed. One of the widely used algorithms
for AR is the FASTER algorithm [12], also utilized in this work, which, besides using the ICA
method, also performs filtering and interpolation over global and epoch-vise bad channels.

1.3. Comparison of Artifact Rejected and Raw EEG Data Classification

To our knowledge, only a limited number of studies have examined the effects of
artifact rejection (AR) methods on BCI performance, prompting our focus on the FASTER
algorithm in this paper. The following studies provide relevant insights.

Zhong and Qi [13] investigated the impact of AR on P300-based BCI performance,
utilizing Independent Component Analysis (ICA) for artifact removal and Bayesian Linear
Discriminant Analysis (BLDA) for classification. They found AR methods can improve
accuracy and information transfer rate, though their study was limited by manual filtering
and a small sample of eight participants. Similarly, Kim et al. [14] assessed various AR
methods (ICA, adaptive filtering, and Artifact Subspace Reconstruction) on P300/N200
classification with Support Vector Machine (SVM), finding ICA-denoised data achieved the
highest accuracy at 62.87%.

Mohammadi and Mosavi [15] compared two ICA-based EOG AR methods and ob-
served better accuracy using ICA with wavelet decomposition on the BCI Competition
IV 2a dataset [16]. Winkler et al. [8] developed an ICA-based AR method for BCI use
and noted minimal impact on accuracy across ERP [17] and MI-BCI [18] datasets, though
individual differences were observed. Iqbal et al. [19] achieved an 80.5% accuracy using an
EEGNet and Temporal Convolution Network (TCN)-based classifier with an EOG removal
system, improving consistency across subjects.

Other studies explored diverse approaches to AR. Bou Assi et al. [20] combined ICA
with K-means clustering for AR, observing improved accuracy from 66% to 88.1% using
the Physionet database. Thompson et al. [21] found that automated AR led to a decline in
P300-based BCI performance, with certain methods (SOBI, JADER, EFICA) minimizing,
but not eliminating, accuracy loss. Frølich et al. [22] examined how different artifacts (e.g.,
blinks, muscle movements) affected motor imagery BCI and found muscle artifacts notably
impacted performance, especially with broader electrode coverage.

Several studies focused on EOG-based AR. Mannan et al. [23] identified that using
a lowpass filter on the EOG signal improved classification when paired with the CSP
classifier on BCI Competition IV 2a data. Daly et al. [24] presented the FORCe algorithm for
AR and observed it significantly improved accuracy over raw EEG, especially compared to
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the FASTER algorithm, in cerebral palsy patients. Merinov et al. [25] found no significant
accuracy differences between four AR methods on the BCI Competition IV 2a dataset,
though classification performance varied significantly between subjects.

Lastly, studies by Stigt et al. [26] and Chen et al. [27] analyzed the impact of artifact
removal on EEG data. Stigt et al. observed that AR did not improve normal versus abnormal
EEG classification accuracy but did slightly expedite training. Chen et al. examined specific
artifact types, finding that removing EMG, powerline interference, electrode artifacts, and
EOG improved accuracy by 5.5%, 4.0%, 3.1%, and 1.7%, respectively. Islam et al. [28]
and Anjum et al. [29] both applied probability mapping for AR, demonstrating increased
classification performance, though Anjum’s study was limited by the low electrode count
of the Emotiv Pro headset used.

1.4. Frequency Dependence of the EEG Signal Classification

Ali Al-Saegh et al. [30] reviewed 36 studies on motor imagery EEG classification and
found a strong consensus on using the 8–25 Hz frequency range associated with mu and
beta bands for effective feature extraction in motor-related brain activity. Lower frequencies
(0–5 Hz) were rarely used, appearing in only seven studies, indicating a preference for
higher frequencies. In contrast, R. Salazar Valas and Roberto A. Vazquez [31] examined
the effect of cutoff frequencies on classification accuracy with the BCI Competition IV 2a
dataset and found that even the 0–10 Hz range could yield meaningful classification results,
challenging the typical emphasis on higher frequencies.

1.5. Aim of the Study

Our article stands out by providing a comprehensive evaluation of the FASTER artifact
rejection algorithm in conjunction with other preprocessing and processing methods, such
as frequency filtering, transfer learning, and cropped training, across multiple neural
network architectures, including EEGNet, Shallow ConvNet, and our custom classifiers.
Unlike prior studies, which typically focus on a single preprocessing technique or classifier,
we examine the combined effects of processing steps on classification accuracy. This
approach highlights the complex interactions between artifact rejection, filtering, and
neural network performance, offering unique insights into how these factors collectively
influence BCI performance across different subjects and network configurations.

2. Materials and Methods
2.1. The Physionet Database-EEG Motor Movement/Imagery Dataset

We performed our research on the EEG motor movement/imagery dataset recorded by
Schalk et al. as part of the Physionet Database [32]. Data were recorded with a 64-channeled
10–10 EEG system with 160 Hz sampling frequency and by using the BCI2000 framework
without hardware filters [33]. It is one of the largest EEG datasets of motor imaginary tasks,
consisting of recordings from 109 subjects, 14 files for each. In our work, we excluded
subjects 88, 92, and 100 due to the sampling frequency and data structure mismatch. We
also omitted subject 89, where labels were found to be incorrect. These problems were also
reported previously [34,35].

The dataset contains five classes of motor imagery tasks, namely baseline activity and
imagined activities of right-hand, left-hand, both-hand, and both-leg movements. Although
the database includes EEG signals of tasks where movements were actually realized, we
only used data from imagined movements to train and test the systems, as tetraplegic
people are the target patients for BCI research for whom only imagined movements are
available. During experiments, we used four-way classification for the following classes:
right-hand, left-hand, both hands, and both legs. There are 90 motor imagery trials for
each subject.
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2.2. The FASTER Algorithm

The Fully Automated Statistical Thresholding for the EEG artifact Rejection method
(FASTER algorithm) was designed by H. Nolan et al. [12]. In this chapter, the steps of this
method are explained, with particular attention paid to the parts we have modified to the
original algorithm.

We employed a method comprising four sequential steps, with a deviation from the
original algorithm, by excluding the final artifact detection step across subjects. We chose
to omit this step to avoid excluding any subjects based on artifact contamination. The
algorithm utilized statistical criteria to identify channels and components that exhibited
deviations exceeding three times the standard deviation of the computed parameters.

In preparation for algorithm application, frequency filtering was implemented, em-
ploying a 5th-order Butterworth filter. While the original article specified a frequency
range from 1 to 95 Hz with a notch filter at 50 Hz, our study deviated by utilizing distinct
frequency ranges tailored to our specific experimental parameters and objectives. The exact
frequencies are detailed in Section 2.5.

The initial step of the algorithm involved the identification of globally artefactual
channels. Channels exceeding predetermined thresholds for variance, the mean of the
channel’s correlation coefficients with other channels, or Hurst exponent parameters were
flagged as faulty. Subsequently, the algorithm proceeded to eliminate epochs containing
artifacts. The examined parameters for this step included amplitude range in epoch,
deviation from each channel’s average value, and variance in each epoch. The third
step involved the utilization of ICA to segregate time-dependent data into statistically
independent waveforms. During this process, epochs and channels labeled as defective
were disregarded. A transformation was performed by using the fast-ICA algorithm.
Components displaying excessive correlation with the signal of electrodes proximal to the
ocular region were omitted in the resultant space, as well as components that failed to meet
the Z-score criterion for kurtosis, power gradient, Hurst exponent, and median gradient
parameters. In the last step, defective channels were determined on an epoch-by-epoch
basis, while subsequently, both globally and individually impaired channels were replaced
through the spherical spline interpolation technique. Ultimately, the data were referenced
to the average of all scalp electrodes.

2.3. Feature Extraction and Classification

We tested different models to assess the classification accuracy. The time domain
EEG was tested using EEGNet and Shallow Net. To check the effect of adding the spatial
dimensions, we used the Multi-branch Conv3D approach and two newly developed models
based on our dense representation of input data.

2.3.1. 3D Representation of EEG Signals

Given that the relative positions of the electrodes can carry relevant information
for the classifier, we used a three-dimensional representation (two spatial dimensions
and one temporal dimension) of the EEG signals as the input tensor, similar to previous
studies [36–38]. Our goal was to examine the impact of three-dimensional representation
on classification performance. For this transformation, we used a unique arrangement
of electrode placements, referred to as dense 3D transformation. In this construction,
the Iz electrode is omitted, and the remaining 63 electrodes are rearranged into a 9 × 7-
dimensional rectangle. The arrangement can be seen in Figure 2. This arrangement will be
the input shape for 2D and 3D convolutional neural networks.
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Figure 2. 3D representation of the EEG data: the channels × time initial arrangement of the EEG
data is rearranged into a three-dimensional form, where the first two dimensions refer to the spatial
arrangement of the electrodes, while the third dimension is time. For the spatial dimension, we used
a dense electrode arrangement. While the original distribution contains placeholder zero channels,
we rearranged this map to have a dense representation with no such cells. We designed this input
representation to investigate the effect of explicit involvement of the spatial arrangement of electrodes
on the classification performance.

2.3.2. 3D CNN (Conv2D)

The first network we developed to explore the effect of 3D representation was built
of 2D-convolutional layers over the original 3D data. In this operation, kernels have a
dimension of 3, where the size of the 3rd dimension is equal to the number of timesteps
on the time/feature dimension. With this method, the system performs convolution on
the spatial arrangement, whereas, on the last axis, all data points are summed with certain
weights. As the first step, L2 normalization is performed, followed by three layers of
two-dimensional convolution. After the last step, the flattened data are given as input to
two layers of a fully connected network, and finally, a softmax layer is responsible for the
classification. The architecture can be observed in Figure 3.

Brain Sci. 2024, 14, x FOR PEER REVIEW 6 of 21 
 

 
Figure 2. 3D representation of the EEG data: the channels × time initial arrangement of the EEG data 
is rearranged into a three-dimensional form, where the first two dimensions refer to the spatial ar-
rangement of the electrodes, while the third dimension is time. For the spatial dimension, we used 
a dense electrode arrangement. While the original distribution contains placeholder zero channels, 
we rearranged this map to have a dense representation with no such cells. We designed this input 
representation to investigate the effect of explicit involvement of the spatial arrangement of elec-
trodes on the classification performance. 

2.3.2. 3D CNN (Conv2D) 
The first network we developed to explore the effect of 3D representation was built 

of 2D-convolutional layers over the original 3D data. In this operation, kernels have a di-
mension of 3, where the size of the 3rd dimension is equal to the number of timesteps on 
the time/feature dimension. With this method, the system performs convolution on the 
spatial arrangement, whereas, on the last axis, all data points are summed with certain 
weights. As the first step, L2 normalization is performed, followed by three layers of two-
dimensional convolution. After the last step, the flattened data are given as input to two 
layers of a fully connected network, and finally, a softmax layer is responsible for the clas-
sification. The architecture can be observed in Figure 3. 

 
Figure 3. The structure of the designed 2D convolutional neural network: The input is the 3D rep-
resentation of the EEG signal, on what 2D convolution is performed with 32 kernels of the size of [3 
× 3 × number of timepoints] in the first layer. In the next two layers of convolution, firstly 64, then 
128 kernels of dimension [3 × 3 × number of kernels of the previous layer] are performed. Next, the 

Figure 3. The structure of the designed 2D convolutional neural network: The input is the 3D
representation of the EEG signal, on what 2D convolution is performed with 32 kernels of the size of
[3 × 3 × number of timepoints] in the first layer. In the next two layers of convolution, firstly 64, then
128 kernels of dimension [3 × 3 × number of kernels of the previous layer] are performed. Next, the
flattened representation is given to two layers of a fully connected network with 1024 and 64 neurons,
and finally, a softmax layer is responsible for classification with the output of four numbers as the
number of classes.

2.3.3. 3D CNN (Conv3D)

Networks with 3D convolution are widely used for video-processing tasks, and numer-
ous articles propose this architecture for EEG classification as well [38,39]. The difference



Brain Sci. 2024, 14, 1272 7 of 20

from the previous structure is that, in this case, convolution is performed even on the third
dimension, resulting in a four-dimensional structure on the second layer. This requires
greater memory usage but has the advantage of exploiting features scattered in time. The
designed structure starts with L2 normalization. Afterward, three layers of 3D convolution
are performed, with kernel dimensions [1,30] of the first layer and [2,40] for the upper layers.
Between convolutions, a Batch normalization and an ELU operation are performed. As in
the previous case, two layers of fully connected layers and a softmax layer are responsible
for classifying the input EEG signals. Figure 4 contains the structure of this classifier.
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and third layers. The fully connected part consists of two layers with 32 neurons each, and finally, a
softmax classification layer.

2.3.4. Multi-Branch 3D CNN

The second type of implemented 3D CNN is based on the article of Xinqiao
Zhao et al. [36]. It consists of three branches, all of them with two layers of different
dimensions of convolutional kernels and three layers of the fully connected network. The
last layers are the size of the number of classes; thereafter, the outputs of all three branches
are added up, and a softmax operation is performed for the final classification.

2.3.5. EEGNet

The fourth network we used in our study is one of the most well-known classification
systems for MI-signal classification, the EEGNet, presented by V. J. Lawhern et al. [40]. We
used half of the sampling frequency as the length of the kernel of the first layer without
applying any further modifications. The main layers of the network are a 2D convolutional
layer, a depth-wise 2D convolutional layer, a separable 2D convolutional layer, and finally,
a fully connected classification layer.

2.3.6. Shallow Convolutional Neural Network

Finally, we evaluated the performance of the Shallow Convolutional Neural Network
(Shallow ConvNet) architecture proposed by Schirmeister et al. [41]. This widely recognized
algorithm has been extensively utilized in numerous studies due to its effectiveness [42,43].
This network consists of a temporal convolution, a spatial convolution, a mean pooling
layer, and a linear classification FC part. The network was implemented using the source
code provided in [40]. However, our implementation employs several modified parameters
relative to the originally published article.

2.4. Transfer Learning and Fine-Tuning

A deep learning system usually requires a great amount of data to generalize features
well and to have reasonable accuracy. Systems for EEG classification only acquire a limited
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number of samples, as recording and labeling these signals is cumbersome, requires a
significant amount of time to process, and requires human intervention. The main idea of
transfer learning (TL) application is pre-training a system—or a part of the system—over
an independent dataset and transferring these weights as an initial state. These weights
are fine-tuned during the actual training phase of the network. In the case of EEG studies,
two main types of transfer learning are used [44]. One of the TL approaches is when the
feature space generated from the EEG data is similar to one of those tasks for which a much
larger dataset is available. An example is ImageNet, which can serve as an initial system
for classifying EEG samples transformed into images [45]. The second approach, which we
also used in this study, is pre-training the network on subjects that differ from the actual
subject we test on. In other words, we fine-tune the globally learned network with the
data from certain subjects. Multiple studies used this technique, and it yielded significant
improvements in classification accuracy [2,42,44].

In our study, we divided the 105 subjects of the Physionet database into two parts:
a Neural Network was pre-trained over 90% of subjects, and to address inter-subject
variability, the classifier was fine-tuned in the remaining subjects individually. There
are 105 subjects, and we did not repeat the process 105 times, but rather 10 times, with
10% of the subjects belonging to the test set in each iteration. During pre-training, we
allocated 20% of the training data as a validation set and implemented early stopping with
a patience value of 15. For fine-tuning, we trained the networks for 15 epochs without
using a validation dataset, as the fine-tuning dataset contained relatively few data points,
making it challenging to achieve reliable validation results. The exact method for training
can be observed in Figure 5.
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 Figure 5. Transfer learning and the generation of results. To have statistically significant results, we
performed a 5-fold cross-validation for each subject three times, resulting in 15 results for each subject,
network, and preprocess option. 90% of the subjects’ data is used for pre-training the classifier, which
is fine-tuned over individual subjects’ training sets. The whole process iterates 10 times for every
subject to be tested.

2.5. Effect of Frequency Filtering

In the final phase of our study, we conducted experiments to find out the dependence
of accuracy on the lowest frequency ranges (0.1 to 5 Hz) relative to the broad range of
5 to 75 Hz. We also examined the whole range of 0.1 to 75 Hz frequency band and the
differences when no filtering was performed at all. To carry out this examination, we
employed 5th-order band-pass Butterworth filters. The Butterworth filter, renowned for its
characteristic of being maximally flat, ensures a uniform magnitude response within the
pass band. However, a noteworthy drawback of this filter is the substantial width of its
transition band.
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2.6. Cropped Training

To investigate the generalizability of EEG signals with different onsets, we imple-
mented cropped training, a method also employed by Schirrmeister et al. [41]. In this
approach, the training and testing data are augmented by generating new samples through
systematic time shifts of the original data. This ensures that neural networks are exposed
to a broader range of temporal variations within the EEG signals, helping to simulate dif-
ferent onset timings and improve model generalization. In this scenario, we used 1 s long
windows instead of the previous 2 s ones and performed shifts with 0.1 s long steps until
2 s. This gives 11 overlapping crops of the same epoch. Samples from a single epoch go
solely to the train or solely to the test set. We repeated the previously described experiment
regarding frequency dependence in this augmented dataset with all the networks, using or
neglecting the FASTER method.

3. Results
3.1. The Effect of Artifact Rejection

As can be observed in Figure 6 and Table 1, without using the TL method, the average
of the classification accuracy of Conv 2D, Conv 3D, Shallow ConvNet, and Multi-branch
Conv3D Net models are significantly improved due to the FASTER algorithm while regard-
ing the EEGNet there was no significant improvement. In this scenario, we used 2 s long
windows, and during the FASTER algorithm, a frequency filter between 0.1 and 75 Hz was
applied. For the raw data, we did not use any frequency filtering.
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Figure 6. The comparison of neural networks with and without using the FASTER method. Each
point represents two accuracies for a subject: the one obtained with AR and the other obtained
without using the FASTER algorithm. The test was run 12 times to obtain significant results. The red
line indicates the points with no difference between the two options, points over the line run with the
raw option as the more accurate, and points below the line where the artifact-rejected version yields
better results.

Upon subject-specific scrutiny, it becomes evident that the influence of artifact rejection
is contingent on the particular subject under evaluation. Our analysis encompassed a
comprehensive approach. Initially, we executed 5-fold cross-validation three times for all
four networks, both with and without artifact rejection. To substantiate disparities, we
scrutinized the distribution of 15 results obtained for an individual subject with a specific
network. If the data followed a normal distribution, we executed a t-test; conversely, if non-
normality was detected, a Man–Whitney U test was performed to ascertain the significance
of the observed differences.
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Table 1. The accuracy of each classifier with and without artifact rejection, and the p-values of the
significance of differences using Wilcoxon signed ranked test. The p-values determine the significance
of differences between omitting or using the FASTER method for artifact rejection.

Classifier Original Acc. AR Acc. p-Value

EEGNet 0.460 0.455 0.907
Shallow ConvNet 0.394 0.439 3.46 × 10−17

Conv2D Net 0.367 0.411 4.90 × 10−21

Conv3D Net 0.378 0.405 4.09 × 10−09

Multi-branch Conv3D Net 0.401 0.444 2.05 × 10−19

We categorized subjects based on the extent of change in the corresponding classifi-
cation performance across the various networks. Intriguingly, several scenarios arose in
which certain networks led to a notable enhancement, while others yielded a significant
decline in the performance for the same subjects. In response to a slight variance in results
observed during a second examination, we iteratively conducted the calculations two times
more to explore the evolving significance of the observed differences. Finally, we had
4 times (3 accuracy results for each cross-fold iteration and network), meaning four results
of significance for each classifier.

In our assessment, to each subject, a numerical score was assigned, denoted as follows:
a value of −1 indicated a significant decline, 0 denoted no significant difference, and
+1 represented a discernible increase observed for each computational aspect across all
networks. Therefore, the cumulative score per subject ranged from −20 to 20. Twenty-five
subjects scored over 8, indicating substantial performance gains from the AR method, with
Subject 69 achieving a remarkable 20-point increase. Conversely, some subjects, like Subject
15, experienced significant declines, with only five subjects scoring below −8. Regarding
classifiers, EEGNet showed the least improvement, with only three subjects scoring at least
3, while six scored below −3. In contrast, the other four networks had at least 20 subjects
exceeding the three-point mark, with fewer than five scoring −3 or worse. The subject
dependence on AR is illustrated in Figure 7.
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Figure 7. Subject dependence of artifact filtering. The shade of color yields on how many runs
there were statistically significant improvement (green) or significant decline (red). (The deeper the
shade, the more runs were significant.) Significance is based on the t-test in the case of normality and
the Man–Whitney U test in the case of non-normality. Subjects are ordered by summary number,
computed as the sum of the significance of improvements minus the sum of the significance of decline.
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3.2. The Effect of Transfer Learning

The classification accuracy obtained by transfer learning was significantly better in
every scenario. Based on the signed-rank Wilcoxon test, the learning process performs
significantly better in the case of each network, both in the case of unfiltered data (Table 2)
and artifact-rejected data (Table 3). In Figure 8, it can be observed that transfer learning
does not improve as much in cases of artifact-rejected data as in the case of raw data,
resulting in higher classification accuracies in the latter case. (This difference is significant
in all the cases except the Multi-branch Conv3D Network.)

Table 2. The accuracy of each classifier on unfiltered data, with and without transfer learning, and
the p-values of significance using the Wilcoxon test. The highest accuracies and the largest difference
are highlighted in bold.

Classifier Simple Acc. TL Acc. Difference p-Value

EEGNet 0.461 0.587 0.126 1.50 × 10−18

Shallow ConvNet 0.394 0.637 0.243 5.83 × 10−19

Conv2D Net 0.366 0.528 0.162 7.78 × 10−19

Conv3D Net 0.378 0.56 0.182 7.14 × 10−19

Multi-branch Conv3D Net 0.401 0.561 0.16 1.30 × 10−18

Table 3. The accuracy of each classifier on artifact-rejected data, with and without transfer learning,
and the p-value of significance using the Wilcoxon test. The highest accuracies and the largest
difference are highlighted in bold.

Classifier Simple Acc. TL Acc. Difference p-Value

EEGNet 0.455 0.538 0.083 1.67 × 10−17

Shallow ConvNet 0.441 0.559 0.118 1.38 × 10−18

Conv2D Net 0.41 0.491 0.081 7.20 × 10−17

Conv3D Net 0.405 0.521 0.116 7.14 × 10−19

Multi-branch Conv3D Net 0.444 0.557 0.113 5.52 × 10−18
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Figure 8. The comparison of neural networks with and without using the FASTER method, using
transfer learning. Each point represents two accuracies for a subject: the one obtained with AR and
the other obtained without using the FASTER algorithm. The test was run three times. The red line
indicates the points with no difference between the two options, points over the line run with the raw
option as the more accurate, and points below the line where the artifact-rejected version yields better
results. Generally, the usage of transfer learning accuracies without artifact rejection tends to be higher.



Brain Sci. 2024, 14, 1272 12 of 20

3.3. Comparison of Neural Networks

In network comparisons, the primary evaluative criterion centers on classification
accuracy. As illustrated in Figure 9, when transfer learning is not employed, the highest
classification accuracy is achieved by the EEGNet classifier, both in raw and artifact-rejected
conditions. However, in the latter case, the differences between the EEGNet, Shallow
ConvNet, and MB Conv3D Net were not significant. In the raw data scenario, the Multi-
branch Conv3D Net is the second-best performer, followed by the Shallow ConvNet, with
our proposed networks trailing.
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Figure 9. The accuracies obtained by neural networks, with and without transfer learning and
artifact-rejection. In the box plot, x denotes the mean, while the horizontal line marks the median
value. The limits of the box indicate the range of the central 50% of the data. Significance levels
were determined using the Wilcoxon test. (The notation ‘ns’ denotes non-significant differences.)
Before applying the TL method, EEG Net was the greatest performer, while after the application,
Shallow ConvNet had the highest accuracy. These observations are generally true for the raw and the
artifact-rejected data as well. However, for AR-ed data without TL, this difference is non-significant.
The figure also presents that without transfer learning, networks generally perform better with the
FASTER method, while after the application, raw data will attain a higher precision.

However, the performance landscape shifts with the introduction of TL. Shallow Con-
vNet emerges as the top performer, surpassing EEGNet and other classifiers. In the raw
data scenario with TL, EEGNet ranks second, followed by the 3D convolutional networks.
In the artifact-rejected condition with TL, the MB Conv 3D CNN outperforms EEGNet,
securing the shared first position, with non-significant differences from the Shallow Con-
vNet. This demonstrates that TL significantly influences the performance hierarchy among
different network architectures.

3.4. The Effect of Input Representation

Using the dense 3D representation for input did not yield significant improvements in
classification performance. This indicates that incorporating spatial information did not
lead to higher accuracies compared to networks without this additional spatial data. The
only exception is with the artifact-rejected data using transfer learning, where the MB Conv
3D CNN slightly outperformed the EEGNet.
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3.5. The Effect of Frequency Filtering

The outcomes stemming from the frequency filtering analysis have yielded unexpected
findings. We compared results using the 0.1 to 5 Hz range and the 5 to 75 Hz range. As
observed in Table 4, three out of the five neural networks yielded significant results only
within the first frequency range (0.1–5 Hz). Shallow ConvNet and EEGNet are the only
networks for which the 5 to 75 Hz range also provides results greater than the chance level.
However, for EEGNet, these results were still far below the accuracy achieved in the lower
frequency range.

Table 4. Results of comparing the classification accuracies of neural networks when filters of certain
frequency ranges are applied. The highest classification accuracy values for each frequency range are
emphasized in bold.

Frequency Range EEGNet Shallow ConvNet Conv2D Net Conv3D Net MB Conv3D Net

0.1–5 Hz—Raw 0.482 0.406 0.437 0.410 0.457
5–75 Hz—Raw 0.315 0.362 0.262 0.258 0.271
0.1–5 Hz—AR 0.452 0.405 0.421 0.436 0.462
5–75 Hz—AR 0.324 0.381 0.261 0.261 0.289

3.6. The Effect of Simple and Cropped Training

The results derived from simple and cropped learning can be observed in Figure 10.
Upon comparing results from the simple learning process, we can state that those experi-
ments, when 5 Hz to 75 Hz frequency filtering was performed, had the lowest accuracies.
Only the Shallow ConvNet attained moderately higher accuracy, as we have observed
in the previous paragraph. The relation between AR data (with 0.1 to 75 Hz frequency
filter) and raw data also remains the same, as we have seen in the first part of the results:
classification accuracy is enhanced by the application of artifact rejection in the case of four
out of five networks, with EEGNet as the only exception. When we apply the mentioned
frequency filter without the FASTER algorithm, the case of Shallow ConvNet becomes
similar to the EEGNet, in the sense of being the non-artifact-rejected option, the better
performer. The partly unexpected finding is the superior performance of cases where fre-
quency filtering between 0.1 and 5 Hz was applied. These signals include only the lowest
part of the frequency spectrum, meaning that they do not contain the mu or beta band.

When applying cropped training, we acquired noteworthy results, depending on the
network we used for classification. Contrastingly to the simple learning approach, in the
specific context of the Shallow ConvNet and the EEGNet, an inverse trend was observed
where the highest performances were achieved in the broader frequency range spanning
from 5 to 75 Hz. On the other hand, the worst results were attained by the higher frequency
range for the other three networks, where the input feature was the 3D representation.
These results show that the frequency range of the mu, beta, and gamma bands are the
most valuable in the case of EEGNet and Shallow ConvNet, while the other three networks
are not able to extract those features effectively. It is important to emphasize that, for the
two widely used networks to achieve better results at higher frequencies, as reported in the
literature, cropped training was necessary.

Within the realm of neural networks, the integration of cropped training demonstrates
a parallel effect akin to the observed outcomes with transfer learning. In the absence
of cropped training, EEGNet emerges as the preeminent performer. However, upon
application, there is a discernible transition where Shallow ConvNet surpasses EEGNet in
terms of classification prowess.
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Figure 10. The results obtained with and without cropped training ordered by the classification
accuracy. Arrows mark the cases examined in the first part of the article: the differences between
the FASTER-ed (green arrow) and the fully raw data (blue arrow). The relation between the two
datasets remains the same, as only the EEGNet yields a better raw classification accuracy. However,
during cropped training, Shallow ConvNet also joined this group. Dots marked the results when
frequency filtering was presented between 0.1 and 5 Hz. (Red dots for artifact rejected and blue dots
for raw data). Without cropped training, these results tend to be unexpectedly high, yielding that this
low-frequency range contains the most relevant information for MI classification on the Physionet
database when subject-vise learning is performed without any augmentation of the training dataset.
In the other cases, the color of the bars represents the corresponding preprocessing option. The most
noteworthy result is that while during simple learning, almost every 5–75 Hz filtered attempt was
presented on the lowest part of the list, the cases of EEGNet and Shallow ConvNet jumped to the first
places of the cropped training results, corresponding to the extensive literature.
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3.7. Subject Dependence in Simple Learning and Cropped Training

We extended our investigation to explore subject dependence within the context of
cropped training. This involved conducting a series of experiments, comprising four sets
of three trials each, on both the EEGNet and Shallow ConvNet systems. We selected
these two networks because only these two classifiers achieved reasonable accuracy on the
frequency-filtered data during cropped training. We meticulously assessed subject-wise
performance, focusing on the frequency range of 5 Hz to 45 Hz for the FASTER method. As
there were 4–4 significance values for both networks, each subject was assigned a point
ranging from −8 to 8, facilitating a comparative analysis between FASTER-processed and
completely raw data.

Furthermore, alongside these comparisons, we computed accuracies based on
frequency-filtered raw data spanning the 5 Hz to 45 Hz range and juxtaposed these against
both raw and FASTER-processed data. These findings are synthesized and presented in
Figure 11, providing valuable insights into the relative efficacy of different preprocess-
ing techniques across various subjects. As can be observed, the FASTER-applied and
frequency-filtered data exhibit similar subject-wise distributions when compared to the
raw data, indicating that both methods have comparable effects on subject dependence.
However, when comparing these two methods, it is evident that frequency filtering alone
yields significantly higher accuracy results. Another important factor to note is that the
set of subjects whose classification accuracies improved during cropped training differs
substantially from those who showed improvements in the simple training process.
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Figure 11. Subject-wise effect of the FASTER artifact rejection method and the frequency filtering on
the classification performance of the EEGNet and Shallow ConvNet, related to the raw data, during
cropped and simple training. The shade of the color means the number of significant increases (green)
or declines (red) out of the four tests. Subjects are ordered by the score achieved during the AR
method compared to the unfiltered data. The order of the subjects is almost the same in the second
graph, meaning that frequency filtering has a similar subject-wise effect as the FASTER algorithm
related to the raw data. However, this sequence is merely different from the result from the first part
of the article, meaning that during cropped training, it changes on which subjects the AR has positive
effects. The sequence is also different on the FASTER compared to the plain frequency filtering graph,
where, for most of the subjects, the AR method caused a significant decline. It means that during
cropped training, it is more advised to filter only the appropriate frequency ranges and not to use the
more complex FASTER method to obtain better results.

4. Discussion

As can be seen from the results, classification accuracy depends on many factors.
The subject dependence of the efficacy of artifact rejection is a noteworthy result. The
question that emerges is, what is the reason behind these differences? As each subject has
a different scale of artifact contamination, the reasoning can be the amount and quality
of contained artifacts. However, it is only partially true because, for instance, subject 15
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has the greatest accuracy decline after artifact rejection, but if we examine it from closer,
multiple artifactual components were rejected there. The real reason can be the number
of rejected components on which neural networks can base their classification. If the data
from a certain subject contain artifactual yet useful components, the accuracy will decline
as a result of the application of the FASTER method.

The application of transfer learning yields a noteworthy improvement for each clas-
sification task. This beneficial effect of the process is well-documented in the existing
literature [45–47]. What is interesting to note is that transfer learning improves the raw
data classification to the greatest extent, and results obtained this way surpass the accu-
racy achieved on the artifact-rejected data. A plausible underlying explanation for this
phenomenon may be that, with a substantial amount of training data, neural networks
can learn to disregard artifacts and focus on neuronal processes. Conversely, the FASTER
artifact rejection method may filter out components that are relevant and could have been
utilized by neural networks for learning.

The best accuracy is achieved by the Shallow ConvNet with raw data as input and
transfer learning, replacing the EEGNet, which was the classifier with the highest accuracy
when transfer learning was not applied. This confirms Shallow ConvNet’s superior perfor-
mance in transferring weights from the broader dataset, as was also described earlier [46].

As it was presented, adding the spatial dimension using dense 3D representation did
not lead to improvements in most cases. This is likely because networks like Shallow Con-
vNet and EEGNet can inherently learn the spatial relationships between channels through
their architectures. Shallow ConvNet achieves this via spatial filtering, while EEGNet uses
DepthwiseConv2D layers. These methods allow the networks to autonomously identify
and leverage the importance of spatial data and channel interactions, which proves to
be more effective for classification performance than explicitly incorporating a dense 3D
spatial representation.

Discussing results from the frequency filter section, the conclusion that can be drawn
is when a limited number of data is given to training the classifier, such as in the case of
subject-wise training, even the well-known and widely used Shallow ConvNet and EEGNet
tend to concentrate on the lowest frequency ranges, which ranges can contain relevant
information. This attention to lower ranges of frequency can be seen in Figure 10. An
unexpected observation is that networks trained on the 0.1–5 Hz filtered dataset exhibited
relatively high accuracies, often surpassing those trained on the 0.1–75 Hz filtered version.
In the scenario of lowpass filtering, raw data yielded greater accuracies than the artifact-
rejected data, indicating that the previously examined effect of AR does not hold under
these circumstances. One possible explanation for the superior classification accuracy
of the delta band is its inherently higher amplitude power compared to other frequency
bands. This elevated power may provide the classifier with more prominent features,
thereby enhancing performance. Additionally, the delta band is closely associated with
attentional processes, which may contribute to the presence of underlying features that
strongly influence classification accuracy. Furthermore, the limitations of training data
without the use of cropped training or transfer learning might impair the networks’ ability
to effectively recognize the importance of higher-frequency bands, such as mu and beta. In
this work, we demonstrated that the inclusion of cropped training significantly improves
the classification of signals containing higher-frequency components, a result that aligns
with prior findings in the literature.

It is important to note that when comparing raw data with the artifact-rejected dataset
filtered in the 0.1–75 Hz range, we observe the same results: artifact rejection improves
performance in four out of five networks, except EEGNet. However, when frequency
filtering is applied to the raw data, the Shallow ConvNet without AR also outperforms
the version where the FASTER method was applied. For the remaining networks, the
performance relationship remains unchanged. Nevertheless, when cropped training was
present, the overall picture changed. On one hand, the average classification accuracy of
the networks decreases with this method. This decline can be attributed to the test set
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containing an extended range of data, making it more challenging for the classifiers to
produce accurate results. On the other hand, via this method, we can acquire more data to
train the classifier—as in the case of transfer learning. This extended version of the dataset
is enough for the EEGNet and the Shallow ConvNet to learn from the higher frequency
ranges—as expected from the literature. In investigating this aspect, it is shown that
EEGNet and Shallow ConvNet are more capable of generalizing data, as they effectively
leverage the variability introduced by cropped training. This demonstrates their ability
to adapt to different temporal onsets in the EEG signals, a crucial factor in improving
classification accuracy and model robustness.

Figure 11 demonstrates a notable consistency in the performance trends observed dur-
ing cropped training across networks trained on frequency-filtered and FASTER-processed
datasets, exhibiting a similar propensity for performance enhancement in comparison to
the raw dataset. This consistency suggests that, in this case, the performance enhancement
caused by the FASTER algorithm can be explained by the effect of frequency filtering. More-
over, if we compare the artifact rejection method to the frequency-filtered performance, the
latter gets significantly higher accuracies in the vast majority of subjects. That means that
with a simple frequency filter, we can achieve better performance during cropped training
than with a complex AR method. Another important observation to note is that the subjects
that had higher accuracies with the FASTER method compared to the raw data during
cropped training differ from the subjects that were obtained by simple learning. This could
be an effect of the phenomenon that during cropped training, different parts of the original
signals are simultaneously presented, and neural networks can learn about other factors,
some of which are filtered out during artifact rejection.

There are only a limited number of papers examining the subjects of the Physionet
database regarding the effect of artifact rejection. Therefore, it is hard to give a thorough
comparison. There are studies where filtering enhances the classification performance
in various datasets [20,28]. Other articles report a decline in accuracy due to artifact
rejection [21]. Subject dependence remains a significant factor, as evidenced not only in
various articles exploring the BCI Competition IV Dataset 2a [25,48] but also in our study
focusing on the Physionet database. Our findings highlight that the efficacy of the FASTER
artifact rejection method in terms of classification accuracy is profoundly influenced by the
specific subject under consideration.

For the case of frequency dependence, Hauke Dose et al. [42], who also examined the
Shallow ConvNet’s accuracy on the Physionet database, concluded that this architecture
tends to concentrate on the lowest part of the frequency domain. In their experiment,
they analyzed the squared frequency responses of the learned temporal filters, and the
mean focused on the lowest frequency range (below 10 Hz). These results correspond
to our findings. The frequency results obtained through cropped training and the use of
Shallow ConvNet and EEGNet align with the broader literature. As imagery movements
are described to be mostly classifiable in the mu and beta ranges [49,50], it is expected that
signals filtered between 5 and 75 Hz exhibit higher (or at least similar) accuracies compared
to unfiltered signals.

The study reveals how small changes in the preprocessing pipeline can significantly
impact classification accuracy, underscoring the need for tailored solutions in EEG-based
BCI systems. As discussed by Xu et al. [51], while much progress has been made in neural
interface research, translating these advancements into reliable, real-world applications re-
mains challenging. This research contributes to bridging that gap by optimizing processing
techniques that can enhance the practicality of BCIs in neurorehabilitation and beyond.

5. Conclusions

In conclusion, our research indicates that the FASTER method can enhance perfor-
mance in a subject and network-specific manner. There are subjects where the application
of AR comes with an efficiency increase, while in other cases, it comes with the deteriora-
tion of the results. Transfer learning proved to be effective in improving the performance
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of all networks in both raw and artifact-rejected data. However, it was noted that the
accuracy of classification for artifact-rejected data did not improve as significantly as it did
for the unfiltered data, resulting in less precision. Our findings also revealed an unexpected
outcome from frequency filtering, as the tested networks demonstrated strong classifica-
tion performance based on the low-frequency components during learning. Notably, we
observed that higher frequency ranges were more discriminative in the case of EEGNet and
Shallow ConvNet when cropped training was applied. In summary, the study underscores
the intricate interplay between processing techniques and neural network performance,
highlighting the necessity for tailored processing approaches designed for specific subjects
and network architectures.
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