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Abstract: Substance use disorders (SUDs) and anxiety disorders (ADs) are highly comorbid, a co-
occurrence linked to worse clinical outcomes than either condition alone. While the neurobiological
mechanisms involved in SUDs and anxiety disorders are intensively studied separately, the mech-
anisms underlying their comorbidity remain an emerging area of interest. This narrative review
explores the neurobiological processes underlying this comorbidity, using the Research Domain
Criteria (RDoC) framework to map disruptions in positive valence, negative valence, and cognitive
systems across the three stages of the addiction cycle: binge/intoxication, withdrawal/negative
affect, and preoccupation/anticipation. Anxiety and substance use play a reciprocal role at each
stage of addiction, marked by significant psychosocial impairment and dysregulation in the brain. A
more thorough understanding of the neural underpinnings involved in comorbid SUDs and anxiety
disorders will contribute to more tailored and effective therapeutic interventions and assessments.

Keywords: SUDs; substance use; addiction; anxiety; neuroimaging; fMRI; limbic system; RDoC

1. Introduction

In the United States, substance use disorders (SUDs) are highly prevalent and costly.
Drug and alcohol use contributed to nearly 11 million premature deaths in 2019 alone [1].
Effective treatment of SUDs is particularly challenging due to the significant comorbidity
between SUDs and other mental health conditions. Among concomitant mental health
diagnoses, mood and anxiety disorders have strong reciprocal relationships with SUDs [2,3].
For example, drug withdrawal can result in well-characterized autonomic and somatic
symptoms that classically accompany anxiety [4,5]. Consequently, psychological symptoms
accompanying withdrawal, like anxiety, may be mistaken as part of withdrawal rather
than an underlying separate mood disorder that requires careful treatment [6]. In addition,
aversive affective withdrawal symptoms, such as anxiety, can contribute to the escalation
of compulsive drug use, maintenance of use, and relapse after periods of abstinence, i.e.,
negative reinforcement of drug addiction to alleviate negative emotional states [7–9].

Three explanatory models about the potential causal impacts of chronic anxiety on
substance use (and vice versa) are discussed in this review (Figure 1). These three models
are not mutually exclusive, as we will present throughout the paper [10]. First, having a
psychiatric disorder increases susceptibility to addictive behaviors because certain sub-
stances may temporarily reduce symptoms of mental conditions and act as a negative
reinforcer [11]. This is termed the secondary substance use model and embraces the
self-medication hypothesis, in which the constant use of substances to remedy the nega-
tive affect states of psychiatric conditions leads to an SUD diagnosis [12]. Social anxiety
disorder (SAD) has been identified as an example of such a relationship, but for other
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anxiety disorders, the temporality with SUD development remains unclear [13]. Second,
the secondary psychopathology model proposes that SUDs may promote vulnerability
to anxiety disorders due to the consequences of chronic drug use or related withdrawal
symptoms [12,14]. A study using National Epidemiological Survey on Alcohol and Related
Conditions (NESARCs) data found a higher likelihood of individuals having alcohol use
disorder (AUD) as their primary diagnosis among patients with comorbid panic disor-
der or generalized anxiety disorder [13]. Third, the common factor model suggests that
shared genetic and environmental factors (e.g., traumatic or stressful life experiences) may
mediate the relationship between SUDs and anxiety rather than reflect a direct causal asso-
ciation [12,15,16]. The self-medication hypothesis in the secondary substance use model
appears to be the most commonly used explanation for comorbid SUDs and anxiety. The
literature has demonstrated empirical evidence that supports this hypothesis in comorbid
social phobia and AUD, as well as comorbid post-traumatic stress disorder (PTSD) and
SUDs. However, since various anxiety disorders interact differently with different SUDs,
there are potentially other mechanisms that explain their comorbidity [12]. Neurobiological
study of the pathogenesis and evolution of comorbid SUDs and anxiety disorders is crucial
to investigate these models, advance treatment, and improve outcomes.
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One approach for the purpose of investigating psychiatric comorbidities is to use the
Research Domain Criteria (RDoC), a multi-system framework that maps domains of neu-
robehavioral functioning to mental disorders. Since its conception in 2008, RDoC has been
established as a valid framework that is particularly valuable when studying comorbidities
due to its multidimensional approach (e.g., integrating neurobiological and psychosocial
factors) and focus on common underlying constructs of multiple disorders (e.g., disruption
to positive valence systems as a core feature of both SUDs and anxiety) [17,18]. Prior stud-
ies have successfully applied the RDoC framework to produce clinically relevant insights
for depressive, personality, and psychotic disorders [19–21]. The RDoC framework is a
step toward precision psychiatry [22], with one of its greatest strengths being its ability to
guide “attempts to associate underlying psychological constructs of cognition and emo-
tion with specific neural circuitry” [23]. Though the RDoC is a strong framework, one
notable weakness is the lack of recognition of the dynamic nature of psychiatric illness
onset and progression [23]. We aim to address this by discussing the potential impact of
early life stress on one’s probability to engage in substance use through the reciprocal and
causal effect of anxiety and the SUD cycle. Current neuroimaging studies provide valuable
insights about the neural underpinnings of anxiety or SUDs, and the RDoC framework
provides a unified way to integrate the two veins of research to identify novel transdiag-
nostic biomarkers for treating their comorbid presentations. Here we examine SUD-AD
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comorbidity through this lens, conducting a narrative review of studies that highlight
limbic system neuroadaptations associated with these disorders.

2. Methodology

Between the months of August 2024 and October 2024, we searched the database
PubMed and the search engine Google Scholar using the following terms: “Anxiety and
SUD OR Addiction OR SUD OR Anxiety OR Neuroimaging or RDoC.” Given the broad
scope of the literature on anxiety and SUDs, we restricted our search to studies from 1990
to 2024. Additional articles were identified via recursive reference searching and previous
knowledge. For the purposes of this review, we included studies that looked at anxiety
disorder diagnoses from multiple iterations of the DSM (i.e., panic disorder, generalized
anxiety disorder, social anxiety disorder). We also included studies that describe state and
trait anxiety in comorbid SUDs. Research articles published prior to 1990 were excluded.
Given that PTSD has a distinct classification from anxiety disorders in the DSM-V, where
possible, we separately highlight findings related to PTSD. We also excluded studies on
obsessive-compulsive disorders, which are categorized by DSM-V as separate from anxiety
disorders, despite having overlapping symptoms. To allow for a diverse understanding of
the neuroadaptations present in comorbid SUD-AD, the exclusion criteria were kept broad.

3. Dimensional Frameworks for Understanding Comorbidity

The RDoC provides a transdiagnostic, systematic framework to characterize shared
neurobiological processes underlying SUDs and ADs across domains. The RDoC ma-
trix covers six domains: negative valence, positive valence, cognitive, social processes,
arousal/regulatory, and sensorimotor systems. The Alcohol and Addiction Research Do-
main Criteria (AARDoC) further delineates the major underlying domains of functions
relevant to SUDs: negative emotionality (mapping onto the negative valence system),
incentive salience (mapping onto the positive valence system), and executive function
(mapping onto the cognitive system). We note that the social processing, arousal, and
sensorimotor systems are also relevant for SUDs but here we focus on three relevant do-
mains that correspond with the three stages of the addiction cycle proposed by Litten and
colleagues [24].

Current neuroscience-based models conceptualize SUDs as a three-stage cyclical
process that intensifies with continuing drug use. These stages include (1) binge and
intoxication, (2) withdrawal and negative affect, and (3) preoccupation and craving [25]. The
three stages in the addiction cycle represent three functional psychobiological constructs:
incentive salience or pathological habits, reward deficit or stress surfeit, and executive
dysfunction. Anxiety can be conceptualized as either state anxiety (a transient reaction to
a stressor) or trait anxiety (an enduring attribute) [26]. ADs, such as generalized anxiety
disorder (GAD) involve high levels of trait anxiety, but people with ADs may also be
more reactive to transient stressors as well [27]. Changes in anxiety levels, marked by a
state of distress and arousal, are relevant to all three stages of SUDs. Given significant
overlaps between SUDs and anxiety in various domains, especially negative valence and
cognitive systems, this psychobiological framework is of particular relevance to the SUD-
AD comorbid condition. Core dysfunctions of SUDs and ADs and their manifestations
were investigated in the context of the RDoC matrices for negative valence, positive valence,
and cognitive systems for each disorder.

Below, we summarize the basic neurobiology underlying each process, followed by a
narrative review of the relevant neuroimaging data.

3.1. Positive Valence Systems—Binge/Intoxication
3.1.1. Neurobiology

Individuals with anxiety often exhibit diminished sensitivity in positive valence sys-
tems, including the motivation to obtain rewards [28–30]. This is evidenced by decreased
activation of the striatum to reward feedback [31]. Blunted reward processing to natural re-



Brain Sci. 2024, 14, 1285 4 of 19

wards may prime people with anxiety disorders to seek out other experiences that increase
reward signaling, such as substance use [32]. During the binge and intoxication phase,
consuming drugs increases activity related to positive valence systems, such as reward
seeking and habit learning [33]. The mesolimbic and the mesocortical dopamine systems
are highly involved in this drug-induced reward processing. The mesolimbic system in-
cludes neurons that originate in the ventral tegmental area (VTA) and project upwards to
the ventral striatum (VS), including the nucleus accumbens. Drug consumption induces
rapid ‘bursts’ of dopamine release in the VS (also known as phasic dopamine release) [34],
which activate dopamine D1 receptors and are associated with the rewarding experience of
feeling “high” or euphoric [35,36]. The adjacent nigrostriatal dopamine system has been
classically associated with motor control, but it also plays a role in reward processing. This
pathway originates in the substantia nigra and projects upward to the dorsal striatum (DS).
Like in the VS, drug consumption also increases dopamine release in the DS, though to a
lesser extent than in the other dopamine systems [35,36].

With long-term drug use, an individual’s reward processing distorts to dispropor-
tionately favor drug consumption over other rewards. This reflects, in part, long-term
potentiation (LTP), which is one of the mechanisms driving neuroplasticity in the brain
triggered by drug-induced signaling [37]. These neuroplastic changes drive incentive
salience, i.e., heightened or focused attention toward cues linked to rewarding behav-
iors [38]. Similar to the mesolimbic system, the mesocortical system also originates in the
VTA and includes neuronal projections to the medial prefrontal cortex (mPFC). Release of
dopamine into the mPFC cues incentive salience, which increases motivation for further
drug consumption [25,36]. This is further evidenced by research that has found that as
an individual starts to develop drug-cue associations, phasic dopamine bursts also occur
in response to drug cues [39]. Over time, drugs become a preferred specific stimulus,
and reward circuitry activation in response to non-specific, non-drug stimuli (e.g., social
interaction, daily activities) gradually diminishes. This diminished reward processing
to “natural” rewards can provoke anxiety, as individuals face chronic anhedonia and are
provoked to further drug consumption [40].

3.1.2. Neuroimaging Findings: Anxiety → Binge/Intoxication

Stress-induced early life programming can sensitize reward circuitry and make some-
one more prone to engaging in substance use [41]. Stress in early life is associated with
higher levels of anxiety expression [42], and is a risk factor for early drug initiation [43]
and SUDs [44]. A recent review found that anxiety sensitivity is associated with both PTSD
and SUDs, suggesting it may play a pivotal role in their co-occurrence [45]. Events that
induce PTSD may also prompt increased trait anxiety [46] and propensity toward sub-
stance use [47]. Luckily, evidence shows that several types of treatments (trauma-focused,
non-trauma-focused, and manualized SUDs) can be effective interventions for co-occurring
PTSD and SUDs [48]. There is neurobiological evidence for these ideas; neuroimaging stud-
ies find acute intoxication could potentially counteract anxiety-related neural dysregulation.
Anxiety is associated with dampened or dysregulated activity in the VS [49,50], so during
intoxication, the supraphysiological bursts of VS dopamine and heightened VS activity
may overcome these deficits [25,51,52]. As people consume drugs more frequently, drug
cues alone can also prompt increased VS activity [53]. Further, many anxiety disorders are
consistently associated with increased activity in fear-related limbic regions including the
amygdala [54], particularly in response to relevant anxiety cues [55]. Similar to how acute
intoxication can increase VS activity to potentially counteract dysregulated reward-related
activity in people with anxiety, some studies have found that intoxication, particularly with
alcohol, can acutely decrease amygdala reactivity [56,57].

3.1.3. Neuroimaging Findings: Binge/Intoxication → Anxiety

While drugs may temporarily relieve feelings of anxiety, chronic self-medication leads
to maladaptive neuroplastic changes that decrease the value of drugs. For example, with
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long-term substance use, stimulant drugs do not induce an increase in dopamine signaling
to the same degree as healthy controls [52]. Simultaneously, changes in the nigrostriatal
system may support habit formation [58], which may be why drug cues alone are sufficient
to induce dopamine increases in dorsal striatum in SUDs [59]. Intriguingly, a case study
found that damage to the dorsal striatum completely reversed addictive behavior [60]. Over
time, a paradoxical brain response develops; dopamine responses to drug consumption
decrease while incentive salience increases [25,61]. This mismatch results in increased
“wanting” and decreased “liking” [61].

Impaired reward prediction error (RPE) learning underlies the drive to seek rewards
in SUDs [62] and can lead to increased negative emotions and feelings of anxiety, as the
experience of drug consumption does not match the anticipated response. Disrupted
dopamine RPE signal is associated with neuronal plasticity alterations in the striatum,
frontal cortex, and amygdala [63]. Behaviorally, prediction errors are also implicated in
anxiety disorders as wrong expectations of danger can trigger excessive fear levels and
motivate avoidance behaviors [64]. Clinical studies showed that prediction error signaling
is disrupted in patients with GAD completing a passive avoidance task and associated
their performance with the ventromedial prefrontal cortex (vmPFC) and ventral striatum
regions. Individuals with SAD also show similar trends but with elevated dmPFC activation
correlating to prediction errors, and reduced dmPFC-ventral pallidum connectivity [65].

3.2. Negative Valence Systems—Withdrawal/Negative Affect
3.2.1. Neurobiology

Withdrawal/negative affect follows the binge/intoxication stage of the addiction cycle
and includes core components of anxiety disorders. During withdrawal, dopamine trans-
mission decreases in mesolimbic circuits, which is associated with motivational deficits
and decreased mood [37]. Due to neuroadaptations associated with long-term drug abuse,
nothing relieves this negative affect except drug consumption. This is because drugs pref-
erentially act on neural reward circuitry that has been altered from chronic drug use [66].
As dependence and withdrawal develops, the brain’s anti-reward system is activated and
negative affective symptoms emerge including anxiety, irritability, and hyperkatifeia [67].
While different drugs can elicit different withdrawal symptoms, negative affect is a uni-
versal and motivational element of withdrawal [68]. These negative emotional states spur
further drug use to avoid discomfort, i.e., negative reinforcement [69]. Individuals with a
history of anxiety experience more intense withdrawal symptoms and withdrawal-related
discomfort and relapse from substances like methamphetamine, nicotine, or alcohol [70,71],
and baseline diagnosis of anxiety disorders like SAD and panic disorder significantly
predicted early alcohol relapse [72].

These negative emotional states are driven by increased corticotropin-releasing factor
(CRF), noradrenaline, and dynorphin signaling [67]. Injection of CRF antagonists into the
central amygdala reduces anxiogenic-like states in rats withdrawn from substances includ-
ing alcohol, nicotine, and cocaine [73–76]. Further, noradrenergic antagonists administered
into the bed nucleus of the stria terminalis (BNST) reversed opioid-withdrawal-induced
place aversion in rodents [77]. Recent evidence suggests changes in endogenous endo-
cannabinoid systems in the extended amygdala are associated with heightened anxiogenic
responses in rats with cannabis withdrawal undergoing classical anxiety paradigms like the
elevated plus-maze and the light/dark box [78–80]. Clinically, classical medications used to
treat alcohol and heroin withdrawal include α-adrenergic drugs that inhibit noradrenergic
release [81,82]. Together, these findings highlight the importance of stress signaling in the
extended amygdala, a component of the limbic system that is linked with anxiety disorders
as demonstrated in human imaging studies.
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3.2.2. Neuroimaging Findings

While the directionality between anxiety and SUDs specific to the withdrawal stage
remains hard to disentangle through neuroimaging research, we present general findings
regarding neurobiological overlap between withdrawal and anxiety phenotypes.

The amygdala is heavily implicated in the withdrawal/negative affect stage and in-
creased connectivity in amygdala-related networks is associated with increased emotional
reactivity [83,84]. Alterations in connectivity between large-scale brain networks, such as
the salience network (SN, including the insula, anterior cingulate, amygdala, and hypotha-
lamus) and the default mode network (DMN, including the medial prefrontal and parietal
cortex) are critically involved in both withdrawal and anxiety. SN-DMN connectivity is
elevated during withdrawal from substances such as tobacco and alcohol [85,86]. Elevated
SN-DMN connectivity is also commonly observed in adolescents and adults with anxiety
disorders compared to healthy controls [87–90], and positively correlates with anxiety
severity among both anxiety patients and healthy controls [87,91,92]. While state anxiety
is associated with SN-DMN connectivity, specifically in the ventral nodes, recent studies
found that trait anxiety is more closely related to the DMN. Individuals with higher trait
anxiety exhibit increased resting-state functional connectivity between the DMN and pre-
frontal areas [26] and reduced intra-DMN connectivity compared to those with low trait
anxiety [93].

These connectivity changes are thought to direct attention towards withdrawal-
induced physiological sensations, heightening internalizing and anxiety symptoms [94].
For example, both nicotine and alcohol withdrawal [95], self-reported anxiety [96], and
irritability [97] have all been linked to elevated amygdala-insula functional connectivity.
This may explain why individuals with a history of anxiety experience more intense with-
drawal symptoms and withdrawal-related discomfort and relapse from substances like
methamphetamine, nicotine, or alcohol [71], as increased amygdala-insula reactivity has
been observed in anxiety patients across all ages [98–101].

As mentioned above, α-adrenergic drugs are effective in treating alcohol withdrawal
symptoms, and imaging evidence supports this. Prazosin treatment improves dysregu-
lation in DMN regions including the medial prefrontal cortex (mPFC), which has been
associated with severity of alcohol withdrawal symptoms [102] and implicated in anxiety
psychopathology [103]. While the SN is involved in processing internal or external stimuli,
and mediates the switching between the DMN and the executive control network (ECN),
the DMN plays a central role in self-referential processes (evaluating salience or internal
and external cues, remembering the past, and planning the future) implicated in affective
disorders like anxiety [104] and in SUDs [36]. Dysfunctions in within-network and between-
network DMN connectivity are heavily implicated across all anxiety disorders [105], and
recent studies have suggested DMN aberrations may underlie anxiety symptoms such
as perseverative thoughts in generalized anxiety disorder (GAD) [106,107] and possibly
predict anxiety disorders such as GAD and SAD [107,108]. Therefore, among the existing
resting-state networks, the DMN may be of particular interest in comorbid SUD-anxiety
conditions during the withdrawal stage.

Chronic drug use has opposing effects on DMN engagements, which may contribute to
the predominance of anti-reward systems during the withdrawal/negative affect stage [105].
The DMN can be further split into anterior and posterior portions, and reduced anterior-
posterior DMN connectivity has been associated with impaired self-awareness [109], and in
addicted persons this contributes to uncontrolled drug-taking [110,111]. Increased posterior
DMN involvement may underlie ruminatory behaviors, resulting in distress and negative
emotional states like anxiety [112,113]. Resting-state studies in individuals addicted to
substances like alcohol, heroin, or cannabis found that chronic drug use enhances posterior
DMN, and exacerbates the imbalance of anterior-posterior DMN connectivity [36,114,115].
Decreased connectivity between the posterior and anterior DMN may contribute to the
inability to inhibit negative emotional states, interfering with abstinence and flexible
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decision-making which could further exacerbate the anxiety symptoms experienced during
withdrawal [25].

Emerging evidence also highlights the importance of the BNST in withdrawal-related
anxiety and relapse as a critical node in both the stress and reward circuitries [2]. Dur-
ing withdrawal, the amygdala releases CRF on receptors in the BNST [116], and height-
ened amygdala-BNST connectivity was observed in people undergoing alcohol with-
drawal [86,117]. The BNST is involved in withdrawal-related anxiety and relapse, serving
as a critical node in both stress and addiction circuitry with connections to multiple lim-
bic and brainstem regions including the amygdala and VTA. fMRI studies using shock
paradigms described increased BNST engagement mediating sustained fear responses,
and activity correlated with physiological skin conductance and self-reported anxiety
ratings [118–121].

3.3. Cognitive Systems—Preoccupation/Anticipation
3.3.1. Neurobiology

Commonly known as “craving”, the preoccupation/anticipation stage of addiction
is characterized by a disruption of executive function and involves the prefrontal cortex.
Studies have linked poor executive function (i.e., inhibition, working memory) with early
initiation of alcohol, tobacco, and other substances [122–124]. Early life stress can exacer-
bate this vulnerability by inducing alterations in brain functional connectivity in emotion
and reward circuits, and these alterations subsequently affect anxiety levels throughout
development [125]. These neurobiological disruptions may create a feedback loop that
increases vulnerability to substance abuse. Further, acute craving, which is more intense
in comorbid AD and SUDs [126], decreases the ability to divert attention away from drug
cues [127,128]. Both cue- and stress-induced craving and anxiety are linked to early attrition
from alcohol use disorder treatment, and these observations are in part associated with
dysregulated hypothalamic-pituitary-adrenal (HPA) axis function [129].

Prior studies found working memory, attentional control, and inhibitory control to
be among the most common cognitive domains impacted by anxiety as well as SUDs.
Reciprocal glutamatergic connections between the PFC and the dorsal striatum are heavily
involved in the flexible control of these behaviors [130]. Preclinical evidence showed that
rats withdrawn from substances like cocaine or methamphetamine were unable to develop
long-term potentiation and long-term depression in the nucleus accumbens region after
stimulating the PFC, suggesting that chronic substance use depresses PFC-accumbens
synapses [131,132]. However, treatment using N-acetylcysteine, an agent which acts as a
physiological reservoir of neuronal glutamate, can prevent relapse by activating cystine–
glutamate exchange in the cortico-accumbens circuitry [133]. This finding is consistent
in human studies that reported decreased desire to use drugs in response to cocaine cue
reactivity [134].

Persistent prefrontal dopamine D1 receptor signaling is crucial for working memory, a
foundational cognitive function [135–137]. Nonhuman primate studies showed blocking
D1Rs in the PFC impaired learning of novel associations and decreased cognitive flexibil-
ity during a working memory task [136,138], and human studies reported that systemic
administration of a mixed D1/D2 agonist facilitated working memory while a D2 agonist
had no effect [139]. Striatal dopamine D1 versus D2 receptor signaling is also implicated
in flexible control of behavior. Animal studies using the probabilistic reversal learning
paradigm found that positive feedback learning is modulated by D1R signaling in the
ventral striatum while D2R signaling modulates negative feedback learning. Stimulation of
D2R in the ventral or dorsolateral striatum promoted explorative choice behavior [140] and
reversal learning was impaired by D2R antagonism but not D1R antagonism in the dorsal
striatum [141]. Studies have provided evidence that dorsal striatum D1 medium spiny
neurons (MSNs) mediate reward/reinforcement and D2-MSNs mediate aversion [142].
Further, rats completing an instrumental task showed that D1R inhibition and D2 activa-
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tion both promote the expression of flexible responding after development of habitual or
compulsive-like behaviors [143].

3.3.2. Neuroimaging Findings: Anxiety → Preoccupation/Anticipation

During the preoccupation and anticipation phase of the addiction cycle, attention to
drug cues is heightened [37,144]. Anxiety differentially affects proactive and reactive con-
trol, which both dynamically mediate cognitive control. State anxiety induced by the threat
of shock impairs proactive control, which suggests that increased state anxiety interferes
with the working memory and goal-directed attentional control involved in drug use [145].
Reduced proactive control has been observed in individuals with methamphetamine or
cocaine use disorder which may account for the role of poor executive function in relapse
vulnerability [146,147]. Neuroimaging studies of cue reactivity have found increased acti-
vation related to craving for alcohol, nicotine, or cannabis in cognitive control regions, such
as the anterior cingulate cortex (ACC) and vmPFC and limbic regions like the ventral stria-
tum [144,148–150]. Alcohol-cue-elicited activation of the ventral striatum correlated with
behavioral measures [149] and nicotine craving correlated with left vmPFC and amygdala
activation when viewing smoking-related pictures [144]. People with anxiety disorders
also exhibit problems with cognitive flexibility [151], and high trait anxiety is linked to
low PFC activity during attentional control [152] and dysregulated connectivity between
PFC and subcortical regions including the amygdala, basolateral amygdala (BLA), insula,
and hippocampus [151,153–157]. In task-based fMRI studies with the stop signal task,
amygdala activation positively correlated with trait anxiety, and with the vmPFC during
risk taking. Using the same SST task in cocaine-dependent patients [158], vmPFC acti-
vation correlated negatively with improved inhibitory control during methylphenidate
treatment [159]. Together, these findings suggest that anxiety-related dysregulation in
cognitive systems, combined with increased amygdala activation and stress symptoms
associated with the preoccupation phase [25], may worsen or reinforce altered cognitive
control associated with cue reactivity.

3.3.3. Neuroimaging Findings: Preoccupation/Anticipation → Anxiety

Long-term substance use creates a paradoxical effect in which reward responses are
blunted while anticipation heightens [25,61]. During this preoccupation and anticipation
phase, many factors promote craving. Neural biomarkers like the insula, hippocampus,
and prefrontal cortex are implicated in the craving stage [37]. The insula, particularly
its anterior regions, is reciprocally connected to several limbic regions and is responsible
for an interoceptive function (integrating autonomic/visceral information with emotion,
motivation, and conscious awareness) [160].

SUDs impair interoception [161] and damaged interoceptive awareness is likely one
of the contributing factors to why people with SUDs continue substance use [162]. Chronic
drug use can lead an individual to associate interoceptive cues with the rewards of drugs to
trigger cravings, as the body is reminded of the positive effects of drugs and primes the urge
to seek drugs. The imbalance between interoception/exteroception causes an increased
focus on external stimuli (i.e., drug cues) and a decreased ability to perceive internal bodily
states [97,163]. Neuroimaging studies demonstrated insula activity in response to drug cues
in patients addicted to cigarettes, cocaine, and alcohol, and correlated insula activity with
self-reported cravings [160,164–167]. SUD patients with lesions to the insula (or even other
regions functionally connected to the insula) can remarkably have a complete remission of
their addiction and no longer experience drug cravings or relapse [168,169]. The anterior
insula is reciprocally connected to several limbic regions, and cue-reactivity fMRI studies
on alcohol-related craving found increased connectivity between the left insula and left
dorsomedial PFC but decreased connectivity in a network including the ACC, insula, and
hippocampus [170].

The insula, particularly the anterior insula, is also heavily implicated in the pathophys-
iology of anxiety and anxiety disorders [171–173]. Alvarez et al. found that individuals
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with greater anxiety proneness and lower perceived control showed greater activity in the
anterior insula during anticipation of an unpredictable threat [174]. Individuals who are
prone to anxiety experience augmented signaling between observed and expected body
state, and may use worrying about possible aversive outcomes as a cognitive avoidance re-
sponse to stressful, unpredictable life events [172,175]. Similarly, addicted individuals with
diminished interoceptive abilities may have difficulties regulating internal/external states
in response to stressful situations, and turn to further substance use like alcohol as a coping
mechanism [176–178]. Given the overlap in dysregulated insular activity and interoceptive
abilities underlying both SUDs and anxiety disorders, it is likely that anxiety symptoms are
amplified or anxiety disorders emerge during the preoccupation/anticipation stage.

4. Limitations

Due to the cross-sectional nature of many neuroimaging studies, it is often difficult
to determine directionality of causality, i.e., whether the difference in neural activity is a
cause or consequence of the studied behavior. Further, literature reviews conducted in a
narrative style are inherently prone to author bias. We made a strong effort to mitigate
this potential bias by completing a comprehensive search as described in the methodology
section. Nonetheless, we acknowledge that this review does not exhaustively cover every
possible prior study in this space. Finally, the RDoC framework is continually evolving as
neuroscientific research develops, and its application to AD-SUD comorbidity may change
accordingly.

5. Conclusions and Future Directions

Changes in neurobiological circuits underlying ADs and SUDs exacerbate symptoms
as individuals cycle through the three stages of addiction. Anxiety can prompt people
to consume drugs, which temporarily recruits positive valence systems and increases
incentive salience over time. During withdrawal, activity in negative valence systems
heightens, and anxiety symptoms increase rapidly. As people enter into the preoccupation
and anticipation phase, changes to cue reactivity and interoception are reflected in cognitive
systems. The cycle repeats as people become intoxicated again due to lack of cognitive
control and increased incentive salience and cue reactivity. As tolerance increases, people
binge with increasing drug quantities and neuroplastic changes are reinforced. Each stage
of the cycle can worsen preexisting or SUD-induced anxiety. Common findings from task
and resting-state fMRI are related to these processes as summarized in Figure 2.

Encouragingly, longitudinal studies of people with SUDs in recovery have found
that drug-related functional deficits can be at least partially reversed with abstinence. For
example, an investigation of people in recovery from opioid addiction found improvements
in nucleus accumbens function in response to reward [180]. An increase in DA transporters
after abstinence was observed in methamphetamine users [181], and DA transporter bind-
ing in alcohols matched healthy controls after a 4-week period of abstinence [182]. There is
also some promising research that anxiety treatment can cause positive functional changes;
studies have found decreases in overactivation of regions of the limbic system, such as the
ACC [183], amygdala [184], and hippocampus [185]. Decreased activity in these regions
correlated with improvement in PTSD [186] and social anxiety [184] symptom severity.

The literature reviewed establishes the high prevalence of comorbid SUD-AD and
shows the commonality in neuroadaptations present in both conditions. Yet treatments
tailored to address this comorbidity have been minimally explored. Further research is
therefore needed on treatments for comorbid ADs and SUDs, including studies with a
focus on assessing functional changes in the brain. Longitudinal investigations may prove
especially useful in investigating treatments, as they would provide information about
acute versus long-term changes in these disorders.
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ing task-based and resting-state fMRI neuroimaging findings. Anxiety leading to binge/intoxication
(positive valence) is associated with increased VS activity and decreased AMYG activity while
binge/intoxication leading to anxiety is associated with increased PFC and VS activity. Bidirectional
anxiety and withdrawal/negative affect are associated with increased SN-DMN, AMYG-INS, and
AMYG-BNST connectivity, and increased posterior DMN activity. Anxiety leading to preoccupa-
tion/anticipation (cognitive) is associated with increased PFC activity and increased AMYG-vmPFC
connectivity while preoccupation/anticipation (cognitive) leading to anxiety is associated with in-
creased vmPFC and AMYG activity, and increased AMYG-vmPFC connectivity. Colored arrows
depict the associated mental health condition (red = anxiety, blue = SUD, and purple = both).
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frontal cortex. INS = insula. BNST = bed nucleus of the stria terminalis. SN = salience network.
DMN = default mode network. Limbic brain image is open access, modified from lifesciencedb [179].

Viewing the literature through the RDoC lens highlights several potential routes for
improvement in precision treatment of comorbid ADs and SUDs, such as integrated be-
havioral treatments. Promisingly, a meta-analysis found that integrated AD and SUD
treatments outperformed SUD treatments in measures of both substance use and anxi-
ety [187]. Applying prior knowledge of existing therapies to patient populations with
AD-SUD comorbidity will help inform development of novel integrated treatments and
application of existing behavioral therapies to this population. For example, cognitive
behavioral therapy (CBT) has been shown to normalize hyperactivity in fronto-parietal
networks, including the PFC, in patients with ADs [188]. Integrated AD-SUD treatments
may focus on CBT during the preoccupation/anticipation phase when high anxiety levels
exacerbate dysfunction in the PFC and contribute to further drug consumption.

Similarly, medications may have differential efficacies for those with comorbid ADs
and SUDs, relative to either condition alone. The RDoC framework predicts that persons
with comorbid ADs and alcohol use disorder (AUD) may be more prone to “relief” drinking
(to alleviate anxiety) as opposed to “reward” drinking subtypes of AUD. There is some
evidence that different medications may have differential efficacy across AUD subtypes;
for instance, naltrexone may be more effective for the “reward” drinking subtype [189].
Thus, one could test the possibility of whether medications like acamprosate [190] may
be more effective in comorbid ADs and AUD than in AUD alone. This is consistent with
evidence that different genetic polymorphisms predict different effects for naltrexone and
acamprosate [191] in the treatment of AUD. This type of analysis could be applied to other
medication therapies for SUDs, such as for nicotine and cocaine use disorder, that also
have evidence of different subtypes elucidated by genetic studies, and for which genetic
background modulates brain functional responses in circuits governing disorder-related
behaviors [192,193].
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One particular area of interest for future research is investigating how biological
sex influences comorbid ADs and SUDs, and to what extent differences are genetically
determined or influenced by environmental factors. Both men and women with SUDs
have a higher risk of mental health problems, but women experience higher comorbid
ADs and SUDs than men [194]. This discrepancy is intriguing and warrants further study.
The known sex difference in the prevalence of ADs may give insight into which specific
SUDs are more likely to be comorbid with ADs. Some types of SUD have widely different
prevalence within male vs. female populations. For example, stimulant use disorder is
much more prevalent in men [195], while benzodiazepine misuse is more prevalent in
women [196]. Further, treatment efficacy may differ across various SUDs in part due to sex
differences related to ADs. To study this, one may look at differences in neuroimaging data
in men versus women and analyze the findings in parallel with molecular stress signaling,
in order to help understand the complex characteristics of comorbid AD-SUD. We noted
a relative paucity of studies in this space. There are relative clues from each individual
condition; for instance, the amygdala has emerged as a notable region with sex differences
in function that have relevance for both trait anxiety [197] and substance use [198].

In addition, investigating the role of sleep in comorbid AD-SUD could provide impor-
tant insights into the mechanisms driving these conditions. Studies using fMRI and sleep
profilers could help clarify the impact of sleep disturbances on brain function and behavior
in individuals with both ADs and SUDs. Previous studies have found that sleep apnea is
associated with co-occurring anxiety [199,200], with similar findings for insomnia [201].
A recent review found that many types of problematic sleep, including chronic sleep re-
striction and sleep disorders, can facilitate drug intake and addiction, perhaps via altered
interactions between positive and negative valence circuitries [202]. Understanding how
sleep disturbances contribute to the development and maintenance of both ADs and SUDs
could lead to more integrated treatment approaches that address both sleep and mental
health simultaneously.

Finally, the underlying neurobiological basis for the direction of causality between ADs
and SUDs could be better understood; it may be particularly important to explore whether
the order of onset (“self-medication” of anxiety using substances versus SUD-inducing
anxiety disorders) reflects differences in underlying neurobiology. Variables such as the
duration of drug use, abstinence periods, relapse rates, and overdose rates should also
be included to better understand the progression and outcomes of SUDs. These research
aims would help develop more effective treatment and prevention strategies for SUDs and
anxiety disorders.
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