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Abstract: Background: Cognitive impairment poses a significant global health challenge, emphasizing
the critical need for early detection and intervention. Traditional diagnostics like neuroimaging
and clinical evaluations are often subjective, costly, and inaccessible, especially in resource-poor
settings. Previous research has focused on speech analysis primarily conducted using English data,
leaving multilingual settings unexplored. Methods: In this study, we present our results from
the INTERSPEECH 2024 TAUKADIAL Challenge, where we aimed to automatically detect mild
cognitive impairment (MCI) and predict cognitive scores for English and Chinese speakers (169 in
total). Our approach leverages Whisper, a speech foundation model, to extract language-agnostic
speech embeddings. We then utilize ensemble models to incorporate task-specific information.
Results: Our model achieved unweighted average recall of 81.83% in an MCI classification task,
and root mean squared error of 1.196 in cognitive score prediction task, which placed the model at
the second and the first position, respectively, in the ranking for each task. Comparison between
language-agnostic and language-specific models reveals the importance of capturing language-
specific nuances for accurate cognitive impairment prediction. Conclusions: This study demonstrates
the effectiveness of language-specific ensemble modeling with Whisper embeddings in enabling
scalable, non-invasive cognitive health assessments of Alzheimer’s disease, achieving state-of-the-art
results in multilingual settings.

Keywords: large language model; mild cognitive impairment; multilingual processing; speech
analysis; whisper; dementia detection

1. Introduction

Cognitive impairment, encompassing conditions such as Alzheimer’s disease (AD),
poses a significant challenge affecting millions of individuals worldwide, without a cure,
currently [1]. Early detection and intervention are critical for managing these conditions
effectively, yet conventional diagnostic approaches largely rely on subjective assessments
and expensive neuroimaging techniques [2].

Currently, the diagnosis of Alzheimer’s disease and related dementias often involves
a combination of clinical evaluation, cognitive score testing, such as the Mini Mental State
Examination (MMSE) [3], and neuroimaging, etc. In addition to brain scans and cognitive
tests, speech analysis has emerged as a promising tool for diagnosing AD. Changes in
speech patterns, including disruptions in fluency, vocabulary, and syntactic complexity,
have been observed in individuals with cognitive impairment, providing valuable insights
into disease progression [4–7].

The utilization of speech in mild cognitive impairment (MCI) detection offers several
advantages. It allows for easy and non-invasive sample collection, streamlining the assess-
ment process. Additionally, the cost-effectiveness and ability to continuously monitor MCI
progression make it a valuable tool for large-scale screening. The existing work on utiliz-
ing speech for AD detection has primarily been conducted in English [2,8–10]. However,
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the applicability of these findings to multilingual settings, such as English and Chinese,
remains unclear.

In recent years, the importance of early detection of cognitive impairment has become
increasingly recognized, with growing evidence suggesting that early intervention can
delay the progression of conditions like Alzheimer’s disease [11–13]. This has fueled
a surge in research focused on developing cost-effective, scalable diagnostic tools that
can be applied across different populations. As neurodegenerative diseases continue to
affect aging populations globally, particularly in countries with limited access to advanced
neuroimaging facilities, the need for innovative and accessible diagnostic methods is more
urgent than ever [14,15]. Speech analysis offers an excellent opportunity to bridge the gap by
providing clinicians with a non-invasive, efficient means for detecting cognitive decline at
its early stages. Advances in Artificial Intelligence (AI), particularly large language models
(LLMs), have further accelerated progress in this area. These AI-powered technologies
allow the analysis of vast amounts of speech data, thus enabling researchers to uncover
subtle patterns in language and communication that may be indicative of cognitive decline.
Such innovations are paving the way for the deployment of speech-based screening tools in
both clinical and community-based settings, enabling earlier identification and subsequent
interventions for at-risk populations.

LLMs, such as Whisper [16], have become indispensable tools for speech analysis.
Whisper, trained on a massive dataset of multilingual and multitask data, is particularly
powerful as it can accurately transcribe speech in various languages and accents, even in
noisy environments. Previous approaches [17,18] have used LLMs such as data2vec [19]
and wav2vec2 [20] for acoustic analysis of speech data. Other studies [9,21,22] have utilized
linguistic features from LLMs such as Bidirectional Encoder Representations from Trans-
formers (BERT) [23] and Generative Pre-trained Transformer 3 (GPT-3) [24] for dementia
detection. However, these studies are conducted using only English speech data. In the
current study, we use data from the INTERSPEECH 2024 TAUKADIAL Challenge, which
consists of speech samples and clinical information for speakers of Mandarin Chinese and
English with different levels of cognitive impairment as well as individuals with normal
cognition (NC) [25]. Given the global rise in dementia cases [26], the ability to conduct
multilingual cognitive assessment has become increasingly important in healthcare.

In this work, we focus on spontaneous speech analysis for automatically detecting
people with mild cognitive impairment and predicting a cognitive score on English and
Chinese speakers. We explore two primary tasks:

• MCI Classification: This is a classification task, with a goal of distinguishing healthy
control speech from mild cognitive impairment (MCI) speech.

• MMSE Score Prediction: This is a regression task, with a goal to infer the subject’s
Mini Mental Status Examination (MMSE) scores based on spontaneous speech data.

Our main contributions are as follows. First, we leverage Whisper, a speech founda-
tion model, to extract language-agnostic speech embeddings. Second, we propose a novel
ensemble model by incorporating task-specific information, with improvement over com-
petition baseline results [25]. Third, we demonstrate the superiority of language-specific
pipelines over language-agnostic methods. Lastly, we evaluate the effectiveness of within-
language prediction for detecting MCI as compared to between-language prediction. The
integration of majority voting in the ensemble model and task-specific information in our
approach represents an innovative strategy to enhance model robustness and accuracy.
Majority voting helps to mitigate the risks of overfitting and biases that could arise from
individual tasks, ensuring that the final predictions are well-rounded and reflective of the
broader cognitive patterns across different task types.

2. Materials and Methods
2.1. Dataset Description

The dataset used in this work was provided by the organizers of the INTERSPEECH
2024 TAUKADIAL Challenge [23], which consists of Chinese and English speech samples
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collected while the speakers participated in picture description tasks conducted as cognitive
assessments in clinical settings. In the English language dataset, each participant was asked
to describe three different pictures: Cookie Theft, Cat Rescue, and Coming and Going
picture description tasks. In the Chinese language dataset, participants similarly were
asked to provide a detailed description of three pictures depicting Taiwanese culture. The
full dataset (English and Chinese) was balanced across age and gender groups to mitigate
biases in modeling. It is important to note that the pictures used for descriptions in each
language were different.

The training dataset comprises 387 voice recordings from 129 participants from MCI
patients and normal cognition (NC) subjects. The test dataset consists of 120 recordings
from 40 participants. Within the training set, 222 samples belong to the MCI group, while
the remaining 165 samples are healthy control. The dataset is curated to ensure a balanced
representation of age and sex among participants, thereby mitigating potential confounding
factors and bias using a propensity score matching approach [25,26]. Table 1 shows the basic
data description of the participants for age, sex and MMSE scores in the training dataset.

Table 1. Basic characteristics of participants for age, sex, and mean MMSE scores with their corre-
sponding standard deviation (sd) in the training data.

Age
MCI NC

M F MMSE
(SD) M F MMSE

(SD)

[60, 65) 12 6 28.0 (1.3) 12 3 29.6 (0.8)
[65, 70) 3 42 26.9 (3.1) 9 57 29.2 (0.9)
[70, 75) 24 51 25.6 (3.9) 15 12 28.1 (1.4)
[75, 80) 30 15 25.4 (4.1) 18 9 29.7 (0.5)
[80, 85) 12 21 25.0 (3.3) 6 21 29.0 (1.0)
[85, 90) 6 0 22.5 (6.0) 3 0 27.0 (0.0)

Total 87 135 25.8 (3.7) 63 102 29.1 (1.1)

2.2. Extracting Linguistic and Acoustic Features from Speech

Acoustic feature extraction is a critical step in analyzing spontaneous speech for
cognitive impairment prediction [27,28]. In this study, we employ the Whisper model to
extract embeddings representing acoustic features from both Chinese and English datasets.

Whisper is a simple, yet effective, end-to-end approach implemented as an encoder–
decoder model. It was trained on a massive dataset of multilingual and multitask super-
vised data collected from various sources on the web [16]. The extensive training data
allows Whisper to effectively capture a wide range of speech patterns and nuances across
different languages, resulting in robust acoustic feature extraction for predicting cogni-
tive impairment. In this study, we utilize the whisper-large-v3 model for acoustic feature
extraction. This version of the Whisper model offers embeddings of 1280 dimensions,
providing a rich representation of the input speech signals. Notably, the whisper-large-v3
model represents the latest open-source iteration of the Whisper model available at the
time of writing.

The encoder component of the Whisper model generates embeddings, which serve
as representations of the acoustic features extracted from the input speech. These em-
beddings encapsulate relevant acoustic information, facilitating subsequent analysis and
prediction tasks.

To represent linguistic features, the speech data underwent transcriptions, respec-
tively, to convert English audio into English text and Chinese audio into Chinese text
using Whisper. This step ensures that the linguistic nuances in both English and Chinese
speech samples were accurately captured. Following transcriptions, distinct LLMs were
applied to obtain text embeddings for each language. For English linguistic features, the
Voyage-large-v2 model was utilized, which generated text embeddings capable of capturing
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linguistic information within the English speech data. Similarly, for Chinese linguistic
feature representation, the FLAG embedding model, specifically the FLAG-bge-large-zh-v1.5
variant tailored for Chinese language processing, was employed. We chose these models
largely due to their top performance in the Massive Text Embedding Benchmark (MTEB)
Leaderboard. Comparisons of linguistic features with other multilingual embedding mod-
els did not yield improved performance. Therefore, the results reported in this work are
based only on acoustic features.

2.3. Model Pipelines
2.3.1. Language-Agnostic Modeling

We started with a language-agnostic model which serves as a baseline for our analysis.
This model, depicted in Figure 1A, was designed to be independent of specific languages
and aimed to capture general patterns present in the speech data. The baseline model
involved extracting embeddings directly from the encoder of the Whisper. These embed-
dings were further normalized by using z-score normalization, which were then utilized
as inputs for classifiers, such as neural networks (NNs). Note that this approach does not
incorporate any language identification mechanisms, highlighting the language-agnostic
nature of the pipeline.
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2.3.2. Language-Specific Ensemble Modeling

For language-specific ensemble modeling, we introduced our approach, as depicted
in Figure 1B. This method aimed to leverage the information encoded in three different
picture description tasks using an ensemble model. The process began with identifying the
language of the speech data, followed by feature extraction using the Whisper model. This
step ensures that subsequent modeling processes were tailored to specific language.

For each language, we implemented an ensemble model using a modified stacking
technique. This involved training three different machine learning models, each using
two of the three picture-description tasks for training and the third task for testing. This
setup resulted in three distinct predictions for each subject, based on different tasks. To
determine the final prediction, we applied a majority voting strategy, where the most
frequent prediction across the three models was selected. This approach leveraged comple-
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mentary information from the different tasks, ensuring a more robust prediction. Finally,
we manually checked the predictions to ensure consistency across the tasks for each subject
before submission to the competition organizer.

2.4. Experiments
2.4.1. MCI Classification Task

The first task focused on MCI classification, aimed at detecting the presence or absence
of MCI based on spontaneous speech recordings. We utilized three machine learning
models for this task: a Support Vector Classifier (SVC), Logistic Regression (LR) and neural
network (NN). We selected the SVC, LR, and NN, given their proven performance and
widespread use in machine learning, as evidenced by our previous research [9,17]. Specif-
ically, the SVC was chosen for its ability to handle high-dimensional data and capture
nonlinear relationships through kernel functions, aligning with the complex Whisper em-
bedding space. LR was selected for its simplicity, interpretability, and strong performance
in binary classification, providing a baseline. The NN was included to model intricate
nonlinear relationships and fully leverage the richness of the Whisper embeddings. By com-
bining these models in an ensemble approach and applying majority voting, we improved
the robustness and accuracy of our predictions.

For the classification task, we used two approaches: a language-agnostic model and
language-specific model. For language agnostic modeling, we directly used the embeddings
from Whisper as input into a neural network, regardless of language. This approach was
used as a baseline to compare with the language-specific model. In a language-specific
modeling approach, for each language identified and its Whisper embedding, we built an
ensemble model where we trained three different machine learning models. Specifically,
we trained LR, the SVC, and the NN independently, and combined their predictions using
majority voting for a final prediction such that each subject, regardless of the picture
description task, should have the same prediction. We additionally implemented the
conventional stacking approach using the NN and SVC as the base estimators and LR as the
final estimator to compare our task-specific ensemble to the conventional stacking method.

2.4.2. MMSE Score Prediction Task

This is a regression task aimed at predicting MMSE scores based on spontaneous
speech recordings. We leveraged the framework developed for the MCI classification
for this prediction. In this task, our objective is to predict MMSE cognitive scores using
regression models such as Ridge Regression and a neural network. The MMSE scores
normally range from 0 to 30, with scores of 26 or higher being considered normal [3].
A score of 20 to 24 suggests mild dementia, 13 to 20 suggests moderate dementia, and less
than 12 indicates severe dementia. As such, the prediction is clipped to a range between
0 and 30.

The key difference from the MCI classification lies in the use of regression models
tailored for predicting continuous MMSE scores, rather than classification models used
for detecting the presence or absence of MCI. As such, instead of using majority voting in
classification, we use the average of the predicted MMSE scores.

2.4.3. Between-Language vs. Within-Language Analysis

So far, our ensemble approach has focused on within-language analysis, wherein
inferences are performed for tasks with the same language, either English or Chinese.
Here, we seek to explore between-language analysis, where we aim to evaluate to what
extent transfer learning between languages can be used for MCI detection. Briefly, we
first train a machine learning model on the English (Chinese) dataset. Then, we make
inferences for a picture description task on the Chinese (English) dataset. To permit direct
comparison with the within-language analysis, we use two picture description tasks in the
same language (e.g., English) to train the model, and test it with a task in different language
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(e.g., Chinese). This process allows us to assess the effectiveness of transferring knowledge
and model performance across languages.

2.5. Performance Evaluation

For the MCI classification task, we assess model performance using the following
metrics from the challenge: unweighted average recall (UAR, also called balanced accu-
racy), specificity, sensitivity, and F1 Score. For the MMSE prediction task, our evaluation
metrics include Root Mean Square Error (RMSE) score and Pearson correlation coefficient
(i.e., R-squared).

To determine optimal hyperparameters for our models, we adopt a methodology that
involves dividing the training data into an 80/20 split for training and validation sets. This
split ensures adequate data for both training and validation of the models. Additionally,
we use a stratified approach based on both the detected language and diagnosis when
dividing the data, ensuring a balanced distribution of classes in the training and validation
sets. Such an approach facilitates the effective tuning of hyperparameters and the robust
evaluation of model performance, hence enhancing the reliability and generalizability of
our findings on the unseen test set.

For the SVC, we tune the regularization parameter and perform a search across various
kernel functions (radial basis function, sigmoid function and linear function). The NN
model is a feedforward neural network with one hidden layer of size 100. The Adam
optimizer is used with a learning rate of 0.001.

3. Results
3.1. MCI Classification Task

The results of within-language analysis for the English dataset are presented in Table 2,
showing the performance metrics of our ensemble approach obtained for inference on each
picture description task after model trained on the other two tasks. The results indicate
that, in general, majority voting performs better across all the metrics.

Table 2. Within-language results on English validation set for SVC, LR and NN. Inferences are made
on picture description tasks 1, 2 and 3, respectively. Majority: majority voting. Bold indicates best
performance for the metric.

Inference Balanced
Accuracy Specificity Sensitivity F1

SVC

1 0.761 0.619 0.902 0.860
2 0.701 0.524 0.878 0.828
3 0.663 0.619 0.707 0.744

Majority 0.797 0.667 0.927 0.883

LR

1 0.749 0.619 0.878 0.847
2 0.712 0.619 0.805 0.805
3 0.722 0.762 0.683 0.757

Majority 0.761 0.619 0.902 0.860

NN

1 0.796 0.714 0.878 0.867
2 0.712 0.571 0.854 0.826
3 0.735 0.714 0.756 0.795

Majority 0.808 0.714 0.902 0.881

Table 3 presents the within-language results for the Chinese dataset, depicting the
performance metrics obtained for inferences on each picture description task after the
model was trained on the other two tasks. The findings indicate that, overall, majority
voting utilizing task-specific information outperforms inferences made using individual
picture description tasks.
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Table 3. Within-language results on Chinese validation set for SVC, LR and NN. Inferences are made
on picture description tasks 1, 2 and 3, respectively. Majority: majority voting. Bold indicates the best
performance for the metric.

Inference Balanced
Accuracy Specificity Sensitivity F1

SVC

1 0.882 0.794 0.970 0.889
2 0.896 0.882 0.910 0.896
3 0.897 0.824 0.970 0.901

Majority 0.911 0.853 0.970 0.914

LR

1 0.926 0.853 1.000 0.930
2 0.836 0.853 0.818 0.831
3 0.926 0.912 0.939 0.925

Majority 0.955 0.941 0.970 0.955

NN

1 0.941 0.882 1.000 0.943
2 0.850 0.882 0.818 0.844
3 0.926 0.882 0.970 0.928

Majority 0.955 0.941 0.970 0.955

In Figure 2, the receiver operating characteristic (ROC) curves for both the English
and Chinese datasets are presented to demonstrate the model classification performance.
The area under the ROC curve (AUC) values of 0.87 and 0.99 are achieved, respectively,
for English and Chinese datasets. The near-perfect AUC for the Chinese dataset suggests
that the model is particularly well-suited to the linguistic and acoustic characteristics of the
Chinese language, achieving high accuracy in distinguishing cognitive impairment. These
ROC curves provide a clear indication of the model’s robust classification capabilities.
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We compare the results of our task-specific approach to the conventional stacking
method in Table 4 for both the English and Chinese dataset. It can be seen that for the
English data, our task-specific approach achieves a higher balanced accuracy and specificity
while having comparable sensitivity and F1 scores. For the Chinese dataset results, our task-
specific approach significantly outperforms the conventional stacking method, showing
a clear advantage over the conventional method.
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Table 4. Comparison of our task-specific ensemble approach (Task-Specific) to the conventional
stacking method (Stacking). Bold indicates the best performance for the metric.

Dataset Method Balanced
Accuracy Specificity Sensitivity F1

English Task-Specific 0.808 0.714 0.902 0.881
Stacking 0.787 0.615 0.960 0.888

Chinese
Task-Specific 0.955 0.941 0.970 0.955

Stacking 0.829 0.809 0.850 0.829

Table 5 presents the between-language results obtained from training on the English
dataset and inferring on different tasks of the Chinese dataset. The results indicate difficul-
ties in transferring task information from English to Chinese. These results indicate that,
despite utilizing task-specific information from the English dataset, the performance of the
transfer learning approach in inferring on the Chinese dataset is subpar compared to the
within-language results. Similar findings are observed for transfer learning from Chinese
to English.

Table 5. Between-language results from training on English tasks and inference on Chinese picture
description tasks 1, 2, and 3 using SVC, LR, and NN.

Model Dataset Balanced Accuracy Specificity Sensitivity F1

SVC
1 0.491 0.588 0.394 0.433
2 0.515 0.029 1.000 0.667
3 0.506 0.588 0.424 0.459

LR
1 0.418 0.382 0.454 0.435
2 0.431 0.529 0.333 0.367
3 0.521 0.618 0.424 0.467

NN
1 0.529 0.088 0.970 0.667
2 0.529 0.088 0.970 0.667
3 0.445 0.647 0.242 0.302

In Table 6, we show the results of the MCI classification task on the unseen test
set. Specifically, we compare the performance of the language-agnostic model with the
language-specific ensemble modeling approach (Method 2). Results on the unseen test set
reveal that the ensemble approach outperforms the language-agnostic model (Method 1)
across all the metrics. The language-specific ensemble modeling approach has much better
performance in accurately detecting the presence or absence of MCI, with a balanced
accuracy of 0.818 compared to 0.612 for language-agnostic methods.

Table 6. Classification results on unseen test set for balanced accuracy, specificity, sensitivity and F1
score for language-agnostic and language-specific pipelines using ensemble approach.

Method Balanced Accuracy Specificity Sensitivity F1

Language-agnostic 0.612 0.620 0.612 0.566
Language-specific 0.818 0.684 0.952 0.851

3.2. MMSE Score Prediction Task

We present the results of the MMSE cognitive score prediction task in Table 7, where
we compare the performance of the language-agnostic model with the language-specific
ensemble model. The MMSE prediction results are reported in terms of RMSE scores
(lower is better) and the R-squared method (higher is better). These results indicate that the
language-specific ensemble modeling approach outperforms the language-agnostic model
in terms of both RMSE scores and R-squared.



Brain Sci. 2024, 14, 1292 9 of 13

Table 7. RMSE and R-squared values of MMSE prediction task on unseen test set for language-
agnostic and language-specific ensemble approaches.

Method RMSE R_Squared

Language-agnostic 2.582 0.496
Language-specific 1.196 0.920

3.3. Comparison with Other Competition Teams

We compare the performance of our approach with the other participants in the
challenge. The competition rankings were based on UAR (i.e., balanced accuracy) for
the MCI classification task and root mean squared error (RMSE) for the MMSE cognitive
score prediction task. Figure 3 presents the competition results where only the top ten
teams are provided for each task, with the baseline also shown. Refer to the full list of
results here: (https://taukadial-luzs-69e3bf4b9878b99a6f03aea43776344580b77b9fe54725
f4.gitlab.io/ranking.html, accessed on 29 September 2024). We can see from Figure 3 that
our model performs remarkably well. We ranked second for MCI detection (Figure 3A),
and first for MMSE prediction (Figure 3B).
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provided for each task, with the baseline also shown. Refer to the full list of results here: 
(https://taukadial-luzs-
69e3bf4b9878b99a6f03aea43776344580b77b9fe54725f4.gitlab.io/ranking.html, accessed on 
29 September 2024). We can see from Figure 3 that our model performs remarkably well. 
We ranked second for MCI detection (Figure 3A), and first for MMSE prediction (Figure 
3B). 

 

 

Figure 3. Rankings of the top ten teams and the baseline method in the challenge, assessed using 
balanced accuracy for the MCI classification task (A) where our model ranked second (dark gray), 

Figure 3. Rankings of the top ten teams and the baseline method in the challenge, assessed using
balanced accuracy for the MCI classification task (A) where our model ranked second (dark gray),
and the RMSE for the MMSE cognitive score prediction task (B) where our model ranked first (dark
gray). Note that the baseline is represented by black dashed lines.

4. Discussion

In this paper, we present the findings of our participation in the INTERSPEECH 2024
TAUKADIAL Challenge, which focused on the automated detection of mild cognitive
impairment and the prediction of cognitive scores for both English and Chinese speakers.
Our approach harnesses the power of Whisper, a state-of-the-art speech foundation model,
to extract language-independent speech embeddings. These embeddings are then inte-
grated into ensemble models to capture task-specific information. Our model achieved an
unweighted average recall of 81.83% and a root mean squared error of 1.196 on the MCI
classification and cognitive score prediction tasks, respectively. This performance placed
our model in the second and first positions in the overall rankings for the respective tasks.
Our method relies only on acoustic features extracted from spontaneous speech recordings
using Whisper encoder embeddings [14], demonstrating the potential in identifying cogni-
tive impairment based purely on speech. These results highlight the growing potential of
speech-based biomarkers in clinical applications, as they offer a non-invasive, scalable, and
cost-effective solution for the early detection of cognitive decline.

https://taukadial-luzs-69e3bf4b9878b99a6f03aea43776344580b77b9fe54725f4.gitlab.io/ranking.html
https://taukadial-luzs-69e3bf4b9878b99a6f03aea43776344580b77b9fe54725f4.gitlab.io/ranking.html
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We performed a comparative analysis of the language-agnostic and language-specific
ensemble modeling techniques. Our findings showed a clear advantage of language-specific
models in both the MCI classification and MMSE prediction tasks. These models are able
to leverage subtle but important language-specific patterns, which play a crucial role in
the accurate prediction of cognitive impairment. We additionally utilized task-specific
information from the language-specific models by training models on two out of three
picture description tasks and testing them on the remaining third task. This process was
repeated across all possible combinations of the picture tasks, resulting in three predictions
for each language. The final ensemble prediction was obtained through majority voting.
Majority voting, a simple yet powerful ensemble technique, allowed us to aggregate three
predictions and make a final decision for the same subject in the classification task. In doing
so, we ensured that the final prediction was not biased toward any single task but rather
reflected the consensus across all task-specific models.

We also conducted an analysis of cross-language predictions, where models trained on
data in one language were evaluated on speech data from a different language. This anal-
ysis provided insights into the limitations of between-language prediction. We observed
a significant reduction in performance when models were applied to different languages
from that they were trained on. This drop in accuracy and MMSE prediction underscores
the challenge of building generalized models that work across various languages without
specific adaptations. This suggests that incorporating language-specific information, even
across similar languages, can lead to better predictions than models trained on diverse
language datasets without any language-specific adaptations. Our findings highlight
the importance of tailoring models to specific linguistic and cultural contexts, especially
when dealing with cognitive impairment, where subtle differences in speech can carry
diagnostic significance.

MMSE prediction is an important task in clinical settings, as the MMSE is a widely used
metric to assess cognitive function. Our results further validate the efficacy of language-
specific ensemble modeling techniques for MMSE prediction tasks. In addition to yielding
a lower and better RMSE score for the prediction, the use of these models resulted in
a higher Pearson correlation coefficient, indicating their effectiveness in accurately predict-
ing MMSE scores from acoustic features. The ability to accurately predict MMSE scores
from speech recordings provides a non-invasive and accessible method for monitoring
cognitive health, particularly in large-scale screening programs. Moreover, our results indi-
cate that language-specific models are better suited to capturing the relationship between
speech patterns and cognitive function. This is consistent with the idea that certain cogni-
tive impairments can manifest differently across languages due to variations in grammar,
phonetics, and syntax. By leveraging language-specific features, our ensemble models are
able to effectively capture these variations, resulting in accurate MMSE predictions.

One strength of our approach is its reliance solely on acoustic features derived from
spontaneous speech. By focusing on acoustic data, we avoid the need for transcribed or
labeled text, which can be resource-intensive and time-consuming to obtain, particularly in
a clinical setting. Additionally, this approach demonstrates the potential of using sponta-
neous speech recordings to detect cognitive impairment in a non-invasive and accessible
way, which can have far-reaching applications in telemedicine and large-scale screening
programs. However, there are some limitations to our study that must be acknowledged.
First, while our language-specific models outperformed language-agnostic approaches,
we only tested in English and Chinese. Hence, the generalizability of our findings to
other languages is unclear. Future work should explore the inclusion of a more diverse
set of languages to validate the effectiveness of language-specific modeling across a wider
range of linguistic contexts. Second, our focus on acoustic features, while effective, may
have missed important linguistic or semantic cues that could further enhance prediction
accuracy. This motivates our future work, in which we aim to incorporate text embeddings,
as performed in our previous work [9], in addition to using acoustic features to capture
a more holistic view of speech and cognitive function. Third, one limitation of this study is
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the reliance on the MMSE as the primary assessment tool. While widely used, the MMSE is
a relatively basic screening instrument with notable shortcomings [29,30], such as limited
sensitivity to mild cognitive impairment, susceptibility to ceiling and floor effects, and
biases related to education and culture. While our results demonstrate the promise of
speech-based biomarkers as complementary tools, the limitations of the MMSE underscore
the need for future research to integrate more sensitive and inclusive cognitive assessment
instruments to ensure robust and equitable evaluations across diverse populations. Fourth,
one of the significant challenges in working with LLMs is the inherent black-box nature of
their embeddings. While these embeddings are incredibly powerful in capturing semantic
and syntactic meaning, they often lack interpretability. This lack of transparency can hinder
our ability to understand why specific predictions are made. As LLM technology continues
to advance, it is essential to prioritize interpretability.

While our study demonstrates strong technical performance, it is essential to consider
how these findings might translate into practical clinical utility. While our current approach
leverages speech-based biomarkers to detect cognitive impairment, its integration into
clinical settings would require additional validation with more comprehensive neuropsy-
chological assessments. Future work should explore the application of our model alongside
well-established cognitive tests, such as the Montreal Cognitive Assessment (MoCA), or
other domain-specific cognitive tests, to evaluate its efficacy in detecting subtle cognitive
changes that may not be captured by current screening tools like the MMSE. Furthermore,
for our approach to be clinically applicable, we must address key questions regarding
thresholds for accurate classification, sensitivity, and specificity in real-world scenarios.
This includes the determination of optimal cut-off values for the classification of cognitive
impairment across diverse populations, ensuring that the approach maintains an appropri-
ate balance between sensitivity and specificity in all settings. Moreover, the integration of
speech-based assessments into existing clinical workflows will require careful considera-
tion of factors such as ease of use, clinician training, and the potential for automating the
scoring process.

5. Conclusions

This paper presents our results from the INTERSPEECH 2024 TAUKADIAL Challenge,
focused on automated detection of mild cognitive impairment (MCI) and cognitive score
prediction for English and Chinese speakers. Using Whisper, a leading speech foundation
model, we extracted language-independent speech embeddings and incorporated them
into ensemble models. Our approach achieved an unweighted average recall of 81.83% for
MCI classification (second place) and a root mean squared error of 1.196 for cognitive score
prediction (first place). Our method demonstrates the potential of speech-based biomarkers
for non-invasive, scalable, and cost-effective early detection of cognitive decline.

Looking ahead, several avenues for future research arise from this study. First, we plan
to incorporate text embeddings alongside acoustic features to enhance the model’s ability
to capture both the acoustic and linguistic dimensions of speech. By integrating text-based
features, we can explore how semantic information and language structure contribute to
the detection of cognitive impairment. This multimodal approach could potentially lead to
even more accurate predictions of both MCI classification and MMSE scores.

Second, a more detailed comparison between acoustic-based and linguistic-based
approaches is warranted. This would provide further insights into how these two types of
features interact and whether they offer complementary information that could be leveraged
in ensemble modeling. A deeper understanding of these relationships could inform the
design of more sophisticated models that make use of both acoustic and linguistic cues to
predict cognitive decline.

Finally, we aim to investigate the impact of incorporating additional non-verbal
features, such as facial expressions or gestures, which may carry important information
about cognitive functions. Multimodal models that combine speech with other behavioral
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cues could provide a richer picture of cognitive health, offering new opportunities for
non-invasive cognitive assessment in diverse populations.
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