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Abstract: Children with developmental dyslexia (DD) often struggle with executive function difficul-
ties which can continue into adulthood if not addressed. This double-blinded randomized clinical
trial study evaluated the short-term effects of the Verbal Working Memory-Balance (VWM-B) program
on reading-related executive functions, reading skills, and reading comprehension in Persian children
with DD. The active control group [12 children with DD with a mean age of 9 years (SD = 0.90)]
received training using the single-task VWM program, while the experiment group [15 children with
DD with a mean age of 8 years (SD = 0.74)] received training with the dual-task VWM-B program.
Both groups received fifteen training sessions, and assessments were conducted before and after
the intervention. The groups were homogenized for possible confounders of age, gender, IQ level,
and attention level. The study employed separate mixed ANOVA analyses to estimate the impact of
training programs on various measured functions. Significant improvements were observed in the
outcome measures of backward digit span, text comprehension, verbal fluency, Stroop color–word
test and interference, and the reading subtests. Additionally, significant correlations were found
between reading skills and backward digit span, text comprehension, verbal fluency, and Stroop
variables. In conclusion, the dual-task VWM-B program was found to be more effective than the
single-task VWM program in improving selective attention, cognitive inhibition, verbal working
memory capacity, information processing speed, naming ability, and lexical access speed. These
enhanced executive functions were associated with improved reading skills in children with DD.

Keywords: dual task; single task; cognitive-motor training; executive function; reading; dyslexia;
cerebellum; clinical trial study

1. Introduction

In a comprehensive definition, developmental dyslexia (DD) refers to slow and inaccurate
word recognition, which causes impairments in learning to read fluently and accurately [1].
However, children with DD have sufficient intelligence, experience conventional classroom
conditions, and access suitable socio-economic opportunities [2]. The prevalence of DD in
elementary school students is considerable (5–17.5%) [3]. Therefore, providing therapeutic
interventions to improve reading ability would be valuable for this population.

In recent decades, numerous studies have been conducted on dyslexia to explain the
symptoms of this condition and find ways to improve reading skills. Individuals with DD
exhibit slower and less accurate motor programming and sensory information processing
due to inefficiencies in error correction (defective motor-perceptual function) [4,5]. They
often struggle with limited motor and balance skills automation, requiring conscious
compensation, which can lead to deficits in reading and other cognitive functions [6,7]. DD
is not just a result of deficient automatization, but rather the automatization of abnormally
developed functional coordination, known as functional coordination deficit [8]. This deficit
in functional coordination between grapheme and phonological letter representations
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is observed in children with DD [9]. The literature highlights the impaired visual and
auditory mechanisms that cause phonological problems in DD [10,11]. Children with
DD have difficulties reading words and nonwords due to impaired sound reception and
discrimination [12] and struggle to distinguish between the visual processing of linguistic
and non-linguistic materials [13]. All these factors disrupt cognitive functions in individuals
with DD, and several studies have acknowledged the existence of issues with cognitive and
high-level cognitive processes [7,14–16]. It is important to note the presence of problems
with executive function(s) (EF) [17–23].

There are many different definitions for EF, but in the most accepted definition, EF is
an umbrella term for a set of complex and high-level cognitive processes, such as attention,
inhibition, flexibility, and working memory (WM) that conduct flexible and goal-directed
behaviors [20]. Over the past decades, the importance of EF for learning to read has
become more obvious. Children with DD exhibit deficits in EF [24] which may persist
into adulthood if left unremedied [23]. One of the basic features of EF is attention [19],
and one type of attention is selective attention which is defined as the cognitive process of
attending to important information (external or internal sensory stimuli) while suppressing
or ignoring other unimportant and distracting stimuli [25]. Although attention disorders in
DD are not as severe as in attention deficit hyperactivity disorder (ADHD), some reports
show deficits of selective attention in DD [15,26]. Inhibition of irrelevant and distracting
information processing seems to be a crucial function of selective attention [27]. Cognitive
inhibition is the basic EF and plays a critical role in preceding the development of other
EFs [28]. Inhibitory control is usually described as the ability to suppress cognitive processes
that can cause interference [28]. Some populations with cognitive deficits are usually
unable to inhibit certain kinds of irrelevant and distracting information [27]. Research has
confirmed the existence of deficits in the inhibitory control of cognition in DD [28–30]. In
children with DD, deficits in cognitive inhibition cause difficulties in word recognition [29].
If a deficient cognitive inhibition ability appears concurrently with WM dysfunction, these
children have more difficulties in word recognition [29].

The limited-capacity system of WM is an EF defined as the ability to temporarily
store, process, maintain, integrate, and manipulate information from various sources [31].
WM is divided into three components: a central executive component, which is a supervi-
sory control system that has limited attentional capacity, and two slave components that
are responsible for phonologically-based information (the phonological loop) and visual
and spatial information (the visuospatial sketchpad) [31]. The phonological loop is also
called verbal WM [31]. A growing body of literature confirms verbal WM dysfunction
in DD [32–34]. The possibility of a deficit in the central executive component of WM in
dyslexia has also been raised [32,33,35]. The connection between the DD and the deficient
visuospatial component of WM is controversial, with evidence either to confirm or ignore
it [33,36]. It seems that if WM capacity does not increase in DD, it could extend into
adulthood and affect performance in all components of the WM [32].

After releasing the double-deficit theory [37], researchers paid more attention to
processing speed, and many studies have shown deficits in information processing speed
in DD [38–41]. Processing speed refers to the number of accurate responses a person can
generate in a task within a given timeframe, utilizing various cognitive functions such
as motor and visual scanning speed [42]. A decrease in information processing speed
could negatively affect other cognitive functions, as processing speed mediates other
cognitive domains such as selective attention [43], WM [44,45], naming speed [41,46,47],
and verbal fluency [43,48]. As mentioned, selective attention and WM are necessary for
learning to read. Moreover, difficulties in naming speed and verbal fluency have been
associated with DD [49–51]. Deficits in precise timing mechanisms could inhibit the ability
of some individuals with DD to conduct rapid naming processing [52]. Since naming
speed is correlated with a range of reading skills, and this deficit might persist into middle
childhood, early intervention could be helpful [49,50,52]. Moreover, improving information
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processing speed in DD is necessary because it may persist into adulthood and negatively
affect other EFs [39].

As DD is a complex and multifactorial condition [53], it has been recommended that
cognitive and motor aspects should be integrated in training individuals with DD. Devel-
oping and employing appropriate interventions to improve reading-related EFs (selective
attention, inhibition, WM, processing speed, naming speed, and verbal fluency) in children
with DD appears necessary [54]. Moreover, balance and postural control difficulties in
dyslexia cannot be overlooked. Sensorimotor and postural training may enhance atten-
tion, coordination, and postural stability by boosting cerebellum activation [55,56]. Among
computer-based training programs evaluated in DD, some positive effects have been shown
on EF [22,57–59]. These training programs were usually single-task; however, it has been
suggested that training by two or more modalities in combination would be more effec-
tive [2,22,60]. Dual-task training protocols can effectively modulate attention, EFs, and
standing postural control in different populations [61–63]. Based on our best knowledge,
the only computer-based dual-task (a mix of cognitive and balance-related performance)
training program, called Verbal Working Memory-BalanceVWM-B, has recently been eval-
uated in DD [2,60]. The positive effects of the VWM-B have been shown on the cognitive
(verbal WM capacity and reading skills) and motor functions of children with DD [2,60].
It is widely admitted that WM plays a crucial role in DD [2,32,34,36]. Furthermore, the
VWM-B program has been shown to improve verbal WM capacity [2,60]. Therefore, it is
reasonable to assume that VWM-B may also improve other EFs related to reading.

The study aimed to evaluate the short-term effects of the dual-task VWM-B program
training on reading-related EFs (selective attention, inhibition, WM, processing speed,
naming ability, and verbal fluency), reading skills, and reading comprehension in Persian
children with DD aged 8 to 10. In essence, the study compared the progress of children with
DD in two groups. One group received a WM battery using the single-task Verbal Working
Memory_VWM program (active control group). In contrast, the other group received the
same WM battery under dual-task balance conditions (experimental group). The study
discussed the potential effects of the VWM-B program on reading-related EFs, reading
skills, and reading comprehension using various behavioral outcome measures.

2. Materials and Methods
2.1. Subjects and Design

This study is a quasi-double-blind randomized clinical trial that includes both between-
subjects and within-subjects factors. The between-subjects factor consisted of two groups,
an active control group and an experimental group, while the within-subjects factor in-
cluded two rounds of measurements conducted before and after the intervention. The
data for the study were collected from children with previously diagnosed DD who were
between 8 to 10 years old and attending public elementary school in the second to fourth
grades, and this was completed at the Dyslexia Rehabilitation Center in District 20 Ed-
ucation Office, Tehran, Iran. As shown in Figure 1, a total of 30 children with DD who
met the inclusion criteria participated in before-intervention assessments. After the in-
tervention, however, data from 27 children with DD, with an approximate dropout rate
of 10%, were analyzed. All 27 children were assigned to either the active control group
or the experimental group, with the active control group consisting of 12 children with
DD and the experimental group containing 15 children with DD. The study sample size
was consistent with past comparable studies [2,60]. A post-hoc power analysis was also
conducted to show the power of the current study sample size. The analysis indicated that,
with a significance level of 0.05, the total sample size of the current study (N = 27) had 80%
power, which is sufficient for the study’s purposes. Figure 1 illustrates the recruitment
process for the study samples.
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Figure 1. Illustration of the participants’ recruitment procedure.

As shown in Figure 1, all participants (N = 30) were allocated into two equal groups by
a block randomization method using Excel (2013) software [64]. First, we wrote participants’
names on separate pieces of paper and placed them in a bag. The papers were drawn
randomly to assign each person a number from 1 to 30, which was then encoded in a column
in Excel. Next, we divided participants into five blocks of six people. The first six people
were numbered by block 1, the second six by block 2, and so on, with the last six numbered
by block 5. Then Excel’s Randbetween function was used to randomly divide each block into
three participants for the control group and three for the experimental group. We repeated
this process for all five blocks, resulting in 15 participants in each group.
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The study groups were homogenized for possible confounders of age, gender, intelli-
gence quotient (IQ), and attention level. To estimate IQ levels, the Wechsler Intelligence
Scale for Children Fourth Edition (WISC-IV) was used in the preliminary screening step [65].
The attention level was estimated using the Persian version of the Child Symptoms Inven-
tory Parent Checklist (CSI-4) items 1 to 18 out of 97 [66]. All participants were children
previously diagnosed with DD, but additional assessments were conducted to confirm the
diagnosis. For this, the word reading efficiency subtest (WRT) and the non-word reading
efficiency subtest (NWRT) of the Persian battery of reading tests—NEMA—were used [67].
Children were diagnosed with DD if their WRT and NWRT scores were 25% or less of
the total scores [2,67]. The baseline scores of the clinical measures were collected in the
before-intervention step. The WRT and NWRT scores obtained in the screening step were
used as the before-intervention scores for children recruited for the study [2]. Both groups
underwent the intervention step, which consisted of fifteen sessions in five weeks, three
days per week, one session per day, and 45 to 60 min per session. The active control group
received training through the single-task VWM program, while the experimental group
received training through the dual-task VWM-B program. Finally, after-intervention assess-
ments were conducted with a mean (SD) of 43 (6.94) days between the before-intervention
and after-intervention assessments.

Participants were included based on the following criteria: normal IQ level (WISC-IV
total score ≥ 85), normal attention level (CSI-4 1–18 items total score ≤ 6), normal or
corrected vision and hearing conditions, native-Persian language, right-handedness (tested
by Edinburgh handedness inventory), and average socio-economic status (reported by
the families) [2,60,68]. Individuals with a history of neurological or psychiatric disorders
and those using drugs that affect the central nervous system were excluded. Data from
participants who did not attend at least 75% of the entire intervention sessions (i.e., 12 out
of 15) as well as those who did not participate in the after-intervention assessments were
excluded from the analysis [2,60].

In the current study, the participants and an evaluator of the before and after-intervention
assessments were blinded to the group allocation. The evaluator was an independent
individual not part of the research team. Despite blinding the participants, they may have
noticed differences between the training programs, which could have led them to identify
which type of training they received. Therefore, the study design could be considered
quasi-double-blind [2,60].

2.2. Study Measures

The study utilized a variety of questionnaires to measure various variables, including
reading skills, comprehension, and reading-related EFs, such as selective attention, WM
capacity, inhibition, information processing speed, naming ability, and verbal fluency
(lexical access). The questionnaires used in the study included the WISC-IV, CSI-4, NEMA
reading subtests, the Edinburgh handedness inventory, the backward digit span (BDS), the
trail-making test part A (TMT-A), phonemic and semantic verbal fluency tests (PVFT and
SVFT), a text comprehension test (TCT), and Stroop subtests.

To ensure that the participants met the inclusion criteria, some of these questionnaires
were used in the preliminary screening step of the study. The WISC-IV, CSI-4, two subtests
of the NEMA (WRT and NWRT), and the Edinburgh handedness inventory were all
validated scales used in the screening process. The total score of the WISC-IV was calculated
to estimate the participants’ IQ level [65], and children with a score of <85 were excluded
from the study since mental disabilities can lead to learning disabilities [2,69]. The parent
checklist of the CSI-4 was used to estimate the participants’ attention level [66], and children
with total scores of ≥7 were excluded from the study since DD has comorbidity with
ADHD [60,70]. The WRT and NWRT subtests of the NEMA were used to verify the existence
of DD in the recruited participants since the ability to read words and nonwords is crucial in
diagnosing DD for those following the phonological deficit theory [2,71]. The data obtained
for the WRT and NWRT subtests of the NEMA in the screening measurements were used
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as the before-intervention score for recruited participants. The Edinburgh handedness
inventory was also utilized to verify right-handedness in the recruited participants [68].

In addition to the WRT and NWRT, the chain word (CWT) and phoneme deletion (PDT)
subtests of the NEMA were used to assess the changes in participants’ reading skills in both
groups before and after the intervention. The BDS, which involves the phonological loop
and the central executive system in Baddeley’s WM model, was used to assess the changes
in the verbal WM capacity and central executive before and after the intervention [31,72,73].
TMT-A was utilized to show the changes in cognitive and visuomotor processing speed
before and after the intervention [74,75]. Additionally, PVFT and SVFT were employed to
assess the change in different aspects of the verbal fluency function, including phonemic
and semantic fluency, before and after the intervention. Verbal fluency is known as an
EF that usually requires cognitive functions such as inhibition, vocabulary size, lexical
access speed, and WM [76–78]. However, in the present study, any alteration to the lexical
access speed was estimated and interpreted by PVFT [79]. TCT was used to measure the
changes in reading comprehension before and after the intervention. Previous studies
have indicated the association of reading comprehension with WM, cognitive inhibition,
and processing speed [17,21,80–82]. The Stroop test was used to measure processing
speed, selective attention, inhibition, and naming ability [2,60,83,84]. It includes three color
naming, word naming, and color–word components [2]. Participants were required to
name the color of all 176 bars in the Stroop color naming subtest (SCT). All the bars were
colored red, blue, green, or yellow. In the Stroop word naming subtest (SWT), participants
read 176 terms printed in different colors and skipped the color of the words. In the Stroop
color–word subtest (SCWT), they named the color of 176 words presented in the SWT by
ignoring their printed form. The Stroop color–word interference (SCWI) was calculated for
each participant as the time of the SCWT minus the time of the SWT [2].

2.3. Training Programs

As stated, the study groups received five weeks of training for 15 sessions. Partici-
pants in the active control group received single-task training through the VWM program.
Participants in the experimental group received cognitive–motor dual-task training via
the VWM-B program. The core structure of the WM task in both the VWM and VWM-B
programs was designed with inspiration from Baddeley’s WM model [2,31]. The WM
task of these programs included the encoding, maintenance, and retrieval sub-processes
of verbal WM [31]. The VWM program, as a single-task program, is structurally designed
to improve verbal WM capacity; however, the VWM-B program, as a dual-task program,
is structurally designed to train verbal WM and balance movements concurrently [2]. In
other words, the main structural difference between these programs is the balance task
that the VWM-B has mixed into the maintenance and retrieval subprocesses of the VWM
program [2]. The VWM training was performed by software that runs via a computerized
19-inch touch-screen monitor and a speaker to recite the words [60]. For VWM program
training, the subject sat on a chair in a comfortable state, arms on the table [60]. The
VWM-B program software runs using a portable robotic device [2]. As with the VWM
program, the software of the VWM-B runs using a computerized 19-inch touch-screen
monitor and a speaker to recite the words. In addition, the robotic device consists of a
programmed platform [2]. The platform was programmed to carry out any desired tilting
motion. Tilting motions made in a range of 0–20◦ in both mediolateral and anteroposterior
or in a combination of both [2]. A force plate (sampling frequency of 100 Hz and accuracy
of ±0.4 mm) on top of the platform shows the participant’s center of pressure (CoP) status
on the monitor [2]. When training with the VWM-B, the participant stands on the platform,
feet on the force plate with an approximate 10 cm distance between the feet, and watches
the monitor with an approximate 50 cm distance at eye level [2]. It is important to note
that calibration of the CoP amplitude (for the limit of stability of each participant) was
conducted for safety [85]. The training phase began after the participants received clear
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instructions. For more details about the VWM and VWM-B programs, see Ramezani et al.,
2021 [2].

In both the VWM and VWM-B programs, a training trial launches after touching the
start button on the monitor. Following a three-second delay, the monitor displays the
encoding sub-process of WM for ten seconds in the form of a target box. The target box
contains a statement, a series of words, or a single word. Simultaneously, the pre-recorded
voice recites the content of the target box. In the maintenance sub-process of WM in
the VWM program, the content of the target box appears on the monitor for ten seconds
through the separated component boxes.

The VWM and VWM-B programs differ in their maintenance and retrieval sub-
processes of WM. Unlike the VWM program, the VWM-B includes an additional balance
task that makes it dual-tasking. In the maintenance step of the VWM-B program, the
monitor displays a red circle (CoP marker) and a box as a start position box. This step of
the VWM-B consists of two balance forms: active and passive states. In the passive state of
balance, the CoP marker and the platform underneath the participant’s feet concurrently
move from the start box to each component box at the same speed and direction. After
a ten-second pause, the CoP marker and platform return to the start position and the
procedure repeats for all components in the correct order. In the active state, the partici-
pant actively moves the CoP marker from the start box to each component box (and vice
versa) in the correct order, and the platform underneath the participant’s feet has no tilting
motion (fixed). In the passive state, the participant has ten seconds to read the content of
each component box when the CoP marker hits a component box. In the active state, the
participant has free time to read the content of each component box when the CoP marker
hits a component box.

Ultimately, in the retrieving step of both programs, twice as many boxes, including
the new and practiced content, are shown on the monitor for ten seconds. In the VWM
program, the user touches the box on the monitor to accept or reject the target. However, in
the VWM-B program, the user has to move the CoP marker to select the correct target.

2.4. Analysis

The study employed a range of statistical analyses to investigate the group differences
at baseline scores. The normal distribution of the variables was calculated using the
Shapiro–Wilk test, and based on the distribution of the numerical variables, normal or
non-normal, the t-test, Mann–Whitney U-test, and Wilcoxon test were used. Additionally,
the group differences in categorical data were estimated using the Chi-square test with
α = 0.05. Qualitative variables were reported in terms of absolute frequency (%), while
quantitative variables were reported as the mean (SD).

When study groups receive an intervention, the mixed between–within ANOVA
is used to verify the intervention effects over time [86], as was the case in this study.
The mixed ANOVA time×group interactions (p < 0.05) and the effect sizes (partial eta
squared ηp2) were reported. The effects of training programs on scores in the BDS, TMT-A,
TCT, PVFT, SVFT, Stroop subtests, and the NEMA reading subtests were estimated using
separate ANOVA analyses. An ηp2 of <0.2 shows a small effect size, 0.2 to 0.49 a medium
effect size, and ≥0.5 a large effect size [87]. Post hoc tests were used to uncover specific
differences between three or more group means when an ANOVA F test is significant [88].
Since the present study included two groups, the mean (SD) scores of all measures at
measurements before and after the intervention were reported to show the direction of
outcomes. The gain scores of the entire sample, the difference between scores in the
before- and after-intervention assessments, were calculated for all the measured functions.
Pearson’s correlations were then reported to explore relationships between the measured
reading skills and EFs, between the measured EFs, and between the measured reading
skills. Coefficient values of 0.00 to 0.34, 0.35 to 0.50, and 0.50 to 1.0 were interpreted as
weak, moderate, and strong correlations, respectively [85,89].
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Data analysis was conducted using SPSS 22, while Gpower 3.1 software was utilized
to analyze the sample size power of the current study [90,91].

3. Results

The active control group consisted of 12 children with DD with a mean age of 9 years
(SD = 0.90), while the experimental group included 15 children with DD with a mean age
of 8 years (SD = 0.74). The age difference between the groups was not significant (p > 0.05).
Moreover, both groups were homogenized for other possible confounding variables such
as gender, IQ level, and attention level (p > 0.05). More detailed demographic information
on both groups is shown in Table 1.

Table 1. Demographic characteristics.

Demography Control
(n = 12)

Experiment
(n = 15)

Total
(N = 27)

Group Differences
(p-Value)

Mean (SD)

Age (y) 9 (0.90) 8 (0.74) 9 (0.86) u = 55.50 (0.065)
IQ (WISC-IV total score) 95 (6.89) 94 (7.99) 95 (1.42) u = 82.00 (0.69)

Attention (CSI-4, total scores of 1 to 18 items) 5 (1.78) 3 (2.46) 4 (2.27) u = 61.00 (0.146)

Frequency (%)

Gender
Boy 4 (33.3) 3 (20.0) 7 (25.9)

χ2 = 0.617 (0.432)Girl 8 (66.7) 12 (80.0) 20 (74.1)

Disability

Reading 3 (25.0) 2 (13.3) 5 (18.5)

χ2 = 4.78 (0.188)
Reading and writing 4 (33.3) 10 (66.7) 14 (51.9)
Reading and math 0 (0) 1 (6.7) 1 (3.7)

Reading, writing, and math 5 (41.7) 2 (13.3) 7 (25.9)

School grade
Second 4 (33.3) 11 (73.3) 15 (55.6)

χ2 = 4.47 (0.107)Third 3 (25.0) 2 (13.3) 5 (18.5)
Fourth 5 (41.7) 2 (13.3) 7 (25.9)

Eyes condition Normal 11 (91.7) 13 (86.7) 24 (88.9)
χ2 = 0.169 (0.681)Corrected 1 (8.3) 2 (13.3) 3 (11.1)

Ears condition
Normal 12 (100) 14 (93.3) 26 (96.3)

χ2 = 0.831 (0.362)Corrected 0 (0) 1 (6.7) 1 (3.7)

Note: No significant differences were found in terms of demographic data between children with dyslexia in the
control and experiment groups. Abbreviations: IQ, intelligence quotient; WISC-IV, Wechsler intelligence scale for
children—fourth edition; CSI-4, child symptoms inventory-4, total scores from items 1 to 18 of the parent checklist.

The baseline scores of the clinical measures and the changes in the scores after the
intervention in the control and experimental groups are presented in Figures 2–5. The
groups had no differences in the baseline scores of the measured functions (p > 0.05).
Figure 2a–c shows the changes in BDS, TMT-A, and TCT scores in both groups after the
intervention. In Figure 3a,b, see the before- and after-intervention scores of the PVFT
and SVFT in the control and experimental groups. Additionally, Figure 4a–d displays the
baseline and after-intervention scores of the Stroop subtests (SCT, SWT, SCWT, and SCWI)
for both groups, while Figure 5a–d shows the before- and after-intervention scores of the
NEMA reading subtests (WRT, NWRT, CWT, and PDT) for both groups.

The study utilized separate mixed ANOVA analyses to estimate the impact of two
training programs on various functions, including the BDS, TMT-A, TCT, PVFT, SVFT,
Stroop subtests, and NEMA subtests. The analysis revealed that the ‘time’ main effect was
significant for all outcome measures except the SCT. This suggests that the intervention had
an impact on the scores regardless of the group allocation. However, the ‘group’ main effect
was not significant for all outcome measures except the WRT, indicating that the scores of
these measures did not change significantly across groups, regardless of the time effect.



Brain Sci. 2024, 14, 127 9 of 22

Brain Sci. 2024, 14, x FOR PEER REVIEW  9  of  22 
 

 

Figure 2. Clinical outcome measures (mean ± SD) for the control and experimental groups before 

and after  the  intervention.  (a) The backward digit span was used  to estimate  the changes  in  the 

verbal working memory capacity and central executive function; (b) the trail-making test part A was 

used to indicate the changes in cognitive and visuomotor processing speed; and (c) the text compre-

hension test was used to demonstrate the change in the reading comprehension. The control and 

experimental groups had no significant differences in their baseline scores. 

Figure 2. Clinical outcome measures (mean ± SD) for the control and experimental groups before
and after the intervention. (a) The backward digit span was used to estimate the changes in the verbal
working memory capacity and central executive function; (b) the trail-making test part A was used to
indicate the changes in cognitive and visuomotor processing speed; and (c) the text comprehension
test was used to demonstrate the change in the reading comprehension. The control and experimental
groups had no significant differences in their baseline scores.
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Figure 3. Verbal fluency outcomes (mean ± SD) for the control and experimental groups before and
after the intervention. The verbal fluency test was used to estimate the changes in lexical access speed
and working memory. (a) The phonemic verbal fluency test is designed to estimate the changes in
lexical access speed; (b) the semantic verbal fluency test is designed to indicate the changes in the
verbal working memory capacity. The control and experimental groups had no significant differences
in their baseline scores.

Furthermore, the time×group interaction was significant for the outcome measures of
BDS, TCT, PVFT, SCWT, SCWI, and all the NEMA subtests (WRT, NWRT, CWT, and PDT).
These results indicate that there were significant differences over time between the two
groups’ scores for the mentioned measures. In other words, both the VWM and VWM-B
programs were effective in improving the functions mentioned earlier after the intervention.
However, the VWM-B program was significantly more effective than the VWM program
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based on the mean (SD) results in Figures 2–5. For details, see Table 2, which presents the
mixed ANOVA outcomes.
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Figure 4. The Stroop test outcomes (mean ± SD) for the control and experimental groups before and
after the intervention. (a) The Stroop color test was used to estimate the changes in color naming
ability. (b) The Stroop word test was used to estimate the changes in word naming ability. (c) The
Stroop color–word test, and (d) the Stroop interference was used to estimate the changes in processing
speed, selective attention, inhibition, and naming ability. The control and experimental groups had
no significant differences in their baseline scores.

Table 2. The mixed ANOVA analyses outcomes (N = 27).

Outcomes
Time Effects Group Effects Time × Group Interaction

f (1–25) p-Value f (1-25) p-Value f (1-25) p-Value Effect Size ηp
2

BDS 17.36 <0.001 1.90 0.180 9.25 0.005 0.27
TMT-A 21.43 <0.001 0.54 0.470 1.51 0.231 0.06

TCT 157.55 <0.001 1.81 0.191 14.40 0.001 0.37
PVFT 10.13 0.004 0.55 0.466 5.02 0.034 0.18
SVFT 18.07 <0.001 0.61 0.443 3.00 0.096 0.11
SCT 1.15 0.229 3.22 0.085 1.26 0.273 0.05
SWT 16.67 <0.001 0.08 0.785 0.00 0.991 0.00

SCWT 17.70 <0.001 1.20 0.283 9.15 0.006 0.27
SCWI 4.16 0.052 2.52 0.125 10.42 0.003 0.29
WRT 36.92 <0.001 6.04 0.021 5.11 0.033 0.17

NWRT 26.57 <0.001 1.28 0.268 8.76 0.007 0.26
CWT 52.85 <0.001 0.99 0.328 12.90 0.002 0.33
PDT 54.50 <0.001 3.25 0.083 12.82 0.001 0.34

Note: Bolded values indicate statistically significant p-values (p < 0.05). Abbreviations: BDS, backward digit
span; TMT-A, trail-making test part A; TCT, text comprehension test; PVFT, phonemic verbal fluency test; SVFT,
semantic verbal fluency test; SCT, Stroop color test; SWT, Stroop word test; SCWT, Stroop color–word test; SCWI,
Stroop color–word interference; WRT, word reading test; NWRT, nonword reading test; CWT, chains word test;
PDT, phoneme deletion test.
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Figure 5. The NEMA reading subtests outcomes (mean ± SD) for the control and experimental groups
before and after the intervention. (a) The word reading test was used to estimate the changes in
word-reading accuracy and orthography. (b) The non-word reading test was used to estimate the
changes in decoding accuracy. (c) The word chain test was used to estimate the changes in word
recognition ability, and (d) the phoneme deletion test was used to estimate the changes in phonemic
awareness. The control and experimental groups had no significant differences in their baseline scores.

Pearson’s correlation coefficients of the entire sample are reported in Tables 3–5. Table 3
shows Pearson’s correlation results between the NEMA reading subtests and the measured
EFs. Positive correlations were observed between reading skills and EFs as measured by
PVFT, TCT, BDS, and SVFT (p < 0.05). However, significant negative correlations were
found between the reading skills and Stroop subtest tests (SCWI and SCWT) (p < 0.05).
Notably, there was no significant correlation between reading skills and TMT-A (p > 0.05).

Table 3. Pearson’s correlation between the reading skills and executive functions r (p-value).

Outcomes WRT NWRT CWT PDT

BDS 0.30 (0.129) 0.31 (0.115) 0.21 (0.304) 0.56 ** (0.002)
TMT-A 0.23 (0.242) 0.30 (0.130) 0.09 (0.650) 0.11 (0.575)

TCT 0.37 (0.057) 0.42 * (0.029) 0.63 ** (<0.001) 0.47 * (0.015)
PVFT 0.55 ** (0.003) 0.12 (0.552) 0.65 ** (<0.001) 0.51 ** (0.007)
SVFT 0.48 * (0.011) 0.17 (0.394) 0.39 * (0.042) 0.25 (0.208)
SCT −0.03 (0.865) 0.11 (0.585) −0.10 (0.639) −0.01 (0.965)
SWT 0.25 (0.218) 0.11 (0.568) 0.21 (0.290) −0.07 (0.721)

SCWT −0.15 (0.467) −0.07 (0.733) −0.40 * (0.037) −0.28 (0.159)
SCWI −0.28 (0.164) −0.13 (0.520) −0.53 ** (0.005) −0.26 (0.199)

Note: Bolded values indicate statistically significant p-values (p < 0.05). * Correlation is significant at the 0.05 level
(2-tailed). ** Correlation is significant at the 0.01 level (2-tailed). Abbreviations: WRT, word reading test; NWRT,
nonword reading test; CWT, chains word test; PDT, phoneme deletion test; BDS, backward digit span; TMT-A,
trail-making test part A; TCT, text comprehension test; PVFT, phonemic verbal fluency test; SVFT, semantic
verbal fluency test; SCT, Stroop color test; SWT, Stroop word test; SCWT, Stroop color–word test; SCWI, Stroop
color–word interference.
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Furthermore, additional Pearson’s correlation analyses were conducted to investigate
the associations between measured EFs, including BDS, TMT-A, TCT, PVFT, SVFT, SCT,
SWT, SCWT, and SCWI. As shown in Table 4, Stroop tests had significant correlations with
SVFT and TCT (p < 0.05). Also, TCT was correlated with BDS. BDS was correlated with
PVFT (p < 0.05). Table 4 displays significant correlations among Stroop tests (SCWT with
SCWI and SCT; SCT with SWT) (p < 0.05).

Table 4. Pearson’s correlation between the outcomes of executive functions r (p-value).

Outcomes TMT-A TCT PVFT SVFT SCT SWT SCWT SCWI

BDS 0.23 (0.241) 0.42 * (0.030) 0.39 * (0.046) 0.30 (0.124) 0.30 (0.882) 0.02 (0.941) −0.24 (0.235) −0.25 (0.200)
TMT-A - 0.33 (0.241) 0.18 (0.367) 0.23 (0.243) 0.02 (0.894) 0.20 (0.307) 0.16 (0.423) 0.07 (0.745)

TCT - - 0.36 (0.062) 0.26 (0.183) −0.08 (0.697) −0.02 (0.916) −0.49 * (0.010) 0.50 * (0.008)
PVFT - - - 0.28 (0.157) 0.00 (0.985) 0.29 (0.149) −0.02 (0.907) −0.17 (0.403)
SVFT - - - - −0.10 (0.604) 0.21 (0.292) −0.39 * (0.049) 0.51 ** (0.007)
SCT - - - - - 0.70 ** (<0.001) 0.54 ** (0.004) 0.21 (0.289)
SWT - - - - - - 0.33 (0.095) −0.16 (0.430)

SCWT - - - - - - - 0.88 ** (<0.001)

Note: Bolded values indicate statistically significant p-values (p < 0.05). * Correlation is significant at the 0.05 level
(2-tailed). ** Correlation is significant at the 0.01 level (2-tailed). Abbreviations: TMT-A, trail-making test part A;
TCT, text comprehension test; PVFT, phonemic verbal fluency test; SVFT, semantic verbal fluency test; SCT, Stroop
color test; SWT, Stroop word test; SCWT, Stroop color–word test; SCWI, Stroop color–word interference; BDS,
backward digit span.

Finally, Pearson’s correlation analyses were conducted to show the associations be-
tween different NEMA reading subtests. Table 5 presents the results and highlights the
statistically significant correlations among the subtests. Specifically, WRT showed signifi-
cant correlations with NWRT, CWT, and PDT. NWRT showed a significant correlation with
CWT. Similarly, PDT showed a significant correlation with CWT (p < 0.05).

Table 5. Pearson’s correlation between the measured reading skills r (p-value).

Outcomes NWRT CWT PDT

WRT 0.39 * (0.048) 0.72 ** (<0.001) 0.46 * (0.017)
NWRT - 0.45 * (0.018) 0.34 (0.086)
CWT - - 0.44 * (0.021)

Note: Bolded values indicate statistically significant p-values (p < 0.05). * Correlation is significant at the 0.05 level
(2-tailed). ** Correlation is significant at the 0.01 level (2-tailed). Abbreviations: NWRT, nonword reading test;
CWT, chains word test; PDT, phoneme deletion test; WRT, word reading test.

4. Discussion

The study aimed to evaluate the effectiveness of the dual-task VWM-B program
training on reading-related EFs, reading skills, and reading comprehension. The VWM-B
program was more effective than the VWM program in improving selective attention,
cognitive inhibition, verbal WM capacity, information processing speed, naming ability,
and lexical access, as evident by higher improvement in the scores obtained from BDS, TCT,
PVFT, SCWI, SCWT, and all reading subtests of the NEMA (WRT, NWRT, CWT, and PDT).
Additionally, the VWM-B program was found to be more efficient in enhancing measured
reading skills, and the improved EFs were associated with improved reading skills. The
study authors provided a comprehensive discussion of these findings.

The results revealed that the VWM-B is more effective than the VWM in boosting the
scores on BDS, a valid scale for estimating the changes in the verbal WM capacity [92].
According to Baddeley’s WM model, the storage demands for a complex memory task like
BDS are based on the efficient processing of phonological information, which is primarily
facilitated by the central executive [31]. Therefore, BDS involves both the central executive and
the phonological loop, thereby allowing for the interpretation of BDS results as a reflection
of the central executive function [31,72]. If there is progress in BDS scores, it can be defined
as improved cognitive inhibition, as the central executive component may be involved in
inhibitory function [93]. Moreover, an increased WM capacity has been suggested to reflect
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improvements in processing speed and efficiency, which releases more resources to support
storage [94]. Therefore, increased BDS scores may imply changes in cognitive inhibition,
processing speed, and verbal WM capacity, which we will discuss further.

The link between reading disability and verbal WM dysfunction has been estab-
lished [95]. An improved verbal WM capacity can lead to better reading skills [2,60,95].
Developing phonological awareness and reading ability relies on verbal WM capacity, and
both verbal WM and phonological awareness are crucial for early literacy acquisition [95].
It has been suggested that both verbal WM and phonological awareness reflect a common
phonological processing substrate [96]. In line with this, a positive correlation was dis-
covered between increased verbal WM and enhanced phonemic awareness, tested by the
phoneme deletion subtest of the NEMA.

As mentioned, the increased BDS scores may be interpreted as an improvement in
cognitive inhibition and processing speed. Recent research has shown the correlation of
WM with Stroop subtests (SCWT and SCWI) [97]. In many studies in different populations,
the Stroop test was used to assess processing speed, cognitive inhibition, selective attention,
and naming speed [2,60,98–100]. In the present study, improvement in these EFs was
observed through changes in the SCWT and SCWI scores. Although other tests used in the
present study (fluency test and TMT-A) have proven to be useful in evaluating processing
speed, no significant change in TMT-A scores was observed after the intervention [98]. The
results of Stroop tests support improvements in processing speed and inhibition, which
have also been supported in previous studies [2,84,98,101]. Furthermore, the Stroop sup-
ports enhancements in selective attention and naming ability [2,60]. Overall, the significant
change in Stroop variables in the present study could imply potential enhancements in
processing speed, cognitive inhibition, selective attention, and naming ability. By support-
ing our findings, significant correlations were identified between Stroop SCWT and SCWI
variables and the WCT subtest of the NEMA, indicating that these EFs were associated
with an improvement in word recognition.

The study reveals a correlation between Stroop variables and TCT outcomes. The im-
provement in TCT scores suggests an improvement in reading comprehension. Processing
speed and cognitive inhibition are critical for sufficient reading comprehension [102–105].
It is well established in the literature that text comprehension is linked to verbal WM func-
tion [106], and the current study found a correlation between TCT (text comprehension)
and BDS (verbal WM). Previous research has demonstrated that dual-task cognitive–motor
training can improve reading comprehension and reading skills [2,60], and our results
align with that. The improved reading comprehension was strongly associated with word
recognition (WCT) and was moderately associated with phonemic awareness (PDT) and
decoding accuracy (NWRT).

According to the ANOVA results, the VWM-B led to a significant improvement in
the PVFT scores. The improved phonemic verbal fluency showed a strong correlation
with reading accuracy (WRT), word recognition (WCT), and phonemic awareness (PDT).
Moreover, a moderate correlation was found between phonemic verbal fluency and verbal
WM, which is supported by evidence [107]. Verbal fluency is a type of EF typically encom-
passing two categories: phonemic and semantic fluency [76,77]. Improved verbal fluency
has been associated with an increased vocabulary size, faster lexical access, and cognitive
inhibition [77]. Phonemic verbal fluency is particularly linked to the lexical access speed,
which indicates an enhancement in processing speed [77]. Lexical access ability refers to
the ability to retrieve the sound forms of words and grammatical representations from the
mental lexicon [108].

Although it has been observed in several studies that dual-task trainings have benefits
in various populations [109–111], the VWM-B program is the only dual-task program
evaluated for individuals with DD [2,60]. This program is unique because it combines
the maintenance sub-process of WM with balance-related complex movements [2]. The
maintenance sub-process of the WM in the VWM-B program is performed within two states
of balance—active and passive [2]. In the passive state, the cognitive task is prioritized,
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while in the active state, balance takes priority [2]. During dual tasks, the nervous system
allocates more cognitive and attentional resources to the prioritized task, and the non-
priority task receives less cognitive and attentional resources, leading to a decrease in
performance [112]. The VWM-B program addresses both cognitive and balance disabilities
of individuals with DD. Therefore, it provides sufficient opportunities for both cognitive
and motor functions to be considered as a prioritized task and allows for further cognitive
and attentional resource allocation in the nervous system [2]. Based on the automatization
theory in DD, after several training sessions with the VWM-B program, balance-related
movements would become automatized, leading to further resource allocation to the
cognitive task [2,113]. Each prioritized cognitive and motor task in the VWM-B can lead to
increased activation of specific cerebral or cerebellar regions. According to recent studies,
the VWM-B program activates critical cerebral (the left fusiform gyrus) and cerebellar
(Crus II) regions [2,60] which are essential for various reading skills [60,114–121]. Future
studies can explore the possible association between the activation of cerebral and cerebellar
regions induced by the VWM-B program and reading-related EFs.

In conclusion, the results support the hypothesis that the dual-task VWM-B program,
compared to the single-task VWM program, can better enhance measured EFs related to
reading, including selective attention, cognitive inhibition, verbal WM, processing speed,
naming ability, and ability to lexical access in children with DD. These measured EFs are
associated with improved reading skills and comprehension. It is important to note that
phonemic awareness and decoding skills play a crucial role in word recognition [122–124].
It appears that VWM-B training boosts word recognition by promoting phonemic awareness
and decoding skills. Consequently, improved word recognition leads to better reading
ability. Previous reports have been supported by the current study’s findings, which show
positive effects of the VWM-B on reading ability.

5. Limitations

In metropolitan regions like Tehran, the quality of educational services can vary be-
tween districts, even among different communities and countries [2]. It is important to
evaluate and compare the effectiveness of the VWM-B on different functions in various
communities and countries while considering the possible confounding effects of partic-
ipants’ socioeconomic status [2]. On the other hand, using a large sample size would
improve the statistical power of a study and can help in generalizing the results [60,86].
Although studies have shown positive effects of the VWM-B on various functions, these
effects have only been reported in the short term [2,60]. Therefore, it is crucial to follow up
on the long-term effectiveness of the VWM-B in the future. Thank you to an anonymous
reviewer for suggesting the investigation of potential efficacy differences between the active
and passive states of balance tasks in the VWM-B program, which could be considered for
future research.
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Section/Topic Item No Checklist Item
Reported

on Page No

Title and abstract
1a Identification as a randomized trial in the title 1

1b
Structured summary of trial design, methods, results, and

conclusions (for specific guidance see CONSORT for abstracts)
1

Introduction

Background and objectives
2a Scientific background and explanation of rationale 1–3

2b Specific objectives or hypotheses 3

Methods

Trial design
3a

Description of trial design (such as parallel, factorial) including
allocation ratio

3–4

3b
Important changes to methods after trial commencement (such as

eligibility criteria), with reasons
N/A

Participants 4a Eligibility criteria for participants 4

4b Settings and locations where the data were collected 3

Interventions 5
The interventions for each group with sufficient details to allow

replication, including how and when they were actually
administered

5–6

Outcomes
6a

Completely defined pre-specified primary and secondary outcome
measures, including how and when they were assessed

4–5

6b
Any changes to trial outcomes after the trial commenced, with

reasons
N/A

Sample size
7a How sample size was determined 3

7b
When applicable, explanation of any interim analyses and stopping

guidelines
N/A

Randomization:

Sequence generation 8a Method used to generate the random allocation sequence 4

8b
Type of randomization; details of any restriction (such as blocking

and block size)
4

Allocation concealment
mechanism

9
Mechanism used to implement the random allocation sequence

(such as sequentially numbered containers), describing any steps
taken to conceal the sequence until interventions were assigned

3–4
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Section/Topic Item No Checklist Item
Reported

on Page No

Implementation 10
Who generated the random allocation sequence, who enrolled
participants, and who assigned participants to interventions

4

Blinding
11a

If done, who was blinded after assignment to interventions (for
example, participants, care providers, those assessing outcomes)

and how
4

11b If relevant, description of the similarity of interventions 5–6

Statistical methods
12a

Statistical methods used to compare groups for primary and
secondary outcomes

6–7

12b
Methods for additional analyses, such as subgroup analyses and

adjusted analyses
6–7

Results

Participant flow (a diagram is
strongly recommended)

13a
For each group, the numbers of participants who were randomly
assigned, received intended treatment, and were analyzed for the

primary outcome
Figure 1

13b
For each group, losses and exclusions after randomization, together

with reasons
Figure 1

Recruitment
14a Dates defining the periods of recruitment and follow-up N/A

14b Why the trial ended or was stopped N/A

Baseline data 15
A table showing baseline demographic and clinical characteristics

for each group
Table 1

Numbers analyzed 16
For each group, number of participants (denominator) included in
each analysis and whether the analysis was by original assigned

groups
Figure 1

Outcomes and estimation
17a

For each primary and secondary outcome, results for each group,
and the estimated effect size and its precision (such as 95%

confidence interval)

Figures 2–5
Table 2

17b
For binary outcomes, presentation of both absolute and relative

effect sizes is recommended
Table 2

Ancillary analyses 18
Results of any other analyses performed, including subgroup

analyses and adjusted analyses, distinguishing pre-specified from
exploratory

N/A

Harms 19
All important harms or unintended effects in each group (for

specific guidance see CONSORT for harms)
N/A

Discussion

Limitations 20
Trial limitations, addressing sources of potential bias, imprecision,

and, if relevant, multiplicity of analyses
13

Generalizability 21 Generalizability (external validity, applicability) of the trial findings 13

Interpretation 22
Interpretation consistent with results, balancing benefits and harms,

and considering other relevant evidence
7–13

Other information
Registration 23 Registration number and name of trial registry 13

Protocol 24 Where the full trial protocol can be accessed, if available 13

Funding 25
Sources of funding and other support (such as supply of drugs),

role of funders
13
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