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Abstract: The hippocampus is known to play an important role in memory by processing spatiotem-
poral information of episodic experiences. By recording synchronized multiple-unit firing events
(ripple firings with 300 Hz–10 kHz) of hippocampal CA1 neurons in freely moving rats, we previously
found an episode-dependent diversity in the waveform of ripple firings. In the present study, we
hypothesized that changes in the diversity would depend on the type of episode experienced. If this
hypothesis holds, we can identify the ripple waveforms associated with each episode. Thus, we first
attempted to classify the ripple firings measured from rats into five categories: those experiencing
any of the four episodes and those before experiencing any of the four episodes. In this paper, we
construct a convolutional neural network (CNN) to classify the current stocks of ripple firings into
these five categories and demonstrate that the CNN can successfully classify the ripple firings. We
subsequently indicate partial ripple waveforms that the CNN focuses on for classification by applying
gradient-weighted class activation mapping (Grad-CAM) to the CNN. The method of t-distributed
stochastic neighbor embedding (t-SNE) maps ripple waveforms into a two-dimensional feature space.
Analyzing the distribution of partial waveforms extracted by Grad-CAM in a t-SNE feature space
suggests that the partial waveforms may be representative of each category.

Keywords: ripple firings; episodic experience; classification; convolutional neural network; gradient-
weighted class activation mapping (Grad-CAM); t-distributed stochastic neighbor embedding (t-SNE)

1. Introduction

The hippocampus plays a pivotal role in the formation of new episodic memories
across various mammalian species, including humans [1]. Hippocampal neurons appear
to process a diverse range of information such as spatial location [2,3], temporal infor-
mation [4], and emotional state [5] within specific episodes [6]. Although the critical
mechanism of how a piece of a specific memory is maintained or what connects the mem-
ory fragments is still largely unknown, CA1 neurons in the dorsal hippocampus are known
to be required for contextual memory [7], spatial learning [8,9], and object recognition [9].
Notably, the dorsal CA1 region houses a considerable number of junction-place cells that
encode the location of other animals within the same cage [10].

While the ventral hippocampus [11] and CA2 neurons [12] are recognized for their
essential role in social memory, this study specifically focuses on the dorsal CA1 region. This
region responds to diverse experiences and diversifies synapses to facilitate learning [13,14],
allowing for the analysis of changes specific to episodic experiences.

Hippocampal ripple oscillations (140–250 Hz) are oscillatory patterns observed in
electroencephalograms that are essential for memory and action planning [15,16]. Since
brief high-frequency synchronous firings are known to occur in conjunction with ripple
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oscillations [17], we recorded a band of 300 Hz–10 kHz to detect the firing activity of
adjacent multiple neurons behind a single ripple in dorsal CA1 [14]. In a single event of
ripple firings, the multiple neurons fired synchronously for a brief period of approximately
20 to 150 msec, mostly co-occurring with the sharp-wave ripple. In dorsal CA1, suppression
of sharp-wave ripples impairs learning and memory [8,18], and learning prolongs the
duration [19]. A firing sequence during a sharp-wave ripple replays the sequence of
locations during spatial learning [20], and spikes during a sharp-wave ripple increase with
learning [19]. These observations suggest that ripples contain learning information, leading
us to hypothesize that ripple firings may represent part of prior experiences.

To test this hypothesis, we previously conducted a comprehensive analysis of thou-
sands of ripple firings occurring before and after episodic experiences. We found episode-
dependent changes and episode-specific differences in the diversity expressed by the four
features (amplitude, duration, number of spikes, and arc length) [14]. If our hypothesis is
confirmed, we may be able to identify specific waveforms or significant information related
to experienced episodes from ripple firings using artificial neural networks that can learn
representations from the electroencephalogram [21,22].

Convolutional neural networks (CNNs) are widely used in image recognition, pattern
recognition, and natural language processing [23]; CNNs use the principles of linear
algebra, particularly matrix multiplication, to identify patterns in images, and they have
the potential to classify ripple firings associated with each episode. As a first step toward
confirming this hypothesis, the aim of this paper is to classify the ripple firings measured
from rats that experienced four types of episodes into five categories: experiencing one
of the four episodes or before an episodic experience. We construct a CNN to classify
the current stocks of ripple firings into the five categories and demonstrate that the CNN
classifies them well.

Subsequently, by applying gradient-weighted class activation mapping (Grad-CAM) [24],
which is an explainable artificial intelligence (XAI) technique, to the CNN, we analyze partial
waveforms that the CNN focuses on for classification and extract the partial waveforms.
The t-distributed stochastic neighbor embedding (t-SNE) [25] can map ripple waveforms
onto points in a two-dimensional (2D) feature space. We compare the distribution of ripple
waveforms input to the CNN and partial waveforms extracted by Grad-CAM in feature spaces
created by t-SNE. The analyzed results using Grad-CAM and t-SNE suggest that the extracted
partial waveforms may be representative of each category.

2. Materials and Methods
2.1. Animals and Surgery

Male Sprague-Dawley rats (CLEA Japan Inc., Tokyo, Japan) aged 15–25 weeks old
were used for the recording of multiple-unit firing activity (MUA) of hippocampal CA1
neurons. Each rat was kept in a cage where the temperature was controlled to 24 ± 1 ◦C
and the light was on for 12 h (from 8 a.m. to 8 p.m.). All rats were housed individually and
had no contact with other rats for several weeks prior to the recording of MUAs. These rats
were fed ad libitum at least two weeks before surgery (MF, Oriental Yeast Co. Ltd., Tokyo,
Japan). For the episodic stimuli, 8- to 15-week-old male or female rats were separately
prepared without electrode implantation; two to three same-sex rats were housed and kept
separately from the rats for the recording.

Prior to the experiment, animals were anesthetized with sodium pentobarbital (50 mg/kg,
intraperitoneal) and placed in a stereotaxic apparatus. Vertically movable tungsten recording
electrodes with a resistance of 50 to 80 kΩ (Figure 1E: KS-216, Unique Medical Co., Ltd.,
Tokyo, Japan) were chronically implanted just above the CA1 area of the dorsal hippocampus
(posterior, 3.0–3.6 mm; lateral, 1.4–2.6 mm; ventral, 2.0–2.2 mm) and fixed with dental cement.
Rats were kept in their home cages for at least one week to recover from the implantation
surgery (Figure 1D).
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labeled as T1, T2, T3, T4, and T5 (Figure 1A). All experiments were performed during the 
light period. The number of rats in restraint, contact with a female, contact with a male, 
and contact with a novel object was 7, 8, 8, and 7, respectively. 

We extracted thousands of ripple firings (Figure 1C) from all recorded MUAs 
according to reported criteria [14]. Neural signals were passed through a head amplifier 
and then through a shielded cable into the main amplifier (MEG-2100 or MEG-6116; 
Nihon Kohden, Tokyo, Japan), and the reference level for MUAs was the cortical potential. 
Signals were band-pass filtered at 150–10 kHz and digitized using a CED 1401 interface 
controlled by Spike2 software (Cambridge Electronics Design, Cambridge, UK). All signal 
data were sampled at 25 kHz. Recorded signals (150 Hz–10 kHz) were filtered at 150–300 
Hz and 300 Hz–10 kHz, with 150–300 Hz used for sharp-wave ripple detection and 300 
Hz–10 kHz signals used for firing analysis. 

Figure 1. Confirmation of experimental episodic memory and MUA recording in CA1. (A) Record-
ing schedule and 10 min episode. (B) Cartoons illustrating the four types of episodic experiences.
After the episodic experiences (1st), memory acquisition was assessed for each experience the fol-
lowing day (2nd). Data are the mean ± SEM (standard error of the mean). The number of rats for
the behavioral study is shown at the bottom of each bar. * p < 0.05 vs. 1st. (C) Example of a ripple
firing. Multiple spikes form a single event. (D) Picture of a recorded animal. (E) A movable recording
electrode with an enlarged tip.

2.2. Measurement of MUAs

On the day of the experiment, the electrode was carefully inserted into the CA1
pyramidal cell layer without anesthesia, and the recording was started in their familiar
home cage. To monitor the encoding process of the experience, we recorded multiple-unit
firing activity of CA1 before (15 min), during (10 min), and after (30 min) each episode
(Figure 1A) using an electrode that could record neural activities from many neighboring
neurons (Figure 1E). To mimic the events in humans that lead to episodic memory, the rats
were exposed for 10 min to one of four different episodes: restraint stress, social interaction
with a female or a male, and observation of a novel object (Figure 1B). For each rat, we
recorded MUAs for 55 min before and after a given event, and the time slots were labeled
as T1, T2, T3, T4, and T5 (Figure 1A). All experiments were performed during the light
period. The number of rats in restraint, contact with a female, contact with a male, and
contact with a novel object was 7, 8, 8, and 7, respectively.

We extracted thousands of ripple firings (Figure 1C) from all recorded MUAs according
to reported criteria [14]. Neural signals were passed through a head amplifier and then
through a shielded cable into the main amplifier (MEG-2100 or MEG-6116; Nihon Kohden,
Tokyo, Japan), and the reference level for MUAs was the cortical potential. Signals were
band-pass filtered at 150–10 kHz and digitized using a CED 1401 interface controlled by
Spike2 software (Cambridge Electronics Design, Cambridge, UK). All signal data were
sampled at 25 kHz. Recorded signals (150 Hz–10 kHz) were filtered at 150–300 Hz and
300 Hz–10 kHz, with 150–300 Hz used for sharp-wave ripple detection and 300 Hz–10 kHz
signals used for firing analysis.

Using the 150–300 Hz signal, we detected sharp-wave ripples by calculating the root
mean square and setting the threshold for event detection at +6 SD above the mean of
the baseline. Because most of the ripple firings co-occurred with the sharp-wave ripples,
we used the 300 Hz–10 kHz signal to analyze the firing behind the sharp-wave ripple
(i.e., ripple firings) in the present study. A ripple firing, which counted the number of
occurrences, was defined as one with a short duration (55.6 ± 0.3 msec, n = 4569) and a
signal-to-noise ratio of at least six to one (Figure 1C).
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Isolation of single units was initially performed using the template-matching function
of the Spike2 software. As previously reported [26], all spikes used in the subsequent
analysis were clearly identified, with a signal-to-noise ratio of at least three to one. After
the initial spike separation, we applied principal component analysis to the detected
waveforms. However, in this experiment, the sorting was not always reliable, especially
in ripple firings, because one electrode recorded many units. Therefore, we analyzed
all recording data as multiple unit firing activity. The waveform characteristics of the
spikes showed that the recorded spikes were mostly formed by pyramidal cells and some
interneurons, confirming that the recording site was in the pyramidal cell layer.

Not only the shape of spikes, but we also further verified the location of recording
site histologically. At the end of the experiments, animals were deeply anesthetized with
sodium pentobarbital (400 mg/kg, i.p.) and immediately perfused transcardially with
a solution of 0.1 M phosphate buffer containing 4% paraformaldehyde. The brain was
removed and then post-fixed with the same paraformaldehyde solution and immersed in
10–30% sucrose solution. Coronal sections (40 µm thick) were stained with hematoxylin
and eosin. The locations of cannulas, recording electrode tips, and tracks in the brain were
identified using a stereotaxic atlas [27].

2.3. Confirmation of Experimental Episodic Memory

To assess acquired memory, the rats were re-exposed to the same episode for 5 min
and their behavior was monitored. Rats that experienced restraint stress showed fewer
audible vocalizations during the second exposure (t6 = 3.476, p = 0.0129). Similarly,
rats exposed to a female, male, or novel object consistently reduced latency to vaginal
inspection (t8 = 3.492, p = 0.0082) or attack (t7 = 4.192, p = 0.0041) and object observation
time (t9 = 2.901, p = 0.0176) during the second encounter, suggesting memory acquisition
(Figure 1B).

2.4. Preprocessing of Ripple Firings

We measured a lot of MUAs and visually extracted thousands of ripple firings from
the MUAs. All the ripple firings can be annotated by types of experienced episodes or
before episode experience. However, ripple firings with a rich diversity [14] may reduce
the effectiveness to find representative waveforms in each episode or before episodic
experience. As preprocessing for analyzing ripple firings, we proposed a method to
automatically extract only ripple firings with similar waveforms based on standardization,
logarithmic transformation, and a cross-correlation function that is a measure of similarity
between two waveforms. Before the preprocessing, we removed too short ripple firings,
less than 15 msec, because they may reduce the accuracy of classification of ripple firings.
The details of the proposed method are as follows.

The cross-correlation function is often used in neuroscience [28], and it can measure the
similarity even for two ripple firings of different time lengths. Moreover, it can calculate the
similarity well even if the timing of the appearance of episode-dependent local waveforms
differs. Now, let xi(t) and xj(t) be the amplitude of the ith and jth ripple firings at time
t. The similarity between xi and xj based on cross-correlation function can be computed
as follows:

Cxixj = max
τ

∑
t

xi(t)xj(t − τ), i ̸= j (1)

where τ represents the time shift. In addition, since the lengths of ripple firings are
generally different, we normalize the Cxixj value by dividing by Cxixi , which is called
auto-correlation function, so that the normalized value takes roughly between 0.0 and 1.0.
When it takes a high value near 1.0 or more, the two ripple firings are similar. Although
this normalization is not common, it can pick up partially similar ripple firings even if the
length of waveforms is quite different. This is because our normalization can prevent the
degradation of cross-correlation function values with significantly different lengths.



Brain Sci. 2024, 14, 177 5 of 16

Despite the same episodic experience, the amplitude of measured MUAs may vary
depending on individual rats. Since such a difference in amplitude can reduce the accuracy
of the classification of ripple firings, we perform preprocessing to minimize the difference.
Let xi be the amplitude of the ith ripple firings. Standardization (z-score normalization) is
defined as follows:

yi(t) =
xi(t)− mi

σi
, (2)

where t denotes the discrete time within the extracted ripple firings and mi and σi represent
the mean and standard deviation of xi, respectively.

Figure 2A,B show the results of standardization for two ripple firings with a big
difference in amplitude. In Figure 2A, the blue and orange waveforms are ripple firings, x1
and x2, recorded from the second and tenth rats, respectively, i.e., without standardization.
The two waveforms are not similar at first glance, and, besides, the normalized Cx1x2 value
by the Cx1x1 value is quite small at 0.08. Standardization can reveal invisible similarity
between the two waveforms as shown in Figure 2B. The normalized Cy1y2 value by the
Cy1y1 value becomes 0.98.
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Figure 2. Effect of standardization and logarithmic transformation. (A) Ripple firings without
standardization. Blue and orange waveforms correspond to ripple firings of the second and tenth rats.
(B) Waveforms after standardization for ripple firings in (A). (C) Standardized ripple firings without
logarithmic transformation. Blue and orange waveforms correspond to ripple firings of the first and
sixth rats. (D) Waveforms after logarithmic transformation for standardized ripple firings in (C).
(E) Visualized values of cross-correlation function for 150 ripple firings with colors. The column and
row axes correspond to zi and zj. The blue pixels in the diagonal and red pixels mean the values of
the cross-correlation function are 1.0 and more than 0.6, respectively.

When there are one or more large spikes in standardized ripple firings, the similarity
analysis using the cross-correlation function can give a wrong decision. Figure 2C shows
standardized ripple firings y3 (blue) and y4 (orange) for the first and sixth rats. In spite of
that, the waveforms are not visually similar, and the normalized Cy3y4 takes a high value
of 0.66. To avoid such a wrong decision in similarity analysis, we apply a logarithmic
transformation to standardized ripple firings. It is defined as follows:

zi(t) =


log10(yi(t) + 1) if yi(t) > 0

0 if yi(t) = 0
−log10|yi(t)− 1| if yi(t) < 0

. (3)
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Figure 2D shows the waveforms after logarithmic transformation performed for stan-
dardized ripple firings in Figure 2C. The normalized Cy3y4 value is reduced to 0.48. Thus,
logarithmic transformation not only makes a big spike small but also reduces the similarity
value between two waveforms even when one or the other waveform contains one or more
big spikes.

Figure 2E shows visualized values of the cross-correlation function with colors. The
column and row axes correspond to zi and zj, and the size of the image is 150 × 150 pixels.
Although we have over 3000 ripple-firing stocks, we visualized the values of the cross-
correlation function using only 150 stocks to make the image easier to view. The blue pixels
in the diagonal and red pixels mean the values of the cross-correlation function are 1.0
and more than 0.6, respectively. Here, we set the threshold value to 0.6 and pick up only
similar ripple firings such that the normalized Czizj value is greater than the threshold
value, i.e., only ripple firings with one or more red pixels in each column are picked out.
The careful selection of ripple firings is useful for finding episode-dependent waveforms
using a CNN and Grad-CAM, as detailed later.

2.5. Convolutional Neural Network

In general, a CNN has N layers, which are an input layer, some hidden layers, and an
output layer. When a CNN is applied to classification problems in waveform datasets, the
input layer has as many artificial neurons (mathematical models) as input data, and the
neurons are arranged in a 1D grid. Neurons in a hidden layer are arranged in a 1D, 2D,
or 3D grid, and the output layer has as many neurons as categories to be classified; the
neurons are arranged in a 1D grid.

The hidden layers are generally composed of convolution layers, pooling layers, and
fully connected layers. At the nth layer in the input and/or hidden layers, the ith neuron
outputs an activated value with an activation function such as rectified linear unit (ReLU)
defined as follows:

zn
i (y

n
i ) =

{
0

(
yn

i ≤ 0
)

yn
i

(
yn

i > 0
)
,

(4)

where yn
i represents the internal value of the ith neuron at the nth layer. The ith neuron of

the output layer (the Nth layer) is activated by the softmax function described as follows:

zN
i

(
yN

1 , . . . , yN
K

)
=

eyN
i

K
∑

k=1
eyN

k

, (i = 1, 2, . . . , K) (5)

where K is the number of neurons at the output layer, i.e., the number of categories to
be classified.

A CNN is trained by updating the values of weights between neighboring layers
based on an error backpropagation (BP) algorithm. The error E, which is called the loss
function, for a dataset is defined as follows:

E = −
K

∑
i=1

Tilog zN
i , (6)

where ti corresponds to the true value that the CNN should output. To minimize the
E value, a stochastic gradient descent (SGD) algorithm [29] is widely used.

In the present study, we constructed a CNN to classify ripple firings into five categories:
“Restraint stress”, “Contact with a female rat”, “Contact with a male rat”, “Contact with a
novel object”, and “Before the experiencing of each episode”.

Our preliminary study [22] demonstrated that ripple firings related to the respective
episodes “Contact with a female rat” and “Contact with a male rat” were similar in the
context of the cross-correlation function. According to the results, we expect that a CNN
will find certain features of ripple firings in the five categories and classify them accurately.
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We illustrate the architecture of our CNN in Figure 3. The CNN has six layers including
input and output layers. The numbers in parentheses represent the number of neurons and
their arrangement, i.e., the input layer has 1 × 2205 neurons. Since the lengths of ripple
firings extracted from MUA data are different, we performed zero-padding so that the
length of all the ripple firings becomes 2205. The following convolution layer labeled with
“Conv 1D” has 128 filters and 171 outputs that are activated by the ReLU in Equation (4),
and the max-pooling layer with “Pooling 1D” has 128 filters and 33 outputs. The layer with
“Flatten” has the role of converting a 2D layer to a 1D layer and has 4224 neurons; two
fully connected layers have 500 and 5 neurons, respectively. The outputs of the last fully
connected layer are equal to the number of categories and are activated by the softmax
function in Equation (5).
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Figure 3. Structure of the constructed CNN. The blue and orange rectangles represent the filters
in Conv 1D and Pooling 1D layers. The filter sizes are 500 and 10. The numbers in parentheses
correspond to the number of nodes at each layer.

We note that standardized ripple firings without logarithmic transformation (yis) are
used for training and testing the CNN. This is because, as mentioned in Section 2.4, our
method selects only ripple firings that are not influenced by large spikes.

To minimize the value of the cross-entropy loss function in Equation (6), we trained
the constructed CNN by mini-batch training using the SGD algorithm. A mini-batch
corresponds to a subset in the dataset for training. In an epoch of mini-batch SGD, all the
training data are randomly divided so that the same data are not included in different
mini-batches. The CNN is trained for all the mini-batches based on the error BP algorithm,
and then the epoch counter is incremented by one. Mini-batches are shuffled every epoch.
Training results of CNNs are affected by the size of mini-batches. Generally, it is said that
increasing the mini-batch size makes the training of CNNs more robust to outliers. We
set the mini-batch size, the number of epochs, the learning rate, and the coefficients of
momentum term and weight decay to 64, 400, 0.001, 0.5, and 0.005, respectively.

2.6. Gradient-Weighted Class Activation Mapping

Grad-CAM [24] can visualize the basis on which trained CNNs classify input data
into each category. Grad-CAM creates heatmaps based on category-specific gradients with
respect to feature maps in a certain convolution layer. Analyzing heatmaps related to
each ripple-firing waveform can contribute to finding representative partial waveforms in
each category.

Figure 4 illustrates a schematic diagram of how Grad-CAM creates a heatmap for
a ripple-firing waveform input to our CNN. For an input ripple-firing waveform, we
calculate feature maps A ∈ R171×128 in the Conv 1D layer of our CNN. The feature maps
are associated with the degree of importance αk

l (k = 1, 2, . . . , 5, l = 1, 2, . . . , 128) for the
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kth category that the CNN outputs yN
k , where R expresses the real space and l represents

the index of filters in the Conv 1D layer. The importance is defined as follows:

αk
l =

1
S∑

i

∂yN
k

∂Al
i

, (7)

where N represents the last layer number of our CNN and i denotes the index of neurons
in the lth filter in the Conv 1D layer, i.e., i = 1, 2, . . . , 128; S means the size of a feature map
whose size is the same as a heatmap to be created, i.e., S = 171. Therefore, the value of αk

l
corresponds to the mean of ∂yN

k /∂Al
i . According to the values of αk

l , the pixel values in a
1D heatmap for the kth category Lk ∈ R171 are computed as follows:

Lk = ReLU

(
∑

l
αk

l Al

)
, (8)

where ReLU is an activation function with the rectified linear unit. Thus, a 1D heatmap for a
ripple-firing waveform input to our CNN is created, where the values of Lk are normalized
by max

(
Lk
)

of every heatmap; we colored all pixels of the heatmap using a colormap
“viridis” in matplotlib [30], which is a Python library. To make heatmaps easier to view, we
converted 1D heatmaps to 2D-like images by enlarging 1D heatmaps vertically.
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Figure 4. Schematic diagram of how Grad-CAM creates a heatmap. A ripple-firing waveform is
input to a trained CNN. Feature maps A and an output vector yN are calculated. Based on their
gradients, an importance vector αk is computed. After activation by ReLU, a 1D heatmap Lk for the
input ripple-firing waveform is created.

From heatmap regions with high pixel values, we can find partial waveforms that our
CNN attends to classify the input ripple-firing waveform into correct categories. Investi-
gating heatmaps is helpful for identifying episode-specific waveforms.

3. Results

Using our method, we selected 860 similar ripple firings from thousands of ripple
firings. Specifically, we have 196 ripple firings in “Restraint stress”, 173 ripple firings in
“Contact with a female rat”, 131 ripple firings in “Contact with a male rat”, 93 ripple firings
in “Contact with a novel object”, and 267 ripple firings in “Before the experiencing of each
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episode”. Some of the selected ripple firings in each category are shown in Figure 5A. In
addition, we annotated the 860 ripple firings with the five categories so that the annotations
{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}, and {0, 0, 0, 0, 1} correspond to the
respective categories “Restraint stress”, “Contact with a female rat”, “Contact with a male
rat”, “Contact with a novel object”, and “Before the experiencing of each episode”.
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Figure 5. Classified ripple firings and the learning curves of a CNN. (A) Representative examples of
ripple firings classified into 5 categories. (B) Frequency distribution of Ryiyj values in each category.
(C) Distribution of ripple firings in a 2D feature space using the t-SNE method. Development of
accuracy (D) and cross-entropy loss (E) for 810 training datasets.

Before training our CNN, we described a preliminary analysis for the selected ripple
firings. For the ith and jth ripple firings, yi(t) and yj(t), in each category after standardiza-
tion by Equation (2), we calculated the values of the cross-correlation function as follows:

Ryiyj =
1
L

max
τ

∑
t

yi(t)yj(t − τ), i ̸= j (9)

where L expresses the length of discrete time that yi(t) and yj(t − τ) overlap, except for
the period of zero-padding. Figure 5B illustrates frequency distributions for Ryiyj values
in each category. As shown in Table 1, the mean in each category, Ryiyj , was calculated as
0.4166, 0.4831, 0.4239, 0.4037, and 0.4037 for “Restraint stress”, “Contact with a female rat”,
“Contact with a male rat”, “Contact with a novel object”, and “Before experiencing of each
episode”, respectively. The number of samples means the square of the number of ripple
firings datasets minus the number of ripple firings datasets. For example, in the category
of restraint, 38, 220 = 1962 − 196. At first glance, the Ryiyj values for each category were
not significantly different among the five groups.
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Table 1. Basic statistics for groups of cross-correlation between selected ripple firings per category.
The number of samples means the square of the number of ripple firings datasets minus the number
of ripple firings datasets.

Mean SEM Number of Samples

Restraint stress 0.4166 0.0006 38,220
Contact with Female 0.4831 0.0009 29,756
Contact with Male 0.4239 0.0010 17,030
Novel object 0.4037 0.0013 8556
Before 0.4037 0.0005 71,022

Since a couple of Ryiyj values were similar, we tested them using one-way analysis
of variance (ANOVA) and post-hoc Scheffé’s method [31]. The results of our analysis are
shown in Table 2. When we set the significance level as 1% or 5%, the critical values were
3.32 or 2.37, respectively. For either case, the F value was 2045.58, which was larger than
the critical values, i.e., the one-way ANOVA indicated a significant difference between any
two categories. However, as a result of post-hoc tests using Scheffé’s method, no significant
difference was observed between Ryiyj values in the “Contact with a novel object” and
“Before experiencing of each episode” categories under both the significance level of 1%
and that of 5%.

Table 2. Results of one-way ANOVA and post-hoc Scheffé’s method.

Value of Cross-Correlation Function

Overall F4, 164579 = 2045.6, p < 0.001
Restraint vs. Female p < 0.001
Restraint vs. Male p < 0.001
Restraint vs. Object p < 0.001
Restraint vs. Before p < 0.001
Female vs. Male p < 0.001
Female vs. Object p < 0.001
Female vs. Before p < 0.001
Male vs. Object p < 0.001
Male vs. Before p < 0.001
Object vs. Before p = 0.999

We prepared 860 datasets consisting of ripple-firing waveforms after standardiza-
tion and annotations in which there were 810 datasets for the training of our CNN and
10 datasets per category for testing. To grasp the characteristic of the 860 datasets before
training our CNN, we measured the clustering of datasets within each category and the
separation between any two categories. Using t-SNE, which is a method to reduce the
dimension of signals, we mapped the 860 ripple firings with the length of 2205 onto a
two-dimensional feature space. Figure 5C shows the distribution of points in the feature
plane in which each point corresponds to each ripple-firing waveform and the axes express
certain features extracted by t-SNE method. In Figure 5C, the average Euclidean distances
between each dataset and the centroid within each category “Restraint stress”, “Contact
with a female rat”, “Contact with a male rat”, “Contact with a novel object”, or “Before
the experiencing of each episode” were computed as 12.53, 11.61, 11.30, 12.96, or 11.36,
respectively. We also computed the Euclidean distances between centroids of any two
categories in Table 3. Comparing with the average variations within each category, all
the distances between categories were quite small. The results imply the difficulty of
classification for the datasets.

We first trained our CNN for the 810 datasets. Figure 5D,E show the learning curve
of the CNN. The accuracy rate gradually increased as the epoch progressed and became
99.63% at the 400th epoch. Moreover, the value of cross-entropy loss slightly oscillated due
to randomly selected mini-batches for every epoch but gradually decreased and became
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0.13 at that epoch. The learning curves demonstrated that our CNN was trained so that
almost all the training datasets can be classified into correct categories.

Table 3. Distance between categories for 860 datasets in t-SNE space.

Restraint Female Male Object Before

Restraint — 2.168 0.804 1.763 1.571
Female — — 1.490 0.559 2.782
Male — — — 1.004 1.490
Object — — — — 2.225

After the training, the CNN achieved the accuracy rate of 72.00% for the 50 test datasets.
To evaluate the performance of our CNN in detail, we created a confusion matrix for the
test datasets. According to the matrix in Table 4, the values of precision, recall, balance
accuracy, F1-score, and area under the curve (AUC) were calculated as 0.72, 0.72, 0.72,
0.72, and 0.90, respectively. All the values except for the AUC value were the same as the
accuracy rate for the test datasets, and, besides, the value of AUC was close to 1.0. From
the results, we can say that the classification of our CNN for the test datasets was relatively
accurate without bias.

Table 4. Confusion matrix for classification of test data.

Predicted Categories

Correct
categories

Restraint Female Male Object Before
Restraint 7 1 2 0 0
Female 2 6 0 0 2
Male 1 1 7 0 1

Object 0 1 0 8 1
Before 1 0 1 0 8

The result indicates that our CNN caught certain features related to four experienced
episodes and before the experience, i.e., we can extract certain waveforms related to each
episode from the current stocks of ripple firings as shown in Figure 5A. To support this, for
the 36 test datasets that the CNN correctly classified, we applied Grad-CAM to our CNN
and extracted partial waveforms that our CNN focused on for classification.

Figure 6A–E show ripple-firing waveforms (test data) input to our CNN, which the
trained CNN classifies into each correct category, and their heatmaps created by Grad-CAM.
The input waveforms were zero-padded so that their lengths become 2205. Within the time
regions corresponding to zero-padding, all the heatmaps took low values, i.e., our CNN
did not focus on the zero-padding regions to classify the input waveforms. We extracted
partial ripple-firing waveforms, which our CNN mostly focused on for classification; this
means a partial waveform including a time region such that Lk

i = 1.0. The time range of
the extraction was determined to be 20 ms (500 samples), which corresponds to the filter
size in Conv 1D of our CNN. From the results, our CNN focused not only on large spikes
but also waveforms with relatively low amplitude and classified the input waveforms into
each correct category.

Figure 6F shows the distribution of 36 points converted with the t-SNE method. The
points correspond to ripple-firing waveforms (test datasets) that our CNN correctly clas-
sified. We calculated five centroids in each category and computed average Euclidean
distances between each point, and the centroid in every category “Restraint stress”, “Con-
tact with a female rat”, “Contact with a male rat”, “Contact with a novel object”, or “Before
the experiencing of each episode” were computed as 0.48, 0.92, 0.88, 2.11, or 1.05, respec-
tively. Euclidean distances between centroids were also computed as shown in Table 5.
Comparing the five average distances with the distances in Table 5, we cannot say that
differences among the average distances within each category and the distances between
categories were significant. Nevertheless, our CNN correctly classified the 36 test datasets.
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Figure 6. Analyzed results using Grad-CAM and the t-SNE method. (A–E) Ripple-firing waveforms
corresponding to test datasets that our CNN correctly classified, heatmaps created by Grad-CAM,
and extracted partial waveforms. (A) Category with “Restraint stress”. (B) Category with “Contact
with a female rat”. (C) Category with “Contact with a male rat”. (D) Category with “Contact with
a novel object”. (E) Category with “Before the experiencing of each episode”. (F) Distribution of
36 points in 2D feature space using t-SNE. Each point corresponds to input ripple-firing waveforms
(test datasets) that our CNN correctly classified. (G) Distribution of 36 points in 2D feature space
using t-SNE. Each point corresponds to partial ripple-firing waveforms extracted by Grad-CAM.

Table 5. Distance between categories for 36 test datasets in t-SNE space.

Restraint Female Male Object Before

Restraint — 0.507 0.784 0.660 0.412
Female — — 1.278 0.265 0.195
Male — — — 1.443 1.137
Object — — — — 0.456

In the same way, we also analyzed 36 partial waveforms extracted by Grad-CAM.
Figure 6G shows the distribution of the 36 points in a t-SNE feature plane. Five centroids
and average Euclidean distances between each point and the centroid within “Restraint
stress”, “Contact with a female rat”, “Contact with a male rat”, “Contact with a novel
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object”, or “Before the experiencing of each episode” were calculated as 0.67, 0.27, 0.67,
0.69, or 1.18, respectively. We also computed distances between centroids as shown in
Table 6. Each distance shown in Table 6 was larger than the distance between the same
categories shown in Table 5. This indicates that focusing on partial waveforms extracted by
Grad-CAM increased the distance between the two categories. Moreover, it can be noticed
that all the distances shown in Table 6 were greater than the average distances within each
category. These facts suggest that partial waveforms corresponding to the nearest points to
each centroid may be representative of each category.

Table 6. Distance between categories for 36 extracted partial waveforms in t-SNE space.

Restraint Female Male Object Before

Restraint — 1.424 3.119 2.804 1.970
Female — — 1.778 2.685 0.773
Male — — — 2.783 1.163
Object — — — — 2.208

4. Discussion

Hippocampal ripple oscillations (140–250 Hz) manifest as distinctive electroencephalo-
gram patterns that play a crucial role in memory consolidation and action planning [15,16].
In addition, high-frequency synchronous firings have been observed alongside these ripple
oscillations [17]. In this study, we used a 300 Hz–10 kHz recording band to capture individ-
ual firings. Given the predominant synchronization of clustered firings with ripples, we
termed these events “ripple firings” for analysis.

The episodic experience was accompanied by the occurrence of spontaneous multiple
unit firings (super bursts), followed by an increase in both ripple firings and subsequent
silent periods [14]. The ripple events coincided with sharp waves, collectively forming
sharp wave-ripple complexes (SPW-Rs). CA1 neurons are known to receive large amounts
of neural input from CA3 and their optogenetic suppression blocks SPW-Rs in CA1, inhibit-
ing learning and memory [32]. On the other hand, learning itself prolongs the duration of
SPW-Rs [19]. During SPW-Rs, a firing sequence replays the spatial learning experience [20],
and spikes within this duration increase with learning [19]. We have previously shown
that preceding experiences influence the individual characteristics of ripple firings in an
episode-dependent manner, and homology analysis of 66,000 pairs revealed that individual
ripple firings are not identical and exhibit episode specificity [33]. These findings suggest
that ripple events carry learning-related information and that the firings concurrent with
ripples encode the details of preceding experiences.

Similar ripples were selected after standardization and logarithmic transformation
for waveforms. The selected ripple-firing waveforms only with standardization without
logarithmic transformation were fed to our CNN for training and testing. The time-domain
preprocessing helped our CNN to classify ripples accurately. Similarly, frequency-domain
preprocessing was also useful for assisting in the classification of waveforms in CNNs.
However, since the aim of this study was to find partial ripple-firing waveforms using a
CNN and Grad-CAM, time-domain preprocessing was preferable to frequency-domain
preprocessing from the viewpoint of simplifying our analyses.

While conventional statistical analyses were unable to extract features to classify 860
selected ripple-firing waveforms into five categories, we successfully employed a CNN to
categorize ripple firing based on prior experience, achieving high accuracy. To enhance the
role of CNNs in this study and the significance of the results, it is imperative to construct a
CNN with a higher generalization ability and evaluate its classification accuracy through
cross-validation. Once such a CNN with high performance is constructed, the content of the
animal’s most recent episodic experience can be read from the ripple firings of hippocampal
CA1 neurons.

Here, we applied a general CNN to classify ripple firings and found that even a
simple CNN with only one convolutional layer can accurately classify training and test
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datasets. The near-correct classification of individual ripple firings into five categories
marks a significant advance in neuroscience and provides evidence that recent episodic
experiences are represented in hippocampal CA1 neurons. If the features captured by our
CNN correspond to local waveforms of ripples, then an explainable artificial intelligence
(XAI) technique would be effective in identifying local waveforms and extracting unique
firing patterns. To explain classification results for each test dataset, Grad-CAM creates
heatmaps based on category-specific gradients with respect to feature maps in a convolution
layer that the user selects in which the size of the heatmaps is the same size as the feature
map. Although the difficulty in analyzing heatmaps is also high for a deep CNN with
many convolutional layers in general, our CNN with only one convolutional layer is useful
to simplify the identification of local waveforms.

A t-SNE method can plot ripple-firing waveforms and their partial waveforms as
points in a 2D feature space. Analyzing the distribution of points and the characteristics of
each cluster in the feature plane helps us to find representative local waveforms. Therefore,
identifying representative local waveforms in each category is expected by analyzing
created heatmaps and the distribution of points mapped by t-SNE.

As the first step to finding representative partial waveforms related to the experience
or pre-experience of each episode, we intentionally excluded ripples with low similarity
in this study. However, we cannot deny that episode-specific local waveforms may be
contained even in ripples with low similarity. In the next step of this study, we should
investigate all the stock of ripples in detail.

5. Conclusions

Based on previous studies [13,14,33], we hypothesized that the waveform of ripple
firings generated by hippocampal CA1 neurons changes dynamically before and after
experiencing an episode and that the waveform depends on the type of episode experienced.
To confirm this hypothesis, we considered classifying current stocks of ripple firings into
five categories consisting of experiencing one of four episodes or before experience.

As a first step, here, we constructed a CNN to classify the ripple firings. After training,
the CNN was able to accurately classify the 810 ripples for training with an accuracy of
99.63% and a cross-entropy loss of 0.13. We also evaluated our CNN for 50 test datasets.
The test ripples were classified under an accuracy of 72.00%. According to the confusion
matrix in Table 4, the values of precision, recall, balance accuracy, F1-score, and AUC were
0.72, 0.72, 0.72, 0.72, and 0.90, respectively. The results show that our CNN was able to
classify the test datasets without bias.

Using Grad-CAM, we subsequently extracted partial waveforms from test waveforms
of ripple firings that our CNN correctly classified. The t-SNE method mapped extracted
partial waveforms onto points in a 2D feature space. For 36 test datasets that our CNN
classified into correct categories, each distance between two centroids for partial waveforms
extracted by Grad-CAM was larger than that for whole waveforms input to our CNN. The
extracted partial waveforms in Figure 6A–E correspond to the nearest point to the centroids
of each category in Figure 6G. The results suggest that ripple firings have certain features
related to the experience or pre-experience of each episode, and, besides, it is expected that
the partial waveforms in Figure 6A–E are representative of each category. We hypothesized
that these features correspond to typical local waveforms. As a next step in this study, we
will investigate our stocks of ripple firings carefully to find typical local waveforms using
CNNs, Grad-CAM, and t-SNE.
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