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Abstract: Background: Grade 2–3 diffuse gliomas (DGs) show extensive infiltration through white
matter (WM) tracts. Along-tract analysis of WM tracts based on diffusion tensor tractography (DTI)
can been performed to assess the microstructural integrity of WM tracts. The clinical implication of
these DTI-related findings is still under debate, especially in tumor patients. The aim of this study
was to analyze and compare diffusion-based parameters along WM tracts and variables specific to
WM -tumor interactions in DGs and correlate them with preoperative neuropsychological assessment.
Methods: Fourteen patients with IDH-mutated grade 2–3 DGs were included. Tumor volumes
were manually segmented on 3D-FLAIR images after spatial normalisation to MNI space. DTI was
acquired using a single-shot echo-planar sequence on a 3T with 48 sampling directions. DTI data
were reconstructed within the MNI space using q-space diffeomorphic reconstruction (QSDR) in
DSI studio. Five bilateral sets of WM tracts were reconstructed based on the HCP-1065 template.
All WM tracts were stretched to the same length of 100 indices, and for each index diffusion-based
parameters fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), mean diffusivity
(MD) and quantitative anisotropy (QA) were sampled. Tumor-related parameters (TRP); tumor
volume (Tv), maximum tumor presence (MTP) and the number of sequential indices in which a
tumor is present (Te) were derived based on the along-tract analysis. Normal data were constructed
by calculating the average and standard deviations of contralateral and not-affected WM tracts for
each diffusion-based parameter, respectively. Affected WM tracts were individually compared to
normal data using a z-test. Preoperative neuropsychological assessment was performed in all subjects
and correlated to results from the along-tract analysis using correlation and logistic regression models.
Results: Abnormalities in diffusion-based parameters were detected in WM tracts. Topographical and
quantitative information were presented within the same graph. AD and MD displayed the highest
linear correlation with the TRPs. Abnormal QA showed a linear correlation with Tv per WM tract.
Neuropsychological impairment was correlated with all the TRPs and with abnormal FA (p < 0.05)
and abnormal QA (p < 0.01). Abnormal QA was the only independent variable able to predict the
presence of neuropsychological impairment in the patients based on the linear regression analysis.
Conclusions: Graphical presentation of the along-tract analysis presented in this study shows that
it may be a sensitive and robust method to acquire and display topographical and qualitative
information regarding WM tracts in close proximity to DGs. Further studies and refinements to
the methods presented herein may advance current clinical methods for evaluating displacement
and infiltrations and further aid the efforts of pre-planning surgical interventions with the goal to
maximise EOR and tailor oncological treatment.

Keywords: white matter; diffuse gliomas; along-tract analysis; DTI; neuropsychological impairment

1. Introduction

Diffuse gliomas (DGs) (WHO 2 and 3) are primary brain tumors derived from glial
cells. They occur mainly in adult life with a peak incidence around 30–40 years [1,2]. The
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modern classification of a DG is based on molecular features such as IDH mutation status
and 1p19q codeletion which are currently applied in treatment-planning decisions [3]. An
advanced understanding of the metabolic effects induced by IDH mutations offers oppor-
tunities for specific targeted therapies that may improve patient outcomes [4,5]. DGs are
characterized by a relatively slow natural course but extensive and continuous infiltration
of the host brain [2,6]. They tend to preferentially infiltrate “secondary” functional areas
(immediately near the so-called primary eloquent regions), or the so-called “minimal com-
mon brain” [7–9]. These specific tumor features impose a major challenge on their clinical
management, requiring an individualized approach for each patient to decide the optimal
treatment strategies [2]. It has been demonstrated that the tumor tends to interfere with
normal brain function by disrupting the functional connectivity of brain networks within
the peritumoral and distant brain areas, thereby inducing neuropsychological impairment
and/or seizure activity [2,10–13]. The mechanisms of cortical–subcortical plasticity at the
individual level, with important anatomical-functional variability, are not fully under-
stood [13–15]. Surgical resection is, however, the first treatment strategy in which the extent
of resection (EOR) correlates well with prolonged survival [16–18].

Despite the advances in neurophysiological and high-order functions monitoring
during surgery, the surgical results and the postoperative patient status still depend on the
initial tumor location and their infiltration into large-scale networks [6,11,17]. An extensive
preoperative assessment including language and neuropsychology and cognitive functions
is important to define the involvement of white matter networks at the diagnosis and to
detect signs of tumor-induced neuroplasticity [13,19,20]. Moreover, this information may
guide the neurosurgeon to better understand the individual connectome of the patient and
to tailor the intraoperative mapping based on the complex dynamic interaction expected
with the surrounding brain [21,22]. In fact, the subcortical white matter (WM) tracts often
represent the main limit to a surgical resection and, at the same time, they represent the
way of least resistance that DG cells use to disseminate [23–25]. A better comprehension
of the WMs interaction with DGs has become pivotal in several fields of neurosurgical
oncology to improve diagnosis, to detect treatment response and to predict outcomes.

Among the major advances in terms of preoperative imaging, tractography is the most
widely established approach [26–29]. Tractography, established on magnetic resonance-
based diffusion tensor imaging (DTI) has been utilized as a tool for the three-dimensional
visual evaluation of WM tracts. This method offers the possibility to assess displacement,
infiltration and disruption from DGs, aiding the neurosurgeon during resection to improve
the resection rate and preserve postoperative functionality [26,28]. In addition, DTI has
also been applied to indirectly and quantitatively measure the microstructural integrity of
white matter, providing different information about WM, axonal or myelin integrity [30–34].
Diffusion-based metrics such as fractional anisotropy (FA), radial diffusivity (RD), axial
diffusivity (AD) and mean diffusivity (MD) are currently used as measures of tissue
microstructure, detecting WM abnormalities. Quantitative anisotropy (QA) is also used as
a measure of anisotropy within a diffusion process in a biological tissue. It is described as
being less affected by edema, while FA and AD are also sensitive to edema and are used in
creating high-definition diffusion data [27,35,36].

On the other hand, these measures are inherently nonspecific and may depend on sev-
eral possible biological mechanisms underlying WM microstructural modifications [37,38].
A correlation between specific WM tracts and neuropsychological tests have been described
using DTI and intraoperative tests [15,39]. The majority of these studies use the analysis of
the average of metrics over all voxels of the tract, considering the bundle as a whole. WM
tract averages involve the calculation of statistics over the entire WM tract, which can be
useful for investigating global changes in WM tract integrity. However, it does not provide
information about regional variations along the tract, which are, for example, more relevant
in the case of tumor infiltration [23,40]. Tract-specific analysis has evolved during the last
15 years from studying the averages of diffusion-based parameters for each tract [41–43] to
an analysis of microstructural parameters in multiple segments along the tract [44,45].
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Along-tract analysis involves dividing the WM tract into smaller segments of arbitrary
length along its course and analyzing the diffusion-based parameters in each segment
separately [46]. This method provides a more detailed picture of variations along the
tract, allowing for a graphical presentation which can visualize alterations and specific
functions associated with different segments of the WM tract. Along-tract analysis has
previously been used in a variety of applications; however, the results that have been
published warrant further exploration into accuracy and limitations [37,43,46–55].

The aim of this study was to qualitatively and visually assess, by graphical presenta-
tion, different Diffusion-based parameters along tracts in patients with DGs and to evaluate
any potential relationships with preoperative neuropsychological assessment.

2. Materials and Methods
2.1. Patient Population

Patients (>18 years) presenting with a radiological diagnosis of suspected DLGGs were
consecutively recruited at the Department of Neurosurgery, Uppsala University Hospital,
Uppsala, Sweden, and enrolled as a part of larger study between August 2014 and August
2022. Fourteen patients from the larger cohort that underwent a surgical resection between
2020 and 2022, and who had a confirmed diagnosis of a grade 2–3 DG, were analyzed in
the current study. Exclusion criteria were previous resection for brain tumors, previous
radio-chemotherapy and background of psychiatric or severe cognitive impairment or
impossibility to perform neuropsychological assessment due to medical constraints. The
study was approved by the institutional ethics review board (Dnr 2015-210-2 and Dnr
2023-00876-01). Informed consent was obtained prior to surgery at the Department of
Neurosurgery, Uppsala University Hospital, Uppsala, Sweden.

2.2. Imaging

DTI was acquired using a single-shot echo-planar sequence on a 3.0 Tesla MR scanner
(Achieva, Philips Healthcare, Best, The Netherlands) with 48 sampling directions and a
b-value of 1000 s/m2. A total of 60 axial slices were acquired with an in-plane resolution of
1.75 mm and slice thickness 2 mm. We acquired 3D-T2 fluid attenuated inversion recovery
(T2-FLAIR) images for morphological evaluation and manual tumor volume segmentation.

2.3. Post-Processing and WM Tract Definition

Motion and eddy current correction on acquired DTI data was performed in eddy [56].
DTI data reconstruction was performed using q-space diffeomorphic reconstruction (QSDR)
in DSI Studio (http://dsi-studio.labsolver.org accessed on 18 January 2024) with a sampling
length ratio of 1.25 and output resolution of 2 mm. In short, QSDR is a WM-based nonlinear
registration approach that reconstructs diffusion information in MNI space [57]. The T2-FLAIR
for each patient was included in the reconstruction, thus spatially normalized to MNI space.
Diffusion-based parametric images of FA, AD, RD, MD and QA were derived in MNI space.

Five bilateral sets of WM tracts (Frontal Aslant tract, FAT; Arcuate fasciculus, AF;
Inferior Fronto-Occipital Fasciculus, IFOF; Cortico-spinal tract, CST; and Cingulum, Ci)
were reconstructed based on the HCP-1065 template as previously described [58]. Along-
tract analysis was performed for each diffusion-based parameter on all five bilateral WM
tracts. Lengthwise mapping was performed using the tract profile function in DSI Studio. In
brief, all WM tracts were stretched to correspond straight lines and normalized to a length
of 100 segments of arbitrary length. Values derived from the diffusion-based parameter
images and the binary segmented tumor image were sampled along the mapped WM tracts
and regressed using a kernel density estimator with default regression bandwidth at 1.0.

2.4. Neuropsychological Assessment

Patients were assessed by a trained neuropsychologist (1–7 days) prior to surgery as
previously published by our group [13]. The neuropsychological assessment included tests
of attention and working memory, visual search speed, immediate learning and retrieval

http://dsi-studio.labsolver.org
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(verbal as well as visual), executive functioning, motor speed of the dominant hand and
self-reported anxiety and depression. Test scores were adjusted for age and education
according to available norms. A domain was considered impaired if the patient displayed
neuropsychological symptoms below −1.5 standard deviation (SD).

2.5. Analysis and Statistics

Since WM tracts are three-dimensional objects, the maximal tumor presence (MTP)
value based on the binary segmented image, will be interpolated and vary between 0 (no
tumor) and 1 (only tumor) for a given segment. Thus, the tumor volume (Tv, maximum
100) in arbitrary units is defined as the summation of the tumor presence values for all
segments, and tumor extension (Te, maximum 100) is defined as the number of sequential
segments with a non-zero tumor presence. A normal dataset was created for each WM tract
by calculating average and SD of contralateral nonaffected WM tracts for each diffusion-
based parameter, respectively. WM tracts in the affected hemisphere were compared to
the normal dataset using a z-test. No mathematical correction was made for multiple
comparisons within each WM tract. Instead, ≥10 sequential segments with z-score −1.96
or +1.96, corresponding to a two-sided p-value of 0.05, were considered abnormal segments
(with or without the presence of tumor).

A graphical presentation was prepared for each WM tract and diffusion-based param-
eter for all patients, respectively, for visual qualitative assessment. The patient-specific
along-tract analysis is plotted with segments (0–100) on the x-axis and diffusion-based
parameters on the left y-axis. Corresponding normal data for the given WM tract are
plotted together with SD. Squares at the bottom of the graphs indicate whether significant
differences between the patient-specific WM tract and normal data are present for each
segment; thus, as described above, ten sequential segments indicate an abnormal segment.
Tumor presence is plotted as a light grey shadow using the right y-axis.

Based on the graphical presentation, sensitivity and specificity were calculated for
each diffusion-based parameter including all WM tracts. Sensitivity was calculated as the
number of true positives/(true positives + false negatives) and specificity was calculated as
the number of true negatives/(true negatives + false positives). WM tracts with Tv < 1 were
considered nonaffected. True positive was defined as abnormal segments, as described
above, mostly within the extent of the tumor given on the x-axis. True negative was defined
as no abnormal segments with no tumor present. False positive was defined as abnormal
segments with no tumor present and false negative was defined as no abnormal segments
with tumor present. High sensitivity reflects a specific diffusion-based parameters’ ability
to correctly identify the presence of a tumor, and high specificity reflects its ability to
correctly identify non-tumor presence.

A correlation analysis was performed using Spearman’s rho comparing all diffusion-
based parameters and NPS score with Tv, MTP and Te, respectively. Both diffusion-
based parameters and NPS score were included in the analysis as binary variables, i.e.,
abnormal or nonabnormal diffusion-based parameters and impaired or not impaired
NPS. Correlation between abnormal diffusion-based parameters and NPS scores was
evaluated using Chi-Square test. To understand the role of each variable in respect to
neuropsychological impairment, a logistic regression was performed. Univariate analysis
included NPS impairment as the dependent variable and diffusion-based parameters,
encoded as binary variables (i.e., increased or decreased values compared to normal data),
and Tv, MTP and Te as continuous variables. A multivariate logistic regression analysis was
performed post hoc only including significant variables in a forward-conditional model to
detect independent predictors of neuropsychological impairment.

Derived p-values < 0.05 were considered significant. Statistical analysis and graphic
design were performed using GraphPad Prism 9 (GraphPad Software, La Jolla, CA, USA)
and SPSS 29.0 (SPSS, Inc., Chicago, IL, USA).
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3. Results
3.1. Patient Population

Fourteen patients with IDH-mutated grade 2–3 DGs were included. Eleven patients
displayed epilepsy as the onset of symptoms while one patient experienced cognitive
impairment, one patient experienced a sensory/haptic symptom as the onset and the last
case was an incidental finding. Summary of the population demographics, diagnoses and
radiological features is displayed in Table 1. In eleven patients, the tumor was considered
eloquent as it involved the minimal common brain as previously described [8,59]. Tumor
resection was performed in all patients; resection was performed in the awake condition
in six patients and in the asleep condition in eight patients (two patients underwent
neurophysiological monitoring).

Table 1. A summary of demographic and radiological features for the study populations. The
tumor diagnosis is displayed in accordance with WHO 2021 criteria. The lobar location is indicated
according to the predominant infiltration, in case of equal infiltration multiple lobes are indicated.
Radiological borders are displayed here in Bulky (B) which indicates sharp borders on FLAIR images,
or diffuse (D), irregular or unclear margins.

Pat n◦ Age Gender Diagnosis Lobar
Location Side Tumor Volume

(mL)
Radiological

Borders
1 26 M A2 T L 63.5 B
2 43 M A2 F R 42.1 B
3 42 M A2 P L 84.2 D
4 44 M O2 T-I L 55.1 B
5 23 F A2 F R 7.5 B
6 26 M O2 T L 31.8 D
7 26 M A3 F-T-I R 182.9 D
8 28 M A2 F-T-I R 148.5 D
9 39 M A2 T L 7.5 B

10 39 F O2 F R 15.7 D
11 45 M A2 F-T-I L 45.2 B
12 35 M O2 F-I R 92.2 D
13 24 M A3 P L 56.7 B
14 35 F A3 F R 153.3 D

M: Male; F: Female; A: Astrocytoma IDH mutated; O: Oligodendroglioma IDH mutated and 1p19q co-delated; T:
temporal lobe; F: frontal lobe; P: parietal lobe; I: Insular.

3.2. Sensitivity and Specificity

The highest sensitivities were found in MD (77%) and RD (76%). The sensitivities
calculated for FA (70%) and AD (69%) were similar, albeit slightly lower. For QA (30%) a
low sensitivity was found. Overall, specificity was found to be equal to or higher than 85%
for all diffusion-based parameters. The highest specificities were found in AD (96%) and
MD (95%). All values are presented in Table 2.

Table 2. Derived sensitivity and specificity given in percentage for each diffusion-based parameter,
respectively.

AD FA MD QA RD

Sensitivity [%] 69 70 77 30 76
Specificity [%] 96 85 95 85 92

AD: Axial diffusivity; FA: Fractional anisotropy; MD: mean diffusivity; QA: Quantitative anisotropy; RD: radial
diffusivity.

3.3. Tumor Presence

The average tumor volume in arbitrary units per WM tract was 10.7 (SD: 16.4), the
average and median maximal tumor presence (MTP) in the affected white matter pathways
was 0.28 (median 0.1 ± 0.31) and the average number of tumor segments (Te) along the
WM tracts was 31 (SD: 31). A graphical presentation and descriptive values for each WM
tract are shown in Figure 1 and summarized in Table 3.
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Figure 1. The picture above illustrates the case of patient n°3. The upper part shows a 3D tumor 
reconstruction (in orange) and its relationship with the five WM pathways; reconstructed with 
Figure 1. The picture above illustrates the case of patient n◦3. The upper part shows a 3D tumor
reconstruction (in orange) and its relationship with the five WM pathways; reconstructed with
different colors (FAT, green; AF, magenta; IFOF, purple; CST, blue; Ci, dark red) within a 3D “glass-
brain” in the left hemisphere. SMA: supplementary motor area; IFG: inferior frontal gyrus; PCG:
precentral gyrus. In the lower part each WM pathway is displayed separately in the first row with its
relationship with the tumor. The graphs on the second, third and fourth, fifth and sixth rows display
the ATA analysis of each WM pathway for all the DTI indices. The red line represents the patient´s
white matter index, the continuous black line represents the normal values with standard deviation
(black dotted lines). The black dots on the lower part show the areas of significant difference between
the patient´s index and the normal values at the z-test. Tumor volume (Tv) is displayed in units on
the top left of the first graph. The gray area on the lower part of the graph shows the tumor overlay
for each WM pathway. Within each graph the scale on the left shows DTI values, while the scale on
the right Y axis shows the maximal tumor presence per unit of white matter (MTP, between 0 and 1).
Tumor extension (Te) along the X axis is shown on a scale from 0 to 100. Major lobar or anatomical
locations are displayed on the X axis to better locate the DTI index abnormalities and the direction of
potential white matter abnormalities.
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Table 3. The table shows qualitative results from the visual analysis of the graphical presentation.
Bold numbers indicate patients with neuropsychological impairment at preoperative assessment.
Arrows indicate whether a given diffusion-based parameter is significantly higher (↑) or lower (↓)
compared to normal data within tumor presence. Zeroes given in color represent significantly higher
(green) or lower (yellow) diffusion-based parameters compared to normal data without or outside of
tumor presence. Tumor volume (Tv) is given in arbitrary units and is defined as the area under the
tumor shadow in the graphical presentations. Maximal tumor presence (MTP) per unit is encoded
between 0 (non-present) and 1 (only tumor). Tumor extension (Te) is defined as the number of
sequential segments comprising tumor presence (varies from 0 to 100).

WM Bundles Pat n◦ 1 2 3 4 5 6 7 8 9 10 11 12 13 14
FAT

AD 0 ↑ 0 ↓ 0 0 ↑ ↑ 0 ↑ ↓ ↑ 0 ↑
RD 0 ↑ 0 ↑ 0 0 ↑ ↑ 0 ↑ ↑ ↑ 0 ↑
MD 0 ↑ 0 ↑ 0 0 ↑ ↑ 0 ↑ ↑ ↑ 0 ↑
FA 0 0 0 ↓ 0 0 ↓ ↓ 0 ↓ ↓ ↓ 0 ↓
QA 0 0 0 ↓ 0 0 ↓ 0 0 0 ↓ 0 0 ↑
Tv 0 14 0 0.5 0 0 44 74 0 39 21 15 0 60

MTP 0 0.5 0 0.1 0 0 0.9 1 0 0.9 0.5 0.5 0 0.7

Te 0 45 0 10 0 0 55 100 0 55 55 45 0 100

IFOF
AD ↑ 0 ↑ 0 0 0 ↑ ↑ 0 0 ↑ ↑ 0 ↑
RD ↑ 0 ↑ ↑ 0 0 ↑ ↑ ↑ 0 ↑ ↑ ↑ 0

MD ↑ 0 ↑ ↑ 0 0 ↑ ↑ ↑ 0 ↑ ↑ ↑ ↑
FA ↓ 0 ↓ ↓ 0 0 ↓ ↓ ↓ 0 ↓ ↓ ↓ 0

QA ↓ 0 0 0 0 ↓ ↓ 0 ↑ 0 0 ↓ 0 0

Tv 12 0 3 15 0.5 0.5 57 38 0.5 0 19 30 1 5

MTP 0.5 0 0.4 0.7 0.1 0.1 0.9 0.8 0 0 0.6 0.7 0.1 0.2

Te 45 0 60 50 5 5 100 75 10 0 70 75 15 45

AF
AD ↑ 0 ↑ 0 0 0 ↑ 0 ↑ 0 ↑ 0 ↑ ↑
RD ↑ 0 ↑ ↑ 0 0 ↑ ↑ 0 0 ↑ 0 ↑ ↑
MD ↑ 0 ↑ ↑ 0 0 ↑ ↑ 0 0 ↑ 0 ↑ ↑
FA 0 0 ↓ 0 0 0 ↓ ↓ 0 0 ↓ 0 ↑ ↓
QA ↓ 0 0 0 0 0 ↓ 0 ↑ 0 0 0 0 ↑
Tv 3 0 3 3 0 0 26 15 2 0.5 19 0 15 13

MTP 0.2 0 0.2 0.1 0 0 0.8 0.5 0.1 0.1 0.5 0 0.6 0.6

Te 30 0 35 40 0 0 65 50 30 10 65 0 85 50

CST
AD 0 ↑ ↑ 0 0 0 ↑ ↓ 0 0 0 0 ↑ ↑
RD 0 ↑ 0 0 0 ↑ ↑ 0 0 0 0 ↑ 0 ↑
MD 0 ↑ ↑ 0 0 ↑ ↑ 0 0 0 0 0 0 ↑
FA 0 ↓ 0 0 0 ↓ ↓ 0 0 0 ↑ ↓ 0 ↓
QA 0 0 0 0 0 0 ↓ 0 0 0 ↑ ↓ ↑ ↑
Tv 0 6 2 0 0 0 29 8 0 0.5 12 0.5 0.5 22

MTP 0 0.4 0.1 0 0 0 0.9 0.5 0 0 0.5 0 0 0.6

Te 0 25 45 0 0 0 60 30 0 10 40 0 0 50

Ci
AD 0 ↓ ↑ 0 0 0 ↑ ↑ 0 0 0 ↑ 0 ↑
RD 0 ↑ ↑ 0 0 0 0 ↑ 0 0 0 0 0 ↑
MD 0 ↑ ↑ 0 0 0 0 ↑ 0 0 0 0 0 ↑
FA 0 ↓ ↓ 0 0 0 ↑ ↓ 0 ↓ 0 ↑ 0 ↓
QA ↓ 0 0 0 0 ↑ ↓ 0 0 0 0 0 0 ↑
Tv 0.5 13 34 0 0 3 2 30 0 3 0 0.5 0 38

MTP 0 0.4 0.6 0 0 0.1 0.2 0.7 0 0.1 0 0.1 0 0.6

Te 10 70 85 0 0 40 20 70 0 45 0 10 0 85

AD: Axial diffusivity; FA: Fractional anisotropy; MD: mean diffusivity; QA: Quantitative anisotropy; RD: radial
diffusivity.
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3.4. Neuropsychological Results

In twelve patients the neuropsychological assessment was completed before the surgi-
cal operation. In two cases the Digit span test was not performed and in one of these cases
the RAVLT test results were incomplete. Neuropsychological impairment was detected
in six (42%) patients, with two patients presenting impairment in two domains and four
patients with only one domain affected. A descriptive summary of the results from the
neuropsychological assessment is presented in Table 4.

Table 4. Summary of the results of the neuropsychological assessment for all included patients.
Presented values are scaled scores (scaled scores, Ss; or T-scored, Ts) adjusted to available norms; for
scaled score, the mean value was 10 ± 3, while for T-scored, the mean value was 50 ± 10.

NPS Assessment

Pat n◦ Lobar
Location Side TMT1

(Ss)
TMT2
(Ss)

TMT3
(Ss)

TMT4
(Ss)

TMT5
(Ss)

DIGIT
Span
(Ss)

RAVLT
Total

Learning
(Ts)

RAVLT
Delayed

Recall (Ts)

BVMr-
Recall

(Ts)
Impairment

1 T L 9 13 13 12 11 13 43 33 34 Y
2 F R 11 10 13 7 12 10 59 53 58 N
3 P L 11 9 11 9 11 14 56 64 53 N
4 T-I L 10 14 15 14 14 17 36 42 64 N
5 F R 11 10 10 11 12 53 45 53 N
6 T L 13 13 13 9 12 9 40 41 20 Y
7 F-T-I R 8 12 10 9 11 N
8 F-T-I R 9 10 3 4 12 8 47 60 54 Y
9 T L 9 13 12 10 13 10 40 46 51 N
10 F R 13 10 13 12 14 11 52 60 57 N
11 F-T-I L 11 10 13 11 11 4 50 46 55 Y
12 F-I R 13 13 13 14 13 17 38 34 44 Y
13 P L 13 9 13 10 13 15 62 57 53 N
14 F R 4 7 5 8 10 7 63 49 33 Y

3.5. Correlation Analysis

Moderate significant correlations (rs: 0.70–0.80) were found between the diffusion-
based parameters (except QA) Tv, MTP and Te, respectively. Low correlations were found
between QA and Tv (p = 0.015) and between the NPS scores and all WM-TOP parameters.
A Chi-Square test showed that there was no significant association between the AD, MD
and RD and NPS scores. The relationship of FA and QA with the NPS scores, respectively,
was significant (FA: χ2 (1, N = 70) = 4.3, p < 0.05, QA: χ2 (1, N = 70) = 8.2, p < 0.01). The
results from the correlation analysis are presented in Table 5.
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Table 5. The table shows the results from the correlation analysis using Spearmen’s rho and Chi-
Square test with p value significant at <0.05 (*) and confidence interval at 95%.
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3.6. Regression Analysis

The logistic regression analysis with neuropsychological impairment as the dependent
variable showed that abnormal QA was the only independent variable able to predict the
functional status of the patients (HR 2.80; p < 0.05) (Table 6).

Table 6. The table shows the results from the univariate and multivariate logistic regression performed
with neuropsychological (NPS) impairment as the dependent variable and the forward-conditional
method. p values were significant at <0.05 and Confidence Interval (CI) at 95%.

Logistic Regression Univariate p HR CI (95%)

NPS/AD 0.356 1.42 0.68–3.00

NPS/RD 0.591 1.21 0.60–2.46

NPS/MD 0.591 1.21 0.60–2.46

NPS/FA 0.277 1.50 0.72–3.11

NPS/QA * 0.048 2.80 1.01–7.77

NPS/Tumor volume 0.066 1.04 1.00–1.07

NPS/Tumor extension 0.224 1.01 1.00–1.02

Logistic Regression Multivariate p HR CI (95%)

QA (Abnormal)/NPS * 0.048 2.80 1.01–7.77
HR: Hazard ratio; AD: Axial diffusivity; RD: radial diffusivity; MD: Mean diffusivity; FA: Fractional anisotropy;
QA: quantitative anisotropy. *: significant values with p < 0.05.

4. Discussion

In the current study we used a graphical presentation of segmental along-tract analysis
to perform a qualitative analysis of diffusion-based parameters and neuropsychological
impairment in patients with DGs.
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The visual assessment of WM tracts is made easy with the graphical presentation
showing qualitative information and concomitant tumor presence. Similar graphs have also
been demonstrated by others [37,55,60] with minor differences. Although the graphical
presentation of along-tract analysis may be a potential tool in a clinical workflow, it is
highly flawed by the fact that the WM tracts have been reconstructed in MNI space and
have been altered length wise, hence they cannot be directly translated to patient-specific
cases. Still, one advantage in this case is the ability to perform comparisons with a normal
dataset which would otherwise be difficult. Moreover, the direction of anatomical structures
may be identified, showing more temporal or frontal abnormalities detected in Figure 1.
If implemented, this may be an important piece of information from the neurosurgical
perspective (to individualize treatment) or even to plan tailored radiotherapy.

We found that MD has the highest combined sensitivity and specificity to detect DGs
in segmental along-tract analysis. Furthermore, all abnormal MD segments showed higher
values compared to the normal data, suggesting MD to be a robust metric in line with
others [61]. We also demonstrated that QA may be useful in predicting NPS impairment.
However, the sensitivity of QA was relatively low, indicating that, in general, it is difficult
to detect a tumor using QA as a stand-alone parameter. Celtikci et al. reported that QA may
help to differentiate between infiltration and displacement [36]. However, no correlations
with single NPS scores were performed and we did not perform an in-depth analysis of their
specific correlations with WM tracts because of the small sample size and heterogeneous
tumor locations. Furthermore, we are not able to define if the detected abnormalities in
our study were related to WM tract being infiltrated, dislocated or a combination thereof,
hence our results should be carefully interpreted. We believe that this parameter should be
investigated more in future studies on WM–glioma interactions since it seems to be less
sensitive to peritumoral edema/damages [27,36].

The displacement, infiltration and disruption of WM tracts secondary to DGs have
previously been defined using diffusion-based parameters [62,63]. Of note, the WM tracts
used in this study are not tracked individually, but are based on a healthy template within
MNI space [58]. Consequently, using these parameters, we would not capture the true
trajectory of a displaced WM tract, but a combination of WM tract, displaced tissue and/or
tumor depending on the extent of the dislocation. In the case of infiltration, we would
measure the WM tract along the abnormal infiltrated segment.

Limitations and Future Directions

There are several limitations in this study. First, the sample size is relatively small and
the tumor locations and volumes are heterogeneous. This may affect the interpretation of
the results, especially the correlation analysis and logistic regression analysis which should
be carefully interpreted. The sample size is an inherent limitation of patients with DLGGs.
In our center, only patients who are eligible for a surgical resection undergo a neuropsy-
chological/cognitive assessment, with only 14 patients that met the inclusion/exclusion
criteria stated above. This may represent an additional limitation since this group may not
be large enough to validate our results. However, IDH-mutated tumors showed a similar
age span, and both in our cases and according to the literature, had a lower tendency to
show cognitive impairment at the onset [64]. This may be an important aspect to con-
sider for future studies that will need to confirm these results on a larger and even more
heterogeneous population of patients with different types of gliomas.

The number of WM tracts analyzed is also a limitation since the locations are hetero-
geneous. However, since our aim was an explorative study to investigate diffusion-based
parameters in major WM tracts, our results should be considered preliminary even if they
confirmed the expected relationship between WM tract location and tumor extension.

Further studies with larger patient cohorts are warranted to confirm our results and
to implement the method. One important aspect will be to analyze patients with tumor
harboring the same area and compare the results from the same surrounding white matter
bundles. Moreover, with a larger sample size one should potentially correlate different
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regions of specific WM tracts and specific neuropsychological tests, which was not possible
in this this study. With respect to diffusion-imaging methodology, it will be important to
compare different methods which are now available such as neurite orientation dispersion
and density imaging (NODDI) which can address some of the current limitations within
DTI [37]. Finally, to confirm the specific and regional infiltration of the WM tracts by tumor
cells, an intraoperative validation will be necessary, for instance, to sample different areas of
tumor/white matter during operation and analyzing cell density and possible infiltration
with separate analyses will give important clinical relevance to this non-invasive method.

Along-tract analysis has the potential to be utilized a tool for the regional non-invasive
detection of tumor infiltration to tailor treatment management, such as in precision radio-
therapy, or to confirm treatment response in the case of antitumoral drugs, as shown by
some recent studies [5].

5. Conclusions

The graphical presentation of along-tract analysis presented in this study may be a
sensitive and robust method to acquire and display topographical and qualitative infor-
mation regarding the integrity of WM tracts in close proximity to DGs. Further studies
and refinements to the methods presented herein may advance current clinical methods
for evaluating displacement and infiltrations and further aid the efforts of pre-planning
surgical interventions with the goal of maximizing EOR and individualizing treatment
algorithms.
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