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Abstract: Epilepsy is a neurological disease with one of the highest rates of incidence worldwide.
Although EEG is a crucial tool for its diagnosis, the manual detection of epileptic seizures is time con-
suming. Automated methods are needed to streamline this process; although there are already several
works that have achieved this, the process by which it is executed remains a black box that prevents
understanding of the ways in which machine learning algorithms make their decisions. A state-of-
the-art deep learning model for seizure detection and three EEG databases were chosen for this study.
The developed models were trained and evaluated under different conditions (i.e., three distinct
levels of overlap among the chosen EEG data windows). The classifiers with the best performance
were selected, then Shapley Additive Explanations (SHAPs) and Local Interpretable Model-Agnostic
Explanations (LIMEs) were employed to estimate the importance value of each EEG channel and
the Spearman’s rank correlation coefficient was computed between the EEG features of epileptic
signals and the importance values. The results show that the database and training conditions may
affect a classifier’s performance. The most significant accuracy rates were 0.84, 0.73, and 0.64 for the
CHB-MIT, Siena, and TUSZ EEG datasets, respectively. In addition, most EEG features displayed
negligible or low correlation with the importance values. Finally, it was concluded that a correlation
between the EEG features and the importance values (generated by SHAP and LIME) may have been
absent even for the high-performance models.

Keywords: EEG; epilepsy; machine learning; explainable artificial intelligence; correlation

1. Introduction

Epilepsy is a neurological disease that presents recurrent and unprovoked seizures [1].
This disease affects the physical health of the patient. It can impact mental health and
significantly decrease quality of life [1,2].

According to the World Health Organization (WHO), it is estimated that around
50 million people worldwide have epilepsy, with an annual diagnosis rate of approximately
five million people [3]. In the United States, the Center for Surveillance, Epidemiology,
and Laboratory Services estimated that in 2010 2.3 million adults had active epilepsy,
and that this number had increased to three million adults by 2015 [4]. From January
to September 2019, patients undergoing assessment or treatment for epilepsy accounted
for 2,998,000 consultations in the medical units of the Mexican Institute of Social Security
(IMSS) [5]. In [6], through the analysis of six epilepsy studies in Mexico, the prevalence
rate was found to be between 3.9 and 42.2 cases per thousand inhabitants. The prevalence
varied significantly by location.

The electroencephalogram (EEG) is one of the main tools used for the diagnosis of
epilepsy. Manually analyzing EEG recordings is very time consuming; therefore, using
computational tools for their analysis and characterization improves the diagnostic pro-
cess [7]. Several of the computational tools used to analyze EEG recordings are derived
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from the artificial intelligence field, including machine learning (ML) and deep learning
(DL).

On the one hand, ML has been widely applied in epilepsy for seizure detection,
differentiation of seizure states, and localization of seizure foci [8]. Conversely, the use of
DL techniques in epilepsy has increased regarding classification and prediction tasks [9].
As mentioned by [7], these DL techniques are usually reliant on nontransparent models.

In interesting work presented by [10], the authors proposed novel representations,
namely, the unigram ordinal pattern (UniOP) and bigram ordinal pattern (BiOP), to capture
underlying dynamics in EEG time series for seizure detection. Their approach demonstrated
high accuracy in discriminating between healthy and seizure states, outperforming existing
methods. A recent work [11] employed a combination of Variable-Frequency Complex
Demodulation (VFCDM) and Convolutional Neural Networks (CNN) to discriminate
between health, interictal, and ictal states using electroencephalogram (EEG) data then
evaluating CNN performance through leave-one-subject-out cross-validation (LOSO CV),
achieving consistently high accuracy rates between healthy and epileptic states.

Unfortunately, it is difficult to explain the decisions of a nontransparent model, and,
as argued in [12], explanations of the predictions are necessary to justify the reliability of
the models. A solution to this problem can be found in the explainable artificial intelligence
(XAI) field, which aims to produce justifications that facilitate the comprehension of a
model’s functioning and of the rationale behind its decisions, allowing end users to trust
the model [13].

In the state of the art, several studies have explored the utilization of XAI for the
analysis of EEG signals and the detection of seizures. In [14], a deep neural network for
seizure detection was designed. The model was subjected to adversarial training in order
to acquire seizure representations from EEG signals. Additionally, an attention mechanism
was implemented to assess the significance of individual EEG channels.

In [15], the connectivity characteristics of EEG signals were estimated, then a set of
neural networks was trained to detect seizures. The activation values of the neurons in
the classifiers were utilized to estimate the relevance of the characteristics. The findings
indicated that the relevance values varied for each subject.

In [16], the authors discussed the application of DL algorithms for the diagnosis
of epilepsy. In addition, the use of XAI to explain the model’s decisions was explored.
Among the various XAI techniques evaluated, only attention pooling could extract the
most significant segments from the signals. However, it was suggested that epileptographic
patterns may be too complex to be captured using attention pooling.

Other XAI techniques, such as Shapley Additive Explanations (SHAP) [17], have been
employed for different tasks. One such task the classification of the pre-ictal and inter-ictal
phases, as described in [18], where the authors used SHAP to assess each EEG channel’s
significance and demonstrated how this significance varied over time. Another task for
which SHAP has been utilized was presented in [19], where the detection of epileptic
seizures from time–frequency domain transformations of EEG was studied using neural
networks. Here, the task for SHAP was to visually identify the frequencies that contributed
most to the classification.

In [20], the authors proposed a system which uses a Bi-LSTM network for classifi-
cation of normal and abnormal signals caused by epilepsy and the Layerwise Relevance
Propagation (LRP) XAI method to explain the predictions of the network. The LRP method
generates a relevance vector for the test input vector. The authors reported that these
relevance values indicate the contribution of each datapoint of a signal, helping to classify
signals into a particular class.

In another work, SHAP formed part of a methodology known as XAI4EEG developed
for the detection of seizures and explanation of the model’s decisions [21]. This technique
consists of extracting the time and frequency features of EEG signals for classification by
two convolutional neural networks, with SHAP implemented for explanation generation.
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In [22], the authors performed minor signal processing steps such as filtering, and
used the discrete wavelet transform (DWT) to decompose the EEG signals and extract
various eigenvalue features of the statistical time domain (STD) as linear and Fractal
Dimension-based Nonlinear (FD-NL) features. Following this feature extraction step, the
optimal features were identified through correlation coefficients with p-value and distance
correlation analysis and classified using a Bagged Tree-Based Classifer (BTBC), followed by
SHAP to provide the explanations.

Based on the understanding that DL models can identify patterns in epileptic EEG
signals, are these patterns alone helpful? In addition, if we add transparency using XAI,
could the explanations help to identify ictal EEG patterns?

The main objective of this work is to evaluate the utility of explanations generated
by XAI techniques such as SHAP and Local Interpretable Model-Agnostic Explanations
(LIME) in identifying epileptiform patterns in EEG signals. The aim is to determine
whether these explanations can enhance the understanding of deep learning (DL) models
and assist in identifying ictal patterns in EEG signals. To achieve this, three EEG databases
and a state-of-the-art DL model are utilized to evaluate the models’ performance under
different training conditions. Moreover, EEG features are computed for each channel, and
the Spearman’s rank correlation coefficient between these features and the importance
values generated by XAI techniques is assessed. In summary, this study aims to highlight
the complexity involved in identifying ictal patterns from DL models and to explore the
role of transparency provided by XAI techniques in this process.

2. Materials and Methods

This section describes the methods used for training the models, implementing XAI,
and estimating the features. A general methodological overview is shown in Figure 1.

Figure 1. Diagram of the methodology.
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2.1. Datasets

The CHB-MIT Scalp EEG database was presented in [23] and is available in a reposi-
tory [24]. It consists of surface electroencephalograms of 23 pediatric patients with epilepsy:
five males (ages 3–22) and 17 females (ages 1.5–19). The patients were undergoing medica-
tion withdrawal for epilepsy surgery evaluation. One subject was recorded at an interval
of 1.5 years; these recordings are considered as two different cases. There was no gender
or age information for one subject. The EEG signals were sampled at a frequency of 256
Hz. The electrodes were placed following the 10/20 system. Most of the recordings contain
channels of the longitudinal bipolar montage. As mentioned in [23], the dataset was mostly
segmented into 1 h recordings. The recording device is not mentioned.

The Siena Scalp EEG database was presented in [25] and is available at [26]. This
dataset contains surface EEG recordings from 14 adult patients: nine males (ages 36–71) and
five females (ages 20–58). The recordings have a duration between 1 h and 13 h. The signals
were recorded with a sampling frequency of 512 Hz. The electrodes were placed according
to the 10/20 system. The channels were monopolar. EB Neuro and Natus Quantum LTM
amplifiers were utilized for data acquisition. The subjects were monitored using a video
scalp EEG and were asked to stay in bed most of the time.

The TUH EEG Seizure Corpus (TUSZ) was presented in [27,28]. It consists of surface
EEG recordings from 315 subjects obtained over 822 sessions. Only 280 sessions contain
a seizure. The gender composition is 153 males and 162 females. The dataset includes
both pediatric and adult patients. Most EEG recordings have a duration between 0 and
30 min. The sampling frequency varied per patient (250 Hz, 256 Hz, 400 Hz, and 512 Hz).
The channels were monopolar. The recording devices are not mentioned. Due to the
breadth of this database, the recording protocols, ages, and recording durations are varied
(refer to [27] for detailed information).

2.2. Data Pre-Processing

EEG recordings were discarded based on the following criteria:

• They did not contain ictal activity;
• The channel list was different from that of the rest of the recordings;
• The sampling frequency was different from that of the rest of the recordings;
• There was only a single recording for each patient.

Another consideration for this study was the use of bipolar longitudinal montages.
This choice was motivated by the prevalence of databases presenting recordings in this
format and the advantage of transforming monopolar montages into bipolar rather than
vice versa.

Due to the large amount of data, only a subset of patients was selected from the
TUSZ dataset. The number of patients, channels, and seizure types is detailed in Table 1.
Finally, a Notch filter was applied to the EEG windows to remove the power line frequency.
Moreover, a second-order high-pass Butterworth filter was used to remove frequencies
under 0.5 Hz.

Table 1. Details of the datasets after preprocessing.

Database Patients Seizure Types Source Montage Category Channels after Pre-Processing

CHB-MIT Scalp EEG Database 24 Not specified Bipolar

Fp1-F7, F7-T7, T7-P7, P7-O1,
Fp1-F3, F3-C3, C3-P3, P3-O1,
FP2-F4, F4-C4, C4-P4, P4-O2,
FP2-F8, F8-T8, T8-P8, P8-O2,

FZ-CZ, CZ-PZ, T7-FT9,
FT9-FT10, FT10-T8

Siena Scalp EEG Database 10

Focal onset impaired awareness
(IAS), focal onset without

impaired awareness (WIAS),
focal to bilateral

tonic–clonic (FBTC)

Referential

Fp1-F7, F7-T3, T3-T5, T5-O1,
Fp1-F3, F3-C3, C3-P3, P3-O1,
Fp2-F4, F4-C4, C4-P4, P4-O2,
Fp2-F8, F8-T4, T4-T6, T6-O2,

Fz-Cz, Cz-Pz
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Table 1. Cont.

Database Patients Seizure Types Source Montage Category Channels after Pre-Processing

TUH EEG Seizure Corpus 21

Tonic–clonic (tcsz), focal
non-specific (fnsz), generalized

non-specific (gnsz), absence
seizure (absz), complex-partial

seizure (cpsz)

Referential

Fp1-F7, F7-T3, T3-T5, T5-O1,
Fp1-F3, F3-C3, C3-P3, P3-O1,
Fp2-F4, F4-C4, C4-P4, P4-O2,
Fp2-F8, F8-T4, T4-T6, T6-O2,

Fz-Cz, Cz-Pz

2.3. Dataset Segmentation, Training, and Testing

According to the methodology described in [29], the EEG signals were segmented into
windows of 2 s. In order to ensure that both classes, ictal and non-ictal, were represented
equally during training and validation, a two-step balancing process was implemented: the
first step consisted of oversampling the ictal epochs with three different overlap ratios (80%,
70%, and 50%), while the second step involved subsampling from the larger class. While
evaluating the DL models, the windows were created without overlap to avoid utilizing
known data, and both classes were balanced. From the training set, 20% was used as the
validation set.

2.4. Deep Learning Models

A literature search was conducted to select the DL algorithm. The search criteria were
as follows:

• Papers were included in PubMed and Clarivate;
• Papers were published after 2015;
• Papers were available via open access;
• Papers described bi-class classification (ictal and non-ictal);
• Papers described the use of raw EEG data;
• Papers described the implementation of a deep learning model;
• Papers described patient-specific models;
• Papers described the use of performance metrics.

After reviewing the papers meeting the above criteria, the model presented by [30]
was selected. Table 2 displays the performance and characteristics of the model. In [30], two
approaches were tested: segment-based and event-based. The segment-based approach
was relevant to the present research.

Table 2. Performance and characteristics of the model presented by [30].

Characteristic Value

Model CNN
Training type Patient-specific

Accuracy (CHB-MIT) 0.99
Sensitivity (CHB-MIT) 0.88
Specificity (CHB-MIT) 0.99

The model is a Siamese convolutional neural network (CNN), and is illustrated in
Figure 2. The convolutional layers utilize ReLU as the activation function, while Softmax
is applied to the output layer for activation. A dropout layer is appended between the
fully connected layers, with a dropout rate equal to 0.25. Throughout the remainder of this
document, this model is referred to as Wang_1d. We used different parameters than those
used in [30]. The Adam algorithm was employed as the optimizer, using the following
parameters: α = 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 1 × 10−7. Binary cross-entropy was
used as the loss function and accuracy as the evaluation metric. The number of epochs and
the batch size were both 100.
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Figure 2. Wang_1d neural network. Values in parentheses are as follows: (number of filters, kernel
size/number of neurons, stride).

2.5. Model Evaluation

The models were trained and evaluated using an intra-patient approach. A similar
approach to leave-one-out cross-validation was implemented for model evaluation. A
neural network was trained k times using a specific overlap rate, with k representing the
number of recordings per patient. In the first iteration, k − 1 recordings were utilized for
training and the remaining recordings were used for evaluation.

The specificity, sensitivity, accuracy, AUC–ROC, and F1-score were calculated for
each iteration. Specificity and sensitivity were used to measure the capacity of the model
to detect true positives and true negatives. Accuracy and F1-score provide a general
measure of performance, and are commonly computed for seizure detection models, while
AUC-ROC helps to visualize the separability between classes.

2.6. Feature Computation

The EEG windows were separated into the following three sub-bands: low frequencies
(<12 Hz), beta (12–25 Hz), and gamma (>25 Hz). Second-order Butterworth filters were
used for band separation.

A set of 14 features that simplified the behavior of segmented bipolar EEG signals by
capturing some of their key characteristics was computed; these are mentioned in Table 3.
Features were computed for each sub-band separately, and primal EEG epochs were con-
sidered during computation. The total number of features was 14 f eatures × 4 bands = 56.
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The selection of features was based on previous research [31]. Although an exhaustive
analysis was not performed, the selected features have been utilized in previous studies
of epilepsy.

Table 3. Estimated EEG features.

Feature Name

Median Frequency (MedFreq) [32]
Complexity [33]
Skewness [34]
Mobility [33]
Kurtosis [34]
Interquartile Range (IR) [34]
Peak Frequency (PkFreq) [35]
Median Absolute Deviation (MAD) [36]
Root Mean Square (RMS) [34]
Sample Entropy (SampEn) [37]
Range [34]
Mean [34]
Number of Zero Crossings (ZC) [33]
Standard Deviation (STD) [34]

2.7. Explainable Artificial Intelligence

In this work, the Shapley Additive Explanations (SHAP) and Local Interpretable Model-
Agnostic Explanations (LIME) techniques were chosen to assess the model’s explainability.

2.7.1. Shapley Additive Explanations

SHAP is an approach for interpreting the predictions made by ML models [17]. To eval-
uate an instance, each attribute is assigned a SHAP value, which indicates the relative
importance of the attribute to the model’s decision-making process. The formal definition
is as follows:

ϕi( f , x) = ∑
z′⊆x′

|z′|(M − |z′| − 1)!
M!

[ fx(z′)− fx(z′\i)] (1)

where x is the instance to be explained, f is the model, i is the feature to be evaluated,
and M is the number of features. Additionally, x′ contains all possible perturbations of x.

In this work, we utilized the PartitionSHAP algorithm [38], which is a component
of the software package introduced by the authors of [17]. This algorithm allows for
the computation of importance values by evaluating a group or coalition of features.
Consequently, the features of a given coalition receive the same SHAP value.

PartionSHAP computes Shapley values using a hierarchical approach that defines
coalitions and returns Owen values [39]. The hierarchy depth allows the coalition size to
be determined. We applied PartitionSHAP solely to the classification model exhibiting the
best overall performance (refer to Section 3 for further details). Subsequently, we estimated
the SHAP values for those instances correctly classified as ictal.

The depth of the PartitionSHAP hierarchy was tailored such that each coalition cor-
responded to a single channel of the EEG window (see Figure 3). Consequently, a single
importance value was computed per channel. Two SHAP values were obtained for specific
channel pairs, as the PartitionSHAP hierarchy operates through powers of 2. In such cases,
the importance of these coalitions was determined as the mean value of both SHAP values.
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Figure 3. The application of SHAP to an EEG epoch: (a) the ictal EEG window of patient chb01 and
(b) the matrix of SHAP values.

2.7.2. Local Interpretable Model-Agnostic Explanations

LIME is an approach for explaining the predictions of any classification model by
approximating it locally using an interpretable model [40]. An interpretable model should
provide an understanding of both the input variables and the response.

The formal definition of LIME’s explanation is as follows:

ξ(x) = argmin
g∈G

L( f , g, πx) + Ω(g) (2)

where x is the instance to be explained, ξ is the instance explanation, g is a potentially
interpretable model such as a linear model or decision tree, and f is the classification
model. The function L measures the approximation of g to f in the locality defined by πx.
The complexity of g is measured by Ω(g); this parameter is related to the complexity of the
model g.

To approximate L( f , g, πx), a set of instances around x is sampled. The sampling is
performed by perturbing the features of x, with the nearer instances having higher weights.
Later, the model g is adjusted on the basis of the perturbed dataset by considering the
instance weights.

In this work, we utilized the LimeImageExplainer algorithm introduced by the authors
of [40]. This method considers the neighbors’ features as superpixels. Therefore, a superpixel’s
members receive the same importance value. Additionally, the algorithm uses the Euclidean
distance to weight the perturbed instances and Ridge regression as the interpretable model.
The adjusted regressor coefficients are considered as the importance values.

The method was adjusted to evaluate each channel as a group (see Figure 4); therefore,
each channel received a unique importance value. Similar to PartitionSHAP, LIME was
solely applied to the classification model exhibiting the best overall performance (refer to
Section 3 for further details).
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Figure 4. The application of LIME to an EEG epoch: (a) the ictal EEG window of patient chb01 and
(b) the matrix of LIME values.

2.8. Correlation Computation

Every channel has an importance value and a corresponding set of features. For a
given feature (e.g., the complexity of the beta band), we computed the Spearman’s rank
correlation coefficient [41] between the feature and the importance values. This analysis
was repeated for every feature and patient. During the correlation experiments, the non-
ictal windows were not considered, as this research aimed to understand the behavior of
the ictal stage.

2.9. Computing Hardware

The experiments were conducted on two devices with the following technical specifi-
cations: a computer equipped with an Intel Core i7 processor, 12 GB of RAM, and Ubuntu
18.04, and a server equipped with an Intel Xeon Gold processor, 125 GB of RAM, and an
NVIDIA Tesla P100, Python 3.7 [42] was employed to code all experiments, along with
various open-access Python libraries.

3. Results

In this section, the results of our experiments are presented. First, we present the
model’s performance when trained with varying percentages of overlapping windows
for each of the EEG datasets. Finally, we examine the correlation between the importance
values and the EEG features.

3.1. Model Performance

This analysis aimed to visualize the variations in performance for a deep learning neural
network subjected to various conditions. The varied conditions were as follows. Overlapping
was applied to the training set and the EEG dataset used for training; the window overlapping
on the training set functioned as a data augmentation technique to help balance the classes. In
order to avoid biasing the results, the test set was not augmented.

Table 4 presents the results of the classification models. The metrics were averaged
across patients. The performance on the CHB-MIT database was superior to that on
the Siena and TUSZ datasets. The sensitivity and specificity were greater than 0.82 and
0.60, respectively.

Considering that the test set is balanced and that we are modeling a bi-class problem,
accuracy is a good metric for evaluating overall performance. In this sense, the highest
accuracy was obtained using a 80% overlap for each dataset: 0.84 (CHB-MIT), 0.73 (Siena),
and 0.64 (TUSZ). As expected, this may imply that using more instances used during train-
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ing results in better modeling. Note that none of the individual test sets were augmented.
Additionally, even when the accuracy metric was calculated, sensitivity and specificity were
computed as well in order to obtain a deeper view of the ictal and non-ictal predictions. It
should be noted that the model’s sensitivity was always greater than its specificity, which
in our case implies that the model performed better on identifying the target class (ictal).
The difference between the sensitivity and specificity was considerable for the Siena dataset
(50% and 70% overlap rate, respectively).

The specificity rose when the overlap was increased; on the other hand, the sensitivity
tended to decrease. Generally speaking, the model’s accuracy was greater as the overlap
rate increased. Contrary to the Siena and CHB-MIT datasets, on the TUSZ dataset these
effects might be a consequence of the mixture of participants, particularly the mixture of
adult and pediatric subjects. It is important to consider that the results in Table 4 correspond
to the average of all participants per dataset. The largest F1-score was displayed when
using an overlap rate of 80%:0.83 (CHB-MIT), 0.71 (Siena), and 0.62 (TUSZ). Unlike the
accuracy, it did not follow an ascending trend. Finally, the AUC-ROC score was over 0.85
for the CHB-MIT database, while TUSZ returned the lowest score (0.70, 50% overlap). The
scores for the CHB-MIT and Siena datasets did not display an ascending trend.

Table 4. Mean performance of the classification models.

Model Overlap (%) Sensitivity Specificity Accuracy F1-Score AUC–ROC

CHB-MIT

Wang_1d 50 0.83 0.61 0.72 0.73 0.86
70 0.83 0.77 0.79 0.60 0.88
80 0.84 0.84 0.84 0.83 0.88

Siena

Wang_1d 50 0.84 0.39 0.62 0.68 0.78
70 0.80 0.53 0.63 0.56 0.79
80 0.74 0.71 0.73 0.71 0.78

TUSZ

Wang_1d 50 0.73 0.49 0.61 0.61 0.70
70 0.69 0.58 0.63 0.54 0.73
80 0.69 0.58 0.64 0.62 0.74

To depict the individual prediction behavior of the models, Figure 5 displays the model
performance for each EEG dataset. It includes the metrics for all patients (the number
of subjects can be observed in Table 1). A 70% overlap was used to generate this chart.
The median of the CHB-MIT results was higher than that of the other two datasets; this
situation applied to four metrics, specificity, accuracy, F1-score and AUC-ROC. Therefore, it
can be intuited that the Wang_1d model performed best when using the CHB-MIT dataset.

Figure 5. Performance comparison for each EEG database. A 70% overlap was used to estimate
the metrics.

Moreover, the TUSZ-related values spanned an extensive range, meaning that the
model was able to achieve good performance for some patients while showing poor results
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for others. As displayed in Table 4, the models tended to be more sensitive than specific. As
mentioned before, it is important to consider that the TUSZ dataset contains both pediatric
and adult patients; thus, such heterogeneity may be reflected in the dispersion of the
prediction performances.

Figure 6 shows the model accuracy when varying the overlap rate. As stated, the over-
lap was only applied to generate the training dataset, not the evaluation one. When using
the CHB-MIT and Siena datasets, it was noted that the overall accuracy increased when the
overlap increased. On the other hand, the TUSZ-related models did not show this behavior.
Again, the TUSZ-related ranges were the largest among the three datasets. It is noticeable
that, visually speaking, there is no effect when using different window overlaps and the
accuracy is lower among all datasets.

The Friedman test [41] returned a p-value = 7.48 × 10−5 for the CHB-MIT dataset and
0.02 for the Siena dataset, indicating that increasing the overlap could increase the model’s
performance. The previous statement is supported by Figure 6 and Table 4. The Friedman
test applied to the TUSZ accuracy values returned a p-value = 0.54.

Figure 6. Performance comparison for each overlap rate.

Figure 7 displays the model accuracy for each patient. A 70% overlap was used to
estimate the performance. Each point denotes a patient. The variable used to perform
the comparison was the seizure type. When a patient suffered from several seizure types,
the most common type was considered.

Figure 7. Performance comparison for each patient based on the most common seizure type. Data are
displayed for the (a) Siena and (b) TUSZ datasets. A 70% overlap was used to estimate the metrics.
Each circle denotes a patient.

Figure 7a,b displays the performance for subjects belonging to the Siena and TUSZ
datasets, respectively. As per the charts, there was no clear relation between seizure type
and model performance. The CHB-MIT values were not included, as the type of seizure
was not explicitly mentioned for each patient.
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3.2. Correlation between Importance Values and EEG Features

Considering that the greatest accuracy was achieved when using an 80% overlap,
these models were used to estimate the importance values and correlation coefficients.

Figures 8–10 show the distribution of the Spearman’s rank correlation coefficients.
The histograms are individually displayed for the SHAP and LIME experiments. The coef-
ficients within the blue dashed lines can be interpreted as negligible correlations. The coef-
ficients between the red and blue dashed lines denote a low correlation (see Table 5). It is
essential to consider that the Spearman’s rank correlation coefficient measures the strength
of a monotonic relationship between two variables.

Table 5. Interpretation of the size of a correlation coefficient. Taken from [43].

Size of Correlation Interpretation

0.90 to 1.00 (−0.90 to −1.00) Very high positive (negative)
0.70 to 0.90 (−0.70 to −0.90) High positive (negative)
0.50 to 0.70 (−0.50 to −0.70) Moderate positive (negative)
0.30 to 0.50 (−0.30 to −0.50) Low positive (negative)
0.00 to 0.30 (−0.00 to −0.30) Negligible correlation

The Spearman’s rank correlation coefficients estimated using the CHB-MIT dataset
are displayed in Figure 8. The chart shows that there was no moderate or high correlation
between the SHAP importance values and EEG features. The same was true for the LIME
values. The vast majority of coefficients were near zero. A number of the experiments
displayed a low positive/negative monotonic relation.

Figure 8. The distribution of the Spearman´s rank correlation coefficients estimated for the CHB-MIT
dataset. The range between the blue dashed lines corresponds to a negligible correlation, while
the range between the blue and red dashed lines corresponds to a low correlation. (a) SHAP values;
(b) LIME values.
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Figure 9. The distribution of the Spearman’s rank correlation coefficients estimated for the Siena
dataset. The range between the blue dashed lines corresponds to a negligible correlation, while
the range between the blue and red dashed lines corresponds to a low correlation. (a) SHAP values;
(b) LIME values.

The results in Figure 9 are similar to those in Figure 8. Most coefficients fall within the
blue dashed lines; these correlations are negligible. This analysis applies to both the SHAP
and LIME experiments. In Figure 9a, a number of of the coefficients indicate a moderate
positive correlation; these are discussed later.

Figure 10. The distribution of the Spearman’s rank correlation coefficients estimated for the TUSZ
dataset. The range between the blue dashed lines corresponds to a negligible correlation, while
the range between the blue and red dashed lines corresponds to a low correlation. (a) SHAP values;
(b) LIME values.
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Notwithstanding this, Figure 10 displays similar behavior to that in Figures 8 and 9,
as a more considerable number of the Spearman’s rank correlation coefficients surpassed
the 0.50 and 0.70 thresholds (moderate and high correlation, respectively).

Five of the six patients were part of the TUSZ dataset. The features that had a mod-
erate/strong monotonic relation with the XAI explanations were diverse, including STD,
MAD IR, RMS, and Range. Most features were estimated for the beta band (12–25 Hz).

Although the experiments returned a moderate correlation, the model accuracy was
unsatisfactory for several patients (PN05, 1027 and 6904). Therefore, a moderately strong
correlation does not imply a proficient model. The only experiment returning a high
correlation corresponded to patient 4456, where, remarkably, the model accuracy was 0.96.
The most common seizure type for the previous patient was gnsz.

Table 6 details the patients for whom the experiments displayed a moderate/high
correlation between the importance values and EEG features. Regarding the p-value, the
null hypothesis is that the samples have no ordinal correlation; the alternative hypothesis
is that the correlation is nonzero.

Table 6. List of patients for whom the experiments displayed a moderate/high correlation between
the importance values and EEG features. The ’Top Correlation’ column indicates the three features
with the largest correlation coefficients.

Patient Dataset Accuracy XAI Method Top Correlation

PN05 Siena 0.54 SHAP Low/STD (0.55, p-value = 2.42 × 10−48)
Low/MAD (0.55, p-value = 2.05 × 10−49)

Low/IR (0.55, p-value = 2.30 × 10−49)

1027 TUSZ 0.70 SHAP Full/IR (0.53, p-value = 0)
Full/RMS (0.53, p-value = 0)

Low/Range (0.54, p-value = 0)

4456 TUSZ 0.96 SHAP Beta/IR (0.70, p-value = 9.31 × 10−50)
Beta/RMS (0.71, p-value = 1.58 × 10−50)
Beta/STD (0.71, p-value = 1.59 × 10−50)

6904 TUSZ 0.63 SHAP Beta/IR (0.66, p-value = 0)
Beta/MAD (0.66, p-value = 0)
Beta/RMS (0.66, p-value = 0)

LIME Beta/MAD (0.53, p-value = 0)
Beta/RMS (0.53, p-value = 0)
Beta/STD (0.53, p-value = 0)

6563 TUSZ 0.79 LIME Beta/MAD (0.52, p-value = 0)
Beta/RMS (0.53, p-value = 0)
Beta/STD (0.53, p-value = 0)

4. Discussion

This section presents a discussion of the results and their interpretation. In addition,
the limitations of the present work and future research opportunities are addressed.

A state-of-the-art DL model was evaluated in this study, specifically, the one-dimensional
convolutional neural network for seizure onset detection presented in [30]. Despite aiming
to select models that demonstrated high performance and rigor in their evaluation, it
should be acknowledged that the search for models could have been more comprehensive.

In [30], two databases were employed, namely, CHB-MIT [23] and SWEC-ETHZ
iEEG [44], with the former being surface and the latter intracranial. Furthermore, the mod-
els were trained using an intra-patient approach. The results reported in [30] using the
CHB-MIT data showed mean sensitivity, specificity, and accuracy values of 0.88, 0.99,
and 0.99, respectively. In contrast, our study utilizing the same EEG dataset (see Table 4)
reported maximum sensitivity, specificity, and accuracy of 0.84, 0.84, and 0.84, respectively,
with significantly lower specificity. It is essential to consider the differences in data forma-
tion between [30] and our work, such as the use of short-duration seizures, avoidance of
seizure concatenation, and overlapping rates.
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A brief overview of similar studies conducted using comparable methodologies is pre-
sented next. In [45], a sensitivity of 0.976 was reported for intra-patient models; this was
achieved by applying a convolutional neural network in conjunction with a long short-term
memory network. In [46], the authors employed inter-patient models using only the CHB-
MIT database, and reported mean values of 0.90, 0.91, and 0.98 for sensitivity, specificity,
and accuracy, respectively. In [47], the authors trained patient-specific convolutional neural
networks and reported values of 0.90 and 0.98 for sensitivity and the area under the curve,
respectively. In [48], the authors utilized a neural network called ScoreNet, achieving a sen-
sitivity of 0.765 and specificity of 0.999. Finally, an accuracy of 0.805 was obtained by [14],
who trained inter-patient models using an adversarial neural network. Among the mentioned
works, ref. [45–48] used the CHB-MIT database, while [14] used the TUH EEG Seizure Corpus.
However, there are other works that have reported better performance in terms of accuracy,
such as [11] for advanced epilepsy detection by applying VFCDM and CNN, who achieved
consistently high accuracy rates between healthy and epileptic states. However, their results
were obtained for the Bonn database, which contains only five patients with epilepsy. In
our work exploring the importance of EEG channels in detecting epileptic seizures, we have
identified that database and training conditions can affect classifier performance.

Regarding the work presented in [10], the authors selected three EEG datasets, one of
which was the publicly available Bonn dataset, to demonstrate that their method outperformed
several state-of-the-art methods. A second dataset was used to show the good generalization
ability of their proposed method, and a third dataset to demonstrate that their method is
suitable for large-scale datasets. In our work, we selected three EEG datasets to train and
evaluate the models under different conditions of overlap between EEG data windows.

One of the goals of the present research was to understand how the training conditions
can impact a model’s performance. First, the results showed that a model’s sensitivity and
specificity can vary noticeably based on the EEG dataset. For example, the overall specificity
for CHB-MIT models was more significant than for the rest of the models (see Figure 5).
Accordingly, any ML model used to detect seizures should be evaluated across diverse
EEG datasets.

The differences in performance can be explained by the differences between the EEG
datasets, such as the EEG channels, sampling frequency, patient demographics, and epilepsy
characteristics. Second, it was observed that an overlap during training impacts the model’s
performance. During this research, the overlap was applied to the ictal instances to address
class imbalances. In addition, the largest class (non-ictal) was subsampled to generate a
balanced dataset.

Our results showed that the more significant the overlap applied to the ictal class,
the higher the accuracy. It should be noted that a significant overlap implies that the
training dataset size has increased. An exception is the TUSZ dataset; Table 4 shows an
increase in overall accuracy for the TUSZ models, although the increase is not significant.

Our work can be compared to similar state-of-the-art works with the primary objective
of automatically detecting seizures by applying machine learning methods to EEG signals
and incorporating explainable artificial intelligence techniques to enhance the interpretabil-
ity of the models used in seizure detection. First, we have the work presented in [20]; the
authors proposed a system which uses a Bi-LSTM network to classify normal and abnormal
signals caused by epilepsy, achieving an accuracy of 87.25% on the Bonn dataset. They
used the Layerwise Relevance Propagation (LRP) XAI method to explain the predictions of
their network. LRP generates a relevance vector containing relevance values to indicate the
contribution of a signal in particular class. However, as stated by the authors, many points
in the relevance vector were missed; thus, this implementation of the LRP method requires
further improvement to generate more accurate results. In [22], the main difference with
our work is in the feature extraction step. They reported an accuracy of 99.6% on the Bonn
dataset, and their explanations were over the features rather than the signal morphology
(time series). In our work, we chose a state-of-the-art deep learning model for seizure de-
tection and three EEG databases. The developed models were trained and evaluated under
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different conditions and the classifiers with the best performance were selected. SHAP
and LIME were then employed to estimate the importance value of each EEG channel. To
measure the similarity between the explanations and the epileptic signals, we computed
the Spearman’s rank correlation coefficient between the EEG features of epileptic signals
(time series) and the importance values. Another important difference between these works
are the data sources. In [20,22], the authors used an open access dataset published by
researchers at Bonn University containing intracranial EEG recordings from a total number
of ten subjects, of whom five were healthy volunteers and the other five were epilepsy
patients. Compared to our work, in which three databases were tested, previous works
have used a limited dataset in order to evaluate their algorithms. Furthermore, studies
employing the Bonn dataset used intracranial instead of scalp EEG recordings.

The interpretability of classification models used in the medical field is crucial, as men-
tioned by [12,49]; although the number of XAI algorithms is significant, not all algorithms
can be applied to time series. Compared to other fields, the interpretation of time series in
this field is usually not intuitive, and requires domain knowledge [13,50]. In the present
work, SHAP and LIME, which are both agnostic and local methods, were applied. SHAP
has previously been used for EEG signals; selected use cases are displayed in Table 7.

Table 7. XAI methods applied to EEG signals.

Reference Applied Methods

[51] Bag of Waves
[52] Clustered Pattern of Highly Activated Period
[18] SHAP
[16] ProtoPNet, Attention Pooling, Layerwise Relevance Propagation, SHAP
[15] Activation values
[14] Attention Pooling
[19] SHAP
[53] EEG-SHAP
[54] SHAP, Maximized inputs

In light of the capacity of XAI methods to identify information relevant to the classifier,
it may be possible to identify discriminating ictal patterns in high-importance regions (e.g.,
large SHAP values would match large STD values). As XAI aims to provide transparency,
understandable ictal patterns would be preferable.

In line with the above, the Spearman’s rank correlation coefficient between the
XAI-generated importance values and the EEG features was computed. As previously
stated, this coefficient measures the strength of a monotonic relationship.

As deduced from the results, the strength of the relationship was low and negligible
even for high-performing models. The most remarkable cases are described in Table 6. It
was observed that experiments resulting in a moderate correlation did not present high
accuracy; therefore, a larger correlation coefficient does not imply better performance.
The only exception was patient 4456 (TUSZ dataset).

To the best of the authors’ knowledge, there is no similar study in the state of the art;
hence, the comparison was complex. However, the difficulties in obtaining epileptic EEG
patterns have been described in previous works, e.g., [15,18]. It is relevant to mention that
while several previously published works have included XAI to increase the transparency,
they did not apply a pattern/explanation evaluation stage.

In addition to the above, the following limitations must be considered: the applied XAI
methods, the small set of EEG features, and the chosen classification model. Although more
extensive experiments could be performed to search for correlation patterns, alternative
approaches must be considered. These are outlined below.

In [55], the classification of seizure and non-seizure states was performed. Random forest
showed the best accuracy among the evaluated classification models. Bidirectional network
graphs and the lifespan of homology classes were computed to characterize the EEG windows.
SHAP was implemented to provide model transparency. The use of EEG features as model
inputs provided an initial foundation for transparency, contrary to the raw EEG signals.
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In [56], the classification of eight seizure types was addressed. A deep neural network
was used for classification and raw EEG windows were used as model inputs. SHAP and
topographic maps were applied for transparency. Notably, network activation was used to
plot the topographic maps. This technique adds a spatial feature to the XAI explanations,
which may indeed be helpful for medical staff.

Additionally, seizure prediction was addressed in [57]. A list of univariate linear
features was estimated from EEG recordings. Support vector machine, logistic regres-
sion, and CNN were applied during classification. A diverse set of techniques was used
to provide explainability, e.g., SHAP, LIME and partial dependency plots. Importantly,
the explanations were evaluated by humans (data scientists and clinicians).

Finally, there are a number of limitations in the present work. First, even though
a deeper literature revision was performed, modeling the three datasets using several
architectures is required to measure the effect of architecture variations. Second, it would
be interesting to group the information by several different conditions (for example, on
the basis of seizure type, sex, and age, among others) in order to evaluate their effects on
detection of ictal patterns. Third, as the use of the Spearman correlation constrains the
search to monotonic relations, different nonlinear metrics should be used.

5. Conclusions

The main contribution of this work is the evaluation of the Spearman’s rank correlation
coefficient between the features of EEG signals and XAI explanations to identify ictal patterns.
It was observed that the EEG dataset impacted the performance of the classification models.
Additionally, significant overlaps during training may increase model performance. Our
results indicate a negligible and low correlation coefficient between the evaluated features
and the LIME/SHAP values, although a few exceptions were observed.

For future work, it is recommended to perform a tradeoff analysis considering the
model’s performance and explainability as variables. Clinicians should participate in the
explainability evaluation.
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