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Abstract: Sleep disorders are the most widespread mental disorders after stroke and hurt survivors’
functional prognosis, response to restoration, and quality of life. This review will address an overview
of the progress of research on the biological mechanisms associated with stroke-complicating sleep
disorders. Extensive research has investigated the negative impact of stroke on sleep. However, a
bidirectional association between sleep disorders and stroke exists; while stroke elevates the risk
of sleep disorders, these disorders also independently contribute as a risk factor for stroke. This
review aims to elucidate the mechanisms of stroke-induced sleep disorders. Possible influences
were examined, including functional changes in brain regions, cerebrovascular hemodynamics,
neurological deficits, sleep ion regulation, neurotransmitters, and inflammation. The results provide
valuable insights into the mechanisms of stroke complicating sleep disorders.

Keywords: sleep disorders; stroke; mechanisms; brain regions; circadian rhythms; sleep stage;
neurotransmitter; inflammation; ion; kinase; treatment strategy

1. Introduction

Stroke is the leading cause of death and disability globally and seriously affects the
health of adults. Studies highlight that those who experience stroke often face an increased
risk of a subsequent occurrence, with worldwide incidence rates increasing. The disease
burden of stroke has dramatically increased over the previous 30 years, with the incidence
of stroke increasing by approximately 70.0% and the number of stroke deaths increasing
by approximately 43.0% [1]. The highest incidence of stroke is found in low- and middle-
income countries, especially Eastern Europe, Asia and sub-Saharan Africa, notably the
United Arab Emirates (208.2 per 100,000) and China (144.8 per 100,000). Even in econom-
ically better countries, the incidence is high as 40.4 per 100,000 (New Zealand) [2]. A
notable detail is that prevalent post-stroke sleep disturbances, with rates ranging from 76%
to 82%, exhibit distinct clinical features [3,4]. Current research revealed that as many as
92.4% of patients with mild to moderate ischemic strokes suffer from acute sleep disor-
ders, underscoring the concerning sleep health of cerebral infarction patients [5]. Studies
have indicated that sleep disorders, such as insomnia, narcolepsy, heteromorphic sleep,
circadian rhythm disturbances and periodic limb movement disorders have high poten-
tial to contribute to the prognosis of stroke [6]. After a stroke, the prevalence of sleep
apnea is notably high, with estimates reaching as much as 70% [7]. Factors amplifying this
trend include aging demographic and stroke-associated risk elements, which increase the
cumulative disease burden [8,9]. This situation requires high-level attention, and robust
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measures should be taken to prevent stroke and its complications to improve the quality
of life of patients. Although emerging research has discerned a correlation between sleep
anomalies and the evolution of ischemic stroke, suggesting a bidirectional interaction, the
molecular intricacies bridging them remain partially veiled [10,11]. The academic realm is
progressively accentuating the diagnosis and therapeutic approaches for sleep irregularities
post-stroke, a step pivotal for the comprehensive recuperation of patients and their fami-
lies. Therefore, an in-depth probe into the genesis of post-stroke sleep disturbances is of
monumental value. This study aimed to demystify the reciprocal relationship and inherent
biological mechanisms tethering post-stroke sleep anomalies to cerebral ischemia. The
areas of emphasis included neurotransmitter modulation, sleep patterns, neurovascular
entities and inflammatory reactions, aiming for a holistic understanding of sleep anomalies
post-stroke (Figure 1). This study concurrently focused on the latest therapeutic advances
in post-ischemic sleep disorders to furnish innovative insights and therapeutic trajectories
for clinical application. Whilst advancing measures for the prevention and mitigation
of ischemic stroke progression remains crucial, sleep indisputably serves as an effective
prospective intervention target aimed at enhancing the prognosis of patients with ischemic
stroke [12,13].
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Figure 1. Mechanisms of sleep disorders caused by stroke. Stroke alters sleep patterns by affecting
staging, rhythms, and is influenced by the lesion site. Cerebral hemodynamics post-stroke also
contribute to sleep disturbances. Direct or indirect influences include disruptions to sleep-related
ion concentrations (K+, Ca2+, Mg2+), ion channels (TREK-1, GIRK), and the expression of kinases
(ERK1/2, CaMKII/β, SIKs).

Method

The aim of this literature review is to explore the effects of SD on memory function and
to advance the field by describing relevant mechanisms. We conducted electronic searches
using reputable databases, including PubMed, Google Scholar, Web of Science, and CNKI,
to identify recent publications. The search terms employed were: Sleep Disorders AND
Stroke; Function AND Mechanisms; Insomnia AND Stroke; Sleep Deprivation AND Stroke
Impairment; Circadian Rhythms AND Mechanisms of Injury; Stroke AND Sleep Stage;
Stroke AND Inflammation; Stroke AND Treatment Strategy. Emphasis was placed on
recent publications, and subsequently, we scrutinized the reference sections of pertinent
articles to uncover older publications aligning with our research goals. Ultimately, we
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selected the most recent articles that offered contemporary and pertinent information on
our predefined subtopics.

The present review is structured into the following sections: (a) Biological Mechanisms
Underlying Sleep Disorders Following Stroke; (b) Recent Treatment Progress (Synaptic
Plasticity, Neurons, Oxidative Stress, Genes, Neurotransmitters, Circadian rhythms, Rodent
to human complexities); (c) Recent Treatment Progress; and (d) Conclusion and Prospect.

2. Biological Mechanisms Underlying Sleep Disorders following Stroke
2.1. Changes in Sleep Staging

Changes in brain activity and sleep activity during stroke are associated with poor
patient outcomes, and correct assessment of such activity changes is critical [14–19]. The
disruption of sleep staging is a feature of post-stroke sleep. Previous studies indicated
pronounced shifts in sleep patterns amongst patients with cerebral infarction, characterized
by prolonged non-rapid eye movement (NREM) durations, suppressed rapid eye move-
ment (REM) sleep and varying sleep patterns contingent upon the hemisphere affected
by the lesion [19,20]. Human and animal subjects exhibited a marked reduction in REM
sleep following acute ischemic strokes, coupled with notably diminished sleep efficiency
(SE) and altered sleep architecture. In comparison to a control group, those with acute
cerebral infarction displayed significant reductions in total sleep time (TST), SE and REM
phases (p < 0.01). Conversely, the wake-after-sleep onset duration exhibited a notable surge
(p < 0.01) [21,22]. Studies indicated that individuals who have experienced strokes typically
exhibit reduced TST compared with their healthy counterparts. This reduction in TST is
more pronounced in individuals with a history of recurrent strokes [3]. A study juxtaposing
polysomnography outcomes between 51 patients with stroke and 21 unafflicted controls
discerned a substantial TST decrease in a stroke cohort [23]. Pace et al. [24] observed that
in the acute phase of stroke, patients with poor short-term functional outcomes exhibited
reduced REM sleep and prolonged REM onset latency. In certain instances of supratento-
rial stroke, a transient decrease in REM sleep may be observed, with a higher frequency
noted in cases of right-sided strokes [25]. Animal studies have demonstrated that ischemic
stroke can selectively suppress REM sleep in mice, leading to a notable reduction in REM
sleep [26].

2.2. Circadian Disruption

Evidence suggests that stroke can disrupt endogenous circadian rhythms by affecting
the suprachiasmatic nucleus or neuron-associated clock mechanisms [27,28]. In acute stroke,
the physiological circadian rhythm of blood pressure changes, displaying a loss of biphasic
circadian rhythm variability compared with individuals with normal blood pressure [29].
Naturally, blood pressure typically decreases by around 10% or more during the night [30].
A study involving 50 patients with acute stroke identified a loss of blood pressure circadian
rhythm in these individuals [31]. Post-stroke, circadian rhythms are altered, especially
in the sleep/wake cycle, leading to sleep fragmentation and decreased SE [27,32]. Such
alterations closely correlate with the development of post-stroke apathy [33]. Additionally,
ischemic injury induces an advancement in the phase of Per1 expression and disrupts
the rhythm of melatonin secretion, thereby modulating Bmal1 expression. Both of these
processes are crucial for cell survival in neuronal ischemia [34,35].

Blood angiogenic regulators play a key role in modulating endothelial and pericyte
function, and they are crucial to the angiogenic process in ischemic stroke. Vascular
endothelial growth factor (VEGF) is a downstream target of the circadian clock network, and
VEGF proteins revealed an oscillatory expression pattern regulated by the core circadian
components Bmal1, Clock, Per and Cry genes [36]. Overexpression of Bmal1 promoted the
luciferase activity of VEGF and the knockdown of VEGF expression. However, it reversed
the promotional role of Bmal1 in promoting HUVEC angiogenesis [37].

Taken together, these results showed that the onset of stroke leads to the desynchro-
nization of endogenous biological rhythms and disrupts the expression pattern of biological
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clock genes, suggesting that interventions in the circadian system, such as environmental
modifications, chronotherapy and targeting clock genes, may be a potential target for
post-infarction therapy.

2.3. Functional Changes in Brain Regions

Evidence indicates that stroke injures sleep-regulating brain regions, subsequently
inducing sleep disturbances (Table 1). Sleep disorders may be attributed not only to
the neurobiological changes induced by cerebral ischemia but also to the disruption of
sleep regulatory pathways. Experts categorized brain structures linked with sleep into
wakefulness-promoting, sleep-inducing and REM systems, suggesting that damage to these
areas might precipitate sleep complications. Investigations pinpointed that stroke-induced
lesions in the frontal lobe, basal ganglia and brainstem substantial increased the likelihood
of post-stroke sleep disorders, underscoring the potential link between specific brain re-
gion damage and ensuing sleep disruptions [8,38]. In a study comprising 508 patients
with ischemic stroke, where stroke lesions were classified into distinct brain regions, the
involvement of the frontal lobe emerged as a predictive factor for sleep disorders [39,40].
The research further indicated the susceptibility of the frontal lobe to ischemic changes in
the subcortical region. A study delineated variations in sleep disorder incidences based
on infarct locations. Brainstem infarctions topped the list with 70.40% incidence, followed
by basal ganglia at 69.0%, cerebral cortex at 41.30%, cerebellar at 36.80% and thalamic
infarctions at 16.70% [41]. Another investigation corroborated this trend, pinpointing the
brainstem as the most susceptible region, followed by the thalamus, cerebral hemisphere,
basal ganglia and cerebellum [42,43]. The implicated areas play pivotal roles in governing
sleep and wakefulness cycles. Further exploration targeted stroke locations and unveiled
that patients with cerebral cortex (36.67%) and subcortical cortex (53.33%) lesions were
more prone to sleep disturbances than cerebellum-afflicted patients (10.0%) [44]. This re-
search also highlighted potential ties between post-stroke damage in specific brain regions,
such as the anterior occipital horn, lateral thalamus, posterior insula and medial temporal
lobe, and circadian rhythm sleep disorders [45]. Hcrt, which is predominantly synthesized
by lateral hypothalamic neurons, extensively projects across the CNS, modulating sleep
and influencing excitability in diversified brain areas [46]. The preoptic (PO) hypothalamus
is vital for NREM and REM sleep genesis and NREM homeostasis, with both sleep phases
partially orchestrated by this region [47]. Another study posited that post-acute cerebral
infarction sleep disturbances may be correlated with thalamic infarct locations. This poten-
tial association is suggested to arise from the interference of IL-17 and Hcrt overexpression
with thalamic operations [3,48]. Additionally, patients with thalamic stroke manifested
diminished nocturnal slow wave sleep (SWS), hinting at synaptic impairments within the
thalamus. Overall, stroke causes a significant impact on the microstructure of sleep.

Table 1. Site of lesion, sleep staging and rhythmic changes.

Type of Lesion Site of Lesion Changes in Sleep Structure
and Rhythm References

stroke anterior cerebral artery area
infarctions

diminished β waves and increased
δ waves

increase slowing in θ ranges
rhythms decreased overall

amplitude

[14]

stroke preoptic reduced NREM and REM [47]

stroke thalamic decreased sleep spindles
increased N1 and decreased N2 [49]

stroke supratentorial stroke reduced NREM
TST, low SE [50]
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Table 1. Cont.

Type of Lesion Site of Lesion Changes in Sleep Structure
and Rhythm References

acute stroke lenticulostriate arteries
MCA cortical branches reduced REM [20]

acute hemispheric stroke hemispheric TST, low SE, reduced N2 and
decreased N3 and N4 NREM sleep [51]

raphe nucleus stroke raphe nucleus reduced NREM [6]

cerebral hemorrhagic
infarction frontal lobe increased δ waves [52]

brain stem strokes brainstem highest REM and REM latency [53]

brain stem stroke
thalamus mesencephalic

pontine tegmental reticular
formation

diminished REM sleep
increased NREM sleep [54]

ischemic stroke cortex and striatum inhibited REM sleep [55]

cerebellar stroke brain stem and hemisphere reduced NREM
prolonged REM latency [56]

paramedian thalamic stroke paramedian thalamic increased N2 and N3
decreased N4 [57]

bilateral thalamic stroke bilateral thalamic NREM sleep instability
reduced arousals [58]

unilateral diencephalic stroke thalamus excessive sleep decreased N2 and
N3 sleep [59]

lateral medullary infarction lateral medullary complete sleep suppression [60]

middle-aged C57BL/6J mice,
MCAO

frontoparietal cortex and
lateral caudoputamen

reduced NREM and REM
increased latency to sleep

reduced NREM delta power
[61]

TST = total sleep time; SE = sleep efficiency; MCAO = middle cerebral artery occlusion.

2.4. Cerebral Vascular Hemodynamics

Cerebral ischemia alters cerebrovascular hemodynamics, thus affecting oxygen and
nutrient supply to the brain, with profound implications for nervous system function [62].
This impairment transcends cognitive and motor functions, extending into the modulation
and stage of sleep [63,64]. Recent studies highlighted the intricate link amongst cerebral
ischemia, cerebrovascular hemodynamics and sleep [65,66].

Upon cerebral ischemia onset, local brain tissue blood flow sharply reduces or com-
pletely ceases [67]. Reperfusion restores oxygen, counteracting cerebral hypoxia effects, yet
ischemia/reperfusion may potentially amplify disease progression [68]. Numerous studies
have documented the relationship between cerebral blood flow and sleep alterations in
humans and rodents [69–73]. During SWS, cerebral blood flow slightly diminished com-
pared with that in wakeful state [73]. Using two-photon microscopy, a study observed a
significant surge in capillary cerebral blood flow (CBF) during REM sleep across various
cortical regions. REM sleep deprivation led to increased capillary red blood cell flow, em-
phasizing the crucial role of CBF in REM sleep regulation, notably mediated by adenosine
A2a receptors [74]. In terms of cerebral blood flow velocity, an initial increase followed
by a decline was observed during sleep [75]. Clinical analyses have showcased the link
between suboptimal sleep quality and a decline in cerebral blood flow in areas like the right
orbitofrontal and insular cortex [76]. Individuals with NREM disorders manifested reduced
CBF in regions such as the parietooccipital lobe (anterior cuneiform lobe), marginal gyrus
and cerebellar hemisphere [77].

In a three-dimensional realm, the mean distance from a neuron cell’s center to its
closest microvessel is 15 µm [78]. The extracellular space is fluid, adapting to heightened
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brain activity and sleep [79]. Surrounding the cerebral blood vessels are various cell types,
emitting substances into the extracellular domain and adjacent to blood vessels, orches-
trating cerebral blood flow. These cell types, encompassing endothelial cells, pericytes,
astrocytes, perivascular macrophages and peripheral microglia, are collectively termed neu-
rovascular units (NVUs) [80,81] (Figure 2). NVU meticulously orchestrates the regulation
of the blood–brain barrier, CBF, blood flow velocity and regional cerebral blood volume,
ensuring the stability of the brain’s microenvironment [82–86].
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NVUs serve a pivotal role in both the pathophysiological progression of ischemic
stroke and the modulation of cerebral blood flow during states of sleep and wakefulness.
After cerebral ischemia, NVUs and their microvessels undergo diverse extents of injury [87].
This phenomenon encompasses structural alterations and related cellular dysfunctions,
which subsequently influence the regulation of cerebral blood flow [88]. Consequently,
these affect neural functioning and sleep patterns.

The dysfunction of NVUs can be directly instigated in the initial stages of ischemia.
Amongst the components of NVU, endothelial cells are the foremost to sustain damage
in the ischemic brain region. The dysfunction is closely trailed by the activation of mi-
croglial cells and astrocytes. Once activated, these cells begin secreting pro-inflammatory
mediators, such as tumor necrosis factor (TNF) and interleukin (IL)-1β, and witness an
upsurge in the expression of IL-6 [89,90]. A notable detail that pro-inflammatory cytokines,
including but not limited to IL-1β and TNF-α, possess the capability to modify vascular
hemodynamics [91–93].

2.5. Neurological Deficits

Numerous studies highlighted that the onset of sleep disorders following a stroke is
intricately linked to the severity of a patient’s neurological deficits [94]. One study indicated
that patients with thalamic strokes encountered a decrease in their slow-wave sleep during
nighttime, pointing towards damage to the synapses of the thalamic nerves [95]. The
findings of the study emphasized the differences in sleep disorder incidences amongst
patients with varying degrees of neurological deficiencies. Specifically, 46.1% of those
with mild neurological deficits faced sleep disorders, and the number surged to 73.7% for
those with moderate to severe deficits [41]. National and international research echoed
that patients with post-stroke sleep disorder tend to have intensified neurological deficits.
Research denoted that those with more severe neurological issues witnessed a decrease in
REM sleep duration [96]. Consequently, the severity of these deficits positively correlates
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with the incidence of sleep disturbances, implying that profound neurological impairments
result in an increased likelihood of sleep disorders [96].

2.6. Sleep Disruptions: Exploring Ions, Ion Channels and Kinases
2.6.1. Ions

The underpinnings of sleep disorders following cerebral ischemia are profoundly asso-
ciated with ion interference regulation [97]. Specifically, cerebral ischemia may disrupt ion
channel functions and ion equilibriums, thus perturbing sleep regulation processes [98–100].
Sleep is intrinsically regulated by ion channels, with key ions like potassium (K+), calcium
(Ca2+) and magnesium (Mg2+) playing crucial roles [99,101,102]. Reports indicated that the
activation of the G protein-gated inward rectifier K+ channel (GIRK) can foster NREM sleep
and solidify it [102]. By examining cerebrospinal fluid in healthy individuals during sleep,
wakefulness and sleep deprivation, a study found a significant decrease in K+ concentra-
tions in sleep and sleep-deprived states compared with wakefulness [97]. Concurrently,
GIRK governs the circadian excitatory rhythm of brain neurons, with the regulatory process
hinging on alterations in extracellular K+ concentration [103]. Studies have shown that
impairments to the Kcnk9 channel can diminish sleep durations [104], and the two-pore
K+ channel (K2P) is pivotal in regulating the sleep-wake cycle [105]. Intriguingly, ORK1 (a
human TREK1 analogue) was identified to modulate the sleep duration in fruit flies [106].
A notable detail that the arousal mechanism is independent of the AMPA receptor but inter-
linked with a surge in extracellular K+ concentrations [107]. NMDA receptor deficiencies
in LPO neurons curtailed NREM and REM sleep and resulted in substantial sleep-wake
fragmentation [108]. During REM sleep, the LPO region sees a selective augmentation
in calcium activity via NMDA receptors [109]. Genetically silencing NMDA receptors in
the brain truncates the total sleep duration, a phenomenon evident in fruit flies and ro-
dents [110,111]. Studies have elucidated that awake states led to a decrease in extracellular
Ca2+ and Mg2+ levels [107]. ASICs, which are proton-activated non-voltage-dependent
ion channels, play a role in regulating sleep-wake cycles [112]. The nucleus of the blue
patch (LC) is a key brain center in sleep-wake regulation. Recent studies underscored the
significance of ASICs in LC neurons, particularly during the shift from NREM to REM
sleep states [113]. Certainly, ion channels, associated ions and ion receptors play pivotal
roles in the regulation of sleep.

2.6.2. Ion Channels

Cerebral ischemia instigates intricate reactions within the neurovascular unit system,
resulting in detrimental effects on vascular endothelial and neural cell functions. This
phenomenon sets off a cascade of pathological alterations, with ion channels being at
the epicenter of these changes. These neuronal ion channels have been identified as
significant players in ischemic cerebrovascular conditions [114]. When cerebral ischemia
occurs, the irregular opening and closing of ion channels due to ischemia and subsequent
reperfusion, and the disequilibrium of ion balance within and outside neurons emerge as
vital factors in ischemic brain injury [115]. Amongst these channels, the TREK-1 channel,
predominantly expressed in the central nervous system, is closely intertwined with cerebral
ischemia. This channel becomes activated during cerebral ischemia due to several factors:
neuronal hypoxia, glucose deprivation, cell swelling and the liberation of excitatory amino
acids [116]. Under normal circumstances, the concentration of intracellular calcium ions
remains relatively consistent. However, during the injury phase of cerebral ischemia–
reperfusion, hypoxia leads to the aberrant activation of extracellular calcium ion channels.
This aberration prompts a swift increase in intracellular Ca2+ concentration. Such an
increase instigates phospholipase C to produce IP3, which subsequently activates the IP3R
calcium channel. This series of actions culminates in the sarcoplasmic reticulum discharging
copious amounts of calcium ions into the cytoplasm, leading to calcium overload [117].
Furthermore, an excessive secretion of the excitatory neurotransmitter glutamate occurs in
the aftermath of ischemia, precipitating cellular death. This phenomenon is intrinsically
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connected to a surge in the intracellular Ca2+ concentration [118]. Research has illuminated
that the calcium overload observed post-cerebral ischemia–reperfusion is attributable to
an extended opening duration, heightened opening probability and an amplified channel
current magnitude of L-type calcium channels [117].

ASIC comprises seven subunits, with ASIC1a homodimer channels and ASIC1a/2b
channels playing significant roles in cerebral ischemic injury [119]. Cerebral ischemia
triggers the generation of H+ through processes like lactate accumulation and ATP hydrol-
ysis, resulting in tissue acidification. Extracellular acidification activates ASICs, notably
ASIC1a channels, leading to increased Ca2+ influx and subsequent neuronal cell death [120].
Research indicated that the downregulation of ASIC2a is associated with compromised
neurological function and increased infarction rate in rats experiencing cerebral ischemia.
The mechanism involves ASIC2a reducing the inhibition of calcium ion entry into neurons,
thereby facilitating an increased influx of calcium ions into the cells [121].

2.6.3. Kinases

Genetic studies highlighted the importance of several kinases, such as ERK1/2,
CaMKII/β and SIKs, in promoting sleep. Drosophila studies showed that ERK functions as
a promoter of sleep, and sleep deprivation led to an increase in ERK phosphorylation [122].
A rat study demonstrated that sleep deprivation resulted in a decrease in ERK1/2 ex-
pression [123]. Subsequent trials involving mouse embryos and conditional knockout
experiments provided evidence supporting the involvement of ERK1/2 in the regulation of
the natural sleep-wake cycle [124]. Research revealed that mice with knockout mutations
in Camk2a or Camk2b displayed a markedly reduced sleep duration and a decreased
likelihood of transitioning from sleep to wakefulness [125,126]. Additionally, CaMKII
displays a brain region-specific role in sleep regulation. The SIK family contains three
isozymes, SIK1, SIK2 and SIK3. Often referred to as the “sleep gene”, SIK3 is notably the
most abundant in the brain [127]. SIK3 knockout mice exhibited periodic dysregulation of
circadian rhythms [128,129]. Disrupting circadian rhythms and PER protein cycling were
observed in Drosophila neurons when SIK3 was knocked down, underscoring the influence
of SIK3 on these biological patterns [130]. In addition, the sleep-promoting role of SIK3
was conserved in Drosophila and Hidradenitis elegans nematodes, suggesting that sleep
regulation is conserved in invertebrates [131]. Interestingly, contrasting results emerged,
indicating that mice lacking SIK3 or LKB1 experienced reduced sleep. This reduction was
primarily attributed to heightened SIK3 signaling in excitatory neurons in the cerebral
cortex and hypothalamus. This finding manifested as an increase in EEG delta-wave power
during NREM sleep, along with an extended duration of NREM sleep [132–134]. The
findings strongly suggested that kinases, such as ERK1/2, CaMKII/β and SIKs, actively
contribute to the homeostatic regulation of sleep quantity and the underlying demand
for sleep.

CaMKII displays heightened sensitivity to ischemia. In the wake of cerebral ischemia,
an overload of intracellular Ca2+ triggers the activation and augmented autophosphory-
lation of CaMKII [135]. This cascade results in a significant increase in p-CaMKII and a
pronounced reduction in non-phosphorylated CaMKII, culminating in diminished CaMKII
activity [136–138]. In vivo, the functions of diverse Ca2+-dependent kinases are governed
by serum calmodulin (CAM). After cerebral ischemia, the levels and activity of CAM
increase concomitantly with elevated intracellular Ca2+ concentrations in neuronal cells.
Importantly, this upregulation of CAM correlates positively with the severity of the is-
chemic condition [139]. Clinical investigations have revealed that CAM levels in patients
with ischemic stroke reached (189.34 ± 24.98) ng/mL, a significant elevation compared
with the control group’s level of (80.92 ± 20.59) ng/mL [140]. Intense intracellular Ca2+

influx can lead to the formation of Ca2+/CaM complexes [141]. Under hypoxia–ischemia,
the overactivated Ca2+/CaM complex, which binds and regulates multiple downstream
target enzymes, causes excessive apoptosis of brain cells, and the mechanism is related to
the over-activation of the CaM/CaMK II signalling pathway [142,143].
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The mechanism of decreased SIK2 expression and increased neuronal cell injury after
cerebral ischemia/reperfusion in rats is related to decreased HIF-1α expression, decreased
ATP content and increased ADP content in brain tissue compared with ischemia [144]. A
study found that SIK2 expression in the brain significantly decreased after hemorrhagic
stroke [145].

ERK1/2 is a family member of mitogen-activated protein kinases [146]. Several
studies have indicated P-ERK1/2 changes after ischemia in ischemic models. Previous
studies have shown that in a rat MCAO model, P-ERK1/2 increased significantly in the
ischemic semi-dark zone area and infarct focal area at 90 min postischemia and reperfusion
for 1–3 h. Amongst them, P-ERK1/2 peaked at 1 h after 90 min of reperfusion after
ischemia, and its expression was significantly higher in the ischemic semi-dark zone than
in the infarct focal area [147]. A study on a mouse animal model of MCAO found that
P-ERK1/2 expression decreased in the infarct region after ischemic administration of the
MEK1-specific inhibitor PD98059 [148]. Further studies revealed that inhibition of the
ERK1/2 pathway significantly inhibited Cx40/Cx43 heterodimeric junctions and NF-κB
and improved neurological function in rats [149].

In brief, stroke may disrupt sleep by directly or indirectly affecting sleep-related ion
concentrations, ion channels and kinase expression.

2.7. Neurotransmitter Regulation

The etiology behind sleep disturbances in patients with stroke is multifaceted. Sleep
disorders post-stroke have intricate interrelations with neurotransmitters. Brain cell dam-
age from the stroke can interfere with the secretion of sleep-associated neurotransmitters
or other relevant factors. Neurotransmitters, which can be influenced by physiological
disruptions such as cerebral ischemia, can in turn affect sleep patterns. A notable detail is
that sleep disturbances in patients with stroke may stem from the anomalous secretion of
neurotransmitters, particularly a reduction in serotonin (5-HT). Some experts postulated
that post-stroke sleep disorders could be linked to causing harm to serotonin neurons in the
affected area, inhibiting the serotonin neurotransmitters’ normal function. Key neurotrans-
mitters linked to sleep, such as 5-HT and norepinephrine, may undergo secretion anomalies
when stroke occurs, mainly showing a decline in secretion, potentially culminating in
sleep disruptions. Studies have revealed that serum concentrations of 5-HT and NE in
stroke patients with sleep disorders are below the standard and linked with the severity
of the ailment [150]. Furthermore, research has suggested that low-frequency electrical
acupoint stimulation may be a viable treatment for post-stroke sleep disorders, potentially
by boosting plasma 5-HT levels and decreasing plasma NE levels [151]. The efficiency
of 5-HT receptor blockers in reducing mortality and bettering the long-term outlook for
post-stroke patients with depression and anxiety underscored the integral connection be-
tween post-stroke depression and 5-HT [42]. Thus, post-stroke sleep disturbances may be
intertwined with a drop in 5-HT levels. If the stroke-damaged region affects 5-HT neurons,
causing reduced secretion of 5-HT, it may precipitate sleep issues.

Besides 5-HT, melatonin is a neurotransmitter intrinsically linked to sleep. Studies
underscored melatonin’s favorable influence on enhancing sleep quality. Notably, patients
with stroke demonstrated an irregular melatonin secretion rhythm at nighttime, marked
by a nocturnal elevation and diurnal decline. Specific figures indicate that in contrast to
the melatonin levels of healthy individuals (86.14 ± 24.94 pg/L, those of patients with
stroke drastically decreased to 54.08 ± 33.33 pg/L 2 days post-onset, gravely impairing
their sleep [152]. Another key player in sleep regulation is the small molecule neuropep-
tide orexin.

Recent clinical research has delved into the changes and effects of serum orexin (OxA)
concentrations in cerebral infarction patients post-onset, but findings have been varied.
However, the diminished cerebral perfusion arising from acute cerebral ischemia in a
patient’s stroke is acknowledged to curtail their capacity to cope with emergent scenarios,
subsequently augmenting orexin expression levels and potentially propelling the patient



Brain Sci. 2024, 14, 307 10 of 25

into an extended wakeful state. Such insights are pivotal in fostering a more profound
comprehension of the biological underpinnings of post-stroke sleep disturbances. Recent
research confirmed that OxA levels increased during cerebral ischemia, providing notable
neuroprotective effects [153,154]. Cerebral ischemia prompts the defensive activation of
OxA, escalating its concentration. This increase augments OxA’s inherent expression
levels, causing patients to remain alert [155]. Clinical research indicated that patients with
ACI have markedly increased serum OxA levels compared with controls [156]. Another
investigation into patients with sleep disorders had significantly higher OxA levels than
normal (63.42 ± 37.56 vs. 54.84 ± 23.95 pg/mL) [157]. Studies suggested that transcranial
repetitive needle stimulation may alleviate post-stroke sleep disorders by reducing serum
OxA levels [157,158].

Past findings revealed that in rats with a middle cerebral artery occlusion reperfusion
injury, the OxA expression in the brain tissue was markedly greater on the ischemic side
than on the non-ischemic counterpart [159]. Notably, an optimal OxA dosage can apprecia-
bly diminish cerebral infarction zones, underscoring its neuronal protective capacity [160].
This trend has been confirmed in other studies, which showed that OxA significantly im-
proved neurological deficit scores and infarct volume after cerebral ischemia–reperfusion,
with 30 µg/kg showing the best results [161]. Moreover, a controlled study on ataxin-3
transgenic mice (with OxA gene knockout) in a middle cerebral artery occlusion model
revealed that the knockout mice exhibited greater brain damage volume at 24 and 48 h
post-occlusion and deteriorated neurological function scores than the wild-type mice [162].
Chronic cerebral ischemia has also been pinpointed as the reason for the increase in orexin
mRNA expression [163].

Within the rat cerebral cortex, orexin substantially boosts neuronal survival in a
dose-dependent manner, with this pro-survival trait linked to reduced caspase-3 activity.
Researchers identified that OxA treatments notably modified the mRNA expression lev-
els of TNF-α and IL-6. OxA effectively ameliorated the comatose state in brain-injured
rats, with the efficacy being concentration-driven. This mechanism may be tied to the
increased RasGRF1 protein expression in the prefrontal cortex. In essence, OxA concen-
trations increase during cerebral ischemia, generally safeguarding neurons. Some studies
indicated that sleep disorders in rats with chronic cerebral ischemia stem from height-
ened OxA neuron activity in the brain, which heightened wakefulness and induced sleep
disturbances [164,165]. Furthermore, adenosine, a potent innate sleep-enhancing agent,
diminishes in the brain during sleep deprivation and surges during sleep recuperation.

2.8. Inflammatory Cytokines

Inflammation resulting from cerebral ischemia may be a potential trigger for associated
sleep disorders. Studies have shown that individuals with inflammatory diseases are often
more prone to sleep disturbances [166,167]. In the context of stroke, inflammation disrupts
the balance between pro-inflammatory and anti-inflammatory reactions. Patients with
sleep disorders due to acute cerebral infarction displayed increased inflammatory factors,
including C-reactive protein (CRP), IL-6, IL-1β, TNF-α and Hcrt, compared with normal
levels [48,168]. Earlier animal research found that in post-transient cerebral ischemia, gerbils
showed increased levels of, IL-6, IL-1β and TNF-α, especially in the initial stages [169].
REM sleep is suppressed during times with elevated inflammatory mediators like cytokines.

A strong link exists between CRP and IL-6 levels and intravascular inflammation [170].
Elevated levels of pro-inflammatory markers CRP and IL-6 are tied to sleep disturban-
ces [170,171]. Typically, pro-inflammatory cytokines, including IL-1β, TNF-α, IL-18 and
IL-6, promote NREMS [172,173]. Studies indicated that IL-1β can boost NREM sleep and
diminish REM sleep in animals. This effect may be attributed to the modulation of sleep
homeostasis through changes in inflammatory cytokine and circadian gene expression [174].
Sleep deprivation-induced IL-6 expression alterations can affect the sleep cycle by affecting
NREM [175,176]. Moreover, injecting IL-6 into healthy subjects prolonged the NREM phase,
particularly NREM phase 3, accompanied by an increase in CRP levels [177]. Persistent
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sleep deprivation or brief periods led to a notable increase in CRP levels [178]. Hence,
IL-6-induced sleep disturbances may be related to the activation of the hypothalamic IL-6
signaling pathway, promoting the release of hormones like corticosteroids and cortisol [179].
Increased serum levels of CRP and IL-6 correlate with stroke severity; notably, patients with
moderate to severe strokes generally present higher CRP and IL-6 levels [171,180]. These
findings suggested that post-cerebral ischemia inflammatory factors particularly influence
the NREM sleep cycle.

The IL-1 cytokine family, encompassing IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-
36γ, IL-1RA, IL-36RA and others, plays roles in inflammation and sleep regulation [181,182].
Disorders, such as brain injury and cardiovascular disease, have links with IL-1 fam-
ily members [169,183]. Research indicated the IL-1 family affects sleep by modulating
downstream receptor activity. Sleep deprivation, ongoing sleep restriction and infec-
tions increase IL-1β levels in various brain areas, associated with NREM sleep and SWA.
Sleep-disturbed animals, including rabbits, cats, monkeys, mice and rats, along with
several human brain areas, peripheral tissues and circulating IL-1β, showed increased
expression levels [173]. In cerebral ischemia animal models, the IL-1β mRNA expression
spiked within minutes of ischemia onset [184], and its protein expression surged 4–6 h
later. Interestingly, IL-1α expression preceded IL-1β expression [185], emphasizing the
IL-1 family’s influence on sleep. Studies identified IL-1β’s role in impeding neurogenesis,
closely linked to inflammation-induced neurological deficits, mediated by endogenous
ligands through TLRs [186]. TLR4-mediated neuroinflammation plays a key role in the
pathogenesis of secondary sleep disorders after stroke [186,187]. TLR4-mediated neu-
roinflammation is pivotal in secondary sleep disorder pathogenesis following a stroke.
Activating TLR4 initiates the NF-κB pathway and NLRP3 inflammasome, causing a sub-
sequent increase in the pro-inflammatory cytokine IL-1β, closely tied to post-stroke sleep
disturbances [188–190]. NLRP3 activation via the NF-κB and TLRs’ pattern recognition
receptors and the formation of NLRP3 inflammasomes can induce IL-1β production via
Caspase-1 [191–193]. The NF-κB/NLRP3 pathway, indicated by changes in protein levels
(TLR4, NLRP3, IL-1β, and Caspase-1), is linked to neurocytogenesis and angiogenesis [191].
This implies its role in post-stroke sleep disorders.

TNF-α is the most extensively studied member of the TNF family; it has complete
sleep regulation functions, and its expression changes are closely related to sleep
disorders [194,195]. TNF-α can be activated by NF-κB to trigger various inflammatory
signal transduction pathways. NF-κB as a transcription factor B can activate NOS, COX-2
and adenosine A1 receptors, act on brain regions related to sleep regulation (hypothalamic
preoptic area and basal forebrain), and affect brain regions related to sleep regulation,
such as the hypothalamic preoptic area and basal forebrain [196]. Meanwhile, TNF-α
promotes NREM sleep and interferes with the sleep awakening rhythm by regulating the
growth hormone system and HPA axis [197–199]. This effect is connected to circadian
rhythms and sleep periods. TNF-α can alter CLOCK-BMAL1 activation, indicating that the
circadian rhythm can be altered through TNF-α adjustments [200]. In the acute phase of
cerebral ischemia, the proliferation and activation of microglia led to a robust inflammatory
response [89], characterized by increased levels of TNF and IL-1β and upregulation of IL-6,
which can result in sleep disorders.

The disorder of NVUs may be one of the important mechanisms of inflammation
and sleep disorders caused by cerebral ischemia. NVU directly affects neuroinflammatory
responses and sleep conditions by tightly and rapidly regulating the cerebral microvascular
system. The damage to NVUs can disrupt their homeostasis, leading to disrupted release
of inflammatory molecules and ultimately leading to sleep disorders.

2.9. Challenges and Opportunities

Research on post-stroke sleep disturbances, both domestically and internationally,
often employs overlay compound models to replicate ischemia-induced sleep disorders
(e.g., MCAO+PCPA, MCAO+MMPM) [165,201]. While these models closely mimic symp-
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toms post-stroke, there are notable disparities from actual sleep disturbances in human
stroke survivors. It is crucial to acknowledge that commonly used rodent models, such
as mice, though extensively studied, still have limitations in understanding their brain
development. Compared to humans, rodent brains are significantly smaller, structurally
simpler, and exhibit lower cognitive abilities [202]. Hence, emphasizing human studies
and cross-species comparisons is essential to overcome challenges in translating research
findings from animal models to humans.

Despite being considered the gold standard for assessing sleep [203], current EEG
monitoring tools still have certain limitations. The abundance of monitoring systems
and inconsistent sleep staging standards necessitates a systematic review and analysis of
relevant research [204]. While commercial sleep monitoring devices exist, their accuracy
requires improvement [205]. In comparison to polysomnography, studies have not yet
reached clinical standards, highlighting the need to balance performance, functionality,
cost, and user-friendliness [206]. Biomechanical signal monitoring techniques typically
relate to specific behaviors such as teeth grinding, restless legs, and breathing [207].

On the other hand, understanding the correspondence between EEG data and human
behavior faces challenges due to conceptual ambiguity. Additionally, EEG data collec-
tion is susceptible to external environmental interference. To address these issues, it is
recommended that future research adopts diverse methods for acquiring study data and
integrates emerging EEG technologies as complementary data sources. Furthermore, con-
sidering the integration of EEG technology with human–computer interaction could meet
the lifestyle needs of individuals with post-brain ischemia disabilities [208,209].

3. Recent Treatment Progress
3.1. Drug Therapy

Currently, chemical drugs, including benzodiazepines, non-benzodiazepines and
the latest appetite receptor antagonists, are still the predominant therapeutic approach.
Antidepressants, including mianserin, exhibited efficacy in ameliorating post-stroke in-
somnia [42,210]. Non-benzodiazepine medication, specifically zolpidem tartrate tablets,
demonstrated effectiveness in enhancing neurological function, improving sleep quality
and increasing 5-HT levels in individuals suffering from acute stroke-related sleep disor-
ders [211,212]. Zolpidem exhibited a minimal effect on cognitive function and muscle tone,
whilst potentially enhancing the prognosis of acute stroke by stimulating the secretion of
brain-derived neurotrophic factor (BDNF) and safeguarding the integrity of the neurovas-
cular unit [213,214]. Research indicated that zolpidem tartrate tablets do not negatively
affect patients’ blood pressure [215–217]. OxA has been identified as a key driver of arousal
and alertness [218]. OxA receptor antagonists, such as daridorexant, are a new class of
hypnotics [219]. Daridorexant selectively impedes the interaction of the neuropeptide OxA
with OxA receptors OX1R and OX2R, leading to the attenuation of wakefulness. According
to findings from clinical trials, suvorexant may be a viable option for patients exhibit-
ing unresponsiveness to treatments involving benzodiazepine and non-benzodiazepine
hypnotics [220]. This novel prescription therapy enhances sleep parameters whilst exhibit-
ing a reduced incidence of side effects compared with the traditional pharmacological
methods [218].

However, in several studies, hypnotics have been found to increase the risk of stroke.
Evidence suggests that levocetirizine (zolpidem) is associated with an increased risk of
ischemic stroke, and that the risk increases with increasing doses. The annual use of
over 4 g benzodiazepines or use of the drug for more than 95 d is known to increase the
incidence of stroke [221]. OxA receptor antagonists are linked with increased costs, and
they pose potential safety concerns attributed to restricted clinical usage. Therefore, a
comprehensive evaluation of the risk-benefit equilibrium is crucial before contemplating
the use of sedatives in the management of post-stroke sleep disorders.
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3.2. Non-Pharmacological Treatment

Non-pharmacological treatments include psychotherapy, acupuncture and hyperbaric
oxygen therapy. The emergence of sleep disorders post-stroke is inextricably linked to
the patient’s psychological factors. The latest therapeutic approach, cognitive behavioral
therapy (CBT) for insomnia (CBT-I), stands out as the most secure and efficacious treatment
option, boasting a notable degree of practical applicability [222]. It systematically examines
the cognitive processes of patients by assessing their behavior and emotional responses,
pinpointing cognitive distortions and facilitating cognitive restructuring [223]. A study
comparing CBT and conventional therapy in patients with post-stroke sleep disorders
revealed that CBT demonstrated superior efficacy and yielded a notable improvement in
sleep quality [224]. CBT may be employed for the long-term management of chronic insom-
nia in patients with stroke. It appears to be efficacious in mitigating post-stroke insomnia.
However, significant long-term physical and psychological benefits were observed, and
studies with larger samples are needed in the future to address such issues [11,224].

Multiple randomized controlled trials have shown that acupuncture serves as a useful
tool for patients with post-stroke sleep disorders [225–227]. Recently, acupuncture ther-
apy, as a traditional Chinese medicine therapy, has been widely used in the treatment of
post-stroke sleep disorders for its convenient operation and low adverse effect characteris-
tics [228–231]. The results of clinical studies have indicated that treatment with acupuncture
is significantly effective in relieving patients’ symptoms and improving sleep quality and
symptoms of neurological deficits [232]. In the efficacy evaluation, the total effective rate of
the acupuncture treatment group reached 87.50% (84/96), which was significantly higher
than that of the control group at 76.04% (73/96) [233]. A study via the Pittsburgh Sleep
Quality Index Assessment found that patients with stroke and insomnia who received
acupuncture tended to show more effective outcomes than those taking medication [234].
This finding suggested that acupuncture treatment has certain therapeutic advantages
in the treatment of post-stroke sleep disorders, and all of these findings suggested that
acupuncture is a promising approach for the treatment of post-stroke sleep disorders.

Hyperbaric oxygen could play a role in improving the symptoms of cerebral ischemia
and regulating the function of the brain cortex, improving cellular hypoxia and protecting
neurological function. Clinical studies have indicated that the efficacy of hyperbaric oxygen
in the treatment of post-stroke insomnia is comparable to that of dexzopiclone, more
long-lasting and effective in the recovery of neurological function [235].

3.3. Combination Therapy

Combination therapy for post-stroke sleep disorders has better-integrated outcomes.
A study showed that 98 patients with sleep disorders post-stroke who were given sertraline
in combination with hyperbaric oxygen therapy showed enhanced sleep quality scores,
indicating that sertraline in combination with hyperbaric oxygen therapy has the potential
to improve the quality of sleep in patients with sleep disorders post-stroke [236]. Similarly,
the clinical effect of using haloperidol melittin tablets in combination with hyperbaric oxy-
gen for the treatment of post-stroke sleep disorders was clinically found to be precise and
improve sleep quality [237]. Studies using VD combined with dexzopiclone and escitalo-
pram oxalate therapy effectively modulated inflammatory factors and neurocytokine levels
in patients with post-stroke sleep disorders and improved the quality of their sleep [238].
Further studies found that the method increased the overall treatment efficiency (95.51%,
85/89), improved the level of cerebral perfusion indices and reduced PSQI and ESS scores
and adverse effects [239]. Studies suggested that combining the Bailemian capsule (with
2,3,5,4′-tetrahydroxy stilbene-2-O-β-D-glucoside as the main active ingredient) with CBT-I
could be an effective option for clinically treating post-stroke sleep disorders [223]. In
addition, the application of acupuncture combined with Huanglian Wendan Decoction for
the treatment of sleep disorders in stroke can effectively reduce the incidence of adverse
reactions and promote the improvement of the treatment and prognosis of patients [240].
The total effective rate of therapy was as high as 94.00%, which was better than 76.00% in
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the control group, and the TST and serum BDNF, GDNF and NGF levels were higher after
treatment than before treatment [241]. Combining different therapies for post-stroke sleep
disorders offers a more effective and comprehensive treatment by addressing the issue
from multiple perspectives simultaneously.

3.4. Emerging Therapies

We examined novel therapeutic approaches for managing post-stroke sleep disorders,
alongside established strategies. In pharmacotherapy, suvorexant, lemborexant, and dari-
dorexant stand out as the most advanced orexin receptor antagonists for treating insomnia.
Numerous meta-analyses and clinical trial reviews support their effectiveness [242–246].
Considering its clinical efficacy, safety, and pharmacological properties, the study suggests
that lemborexant 5 mg is the most suitable first-line treatment option [245]. Targeted appet-
itive hormone systems show promise in understanding and treating sleep disorders, but
more studies are needed. Additionally, the efficacy difference between dual and selective
antagonists also warrants investigation [247]. Cutting-edge bioelectrical signaling tech-
nologies, like brain–computer interfaces, offer potential for improving sleep quality [248].
These cutting-edge tools, employing advanced neuroscience and engineering techniques,
offer entirely new possibilities for treating post-stroke sleep disorders.

Neuromodulation techniques, such as transcranial magnetic stimulation and transcra-
nial electrical stimulation, offer viable therapeutic potentials [249]. Non-invasive brain stim-
ulation therapies, including transcranial ultrasound-neuromuscular stimulation therapy
and light therapy, show promise for insomnia patients during stroke recovery [250]. These
modalities improve sleep quality and negative moods in patients. Studies show varied
effects on EEG α rhythm modulation with different cranial direct current stimulation [251].
While meta-analyses support non-invasive brain stimulation therapy effectiveness in stroke
treatment, future research should increase sample sizes and improve study quality [252,253].
Additionally, research indicates that targeting inflammatory vesicles through LED light
stimulation could be a novel therapeutic approach to improve brain injury after ischemic
stroke [254].

Virtual reality (VR) therapy, an advanced human–computer interface, has shown
effectiveness in stroke rehabilitation by creating a tranquil, sleep-friendly environment
through virtual settings [255]. This innovative approach offers a more immersive experience
for patients and is anticipated to be crucial in treating sleep disorders post-stroke. Studies
suggest that VR technology can enhance balance function, promote limb rehabilitation,
and aid cognitive recovery, surpassing some traditional treatments [256,257]. However, its
clinical application for improving insomnia in stroke patients is limited, and its overall
value is not fully demonstrated.

4. Conclusions and Prospect

A large evidence base suggests that sleep disorders are strongly associated with in-
cident strokes. This review focused on the main specific correlates of sleep disturbances
caused after stroke, including functional alterations in brain regions, cerebrovascular hemo-
dynamics, neurological deficits, interference with sleep ion regulation, neurotransmitter
regulation and inflammatory response (Figure 1). Stroke disrupts sleep patterns, affecting
sleep staging and rhythms, and the extent of this effect varies on the basis of the site of the
lesion. Moreover, cerebral hemodynamics are disturbed post-stroke, leading to sleep issues.
Stroke may disrupt sleep by directly or indirectly influencing sleep-related ion concentra-
tions (K+, Ca2+ and Mg2+), ion channels (TREK-1 and GIRK channels), and the expression
levels of kinases (ERK1/2, CaMKII/β and SIKs). Stroke notably disrupts the secretion of
sleep-related neurotransmitters by reducing levels of 5-HT and increasing the levels of OxA.
Additionally, it explicitly increases the levels of inflammatory factors, including IL-6, CRP,
IL-1β, TNF-α, Hcrt and others. This review also focused on the recent treatment progress.
Sedative antidepressants are recommended for the treatment of post-stroke sleep disorders
given the increasing supporting evidence. However, behavioral neuropsychological thera-
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pies and other supportive therapies (e.g., acupuncture) are prospective, but they still need
to be backed up by more evidentiary support.

To date, multiple studies have explored different types of stroke sleep disorders and
suggested potential treatment strategies and pitfalls of these treatments to provide an
overview of the different types of stroke sleep disorders. However, lingering questions
remain. Studies of sleep disorders in animal models of stroke could contribute to further
insights into how the brain controls sleep and wakefulness, which could potentially reveal
more pathophysiological mechanisms behind sleep disorders and the complex relationship
between stroke and sleep processes. A strategy for treating post-stroke-related sleep dis-
orders is expected to be developed with the integrated application of animal models and
neuronal modelling approaches on the basis of computational models of sleep disorders.
Studies have confirmed that stroke-related sleep impairment negatively regulates angio-
genesis, axonal sprouting and synaptogenesis, exacerbating brain damage and ultimately
impeding neurological recovery. However, the existing clinical evidence remains relatively
restricted regarding the causal relationship between sleep disorders and stroke recovery.

In the future, the authors confidently believe that sleep cells in NVUs with multi-
ple associations play important roles in cerebral ischemia and sleep. Hence, thoroughly
exploring the mechanism of ion channel action in NVU post-stroke is highly important.
A strategy for treating post-stroke-related sleep disorders is expected to be developed
with the help of a combination of animal models and neuronal modelling approaches on
the basis of computational models of sleep disorders. A deepened understanding of the
interrelationship between circadian rhythms and stroke changes is critical for the early
identification and management of stroke-specific changes.

Sleep disorders in patients stroke could receive more attention, and more personalized
approaches could be developed. In addition, more studies are needed to validate the
long-term efficacy and safety of these cutting-edge approaches. Continuing innovations
in this field offer compelling prospects for future developments in treating post-stroke
sleep disorders. Focusing on sleep patterns and their interference, including genetic and
neurochemical variations, could contribute to an enhanced understanding of the core causes
of a patient’s sleep issues. Many critical questions concerning the relationship between
sleep disorders and stroke remain largely unknown, and more energy needs to be devoted
to them.
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