Mapping the Neural Substrates of Cocaine Craving: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility
2.2. Databases
2.3. Search
2.4. Article Selection
2.5. Data Collection
2.6. Data Division
2.7. Register
3. Results
3.1. Sample Characteristics
3.2. Cocaine Use Status
3.3. Metodology
3.4. Main Findings
3.4.1. Brain Activation
Frontal Lobe
Parietal, Temporal, and Occipital Lobes
Basal Ganglia, Diencephalon, and Brainstem
Limbic System
4. Discussion
4.1. Impairment of Frontal Lobe Activity
4.2. Impairment of the Activity of other Brain Regions
4.2.1. Basal Ganglia
4.2.2. Diencephalon, Cerebellum, and Brain Stem
4.2.3. Limbic System
4.3. Limitations
4.4. Implications and Future Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Office on Drugs and Crime. Executive Summary: Policy Implications; United Nations Office on Drugs and Crime: New York, NY, USA, 2021. [Google Scholar]
- Bachi, K.; Mani, V.; Kaufman, A.E.; Alie, N.; Goldstein, R.Z.; Fayad, Z.A.; Alia-Klein, N. Imaging Plaque Inflammation in Asymptomatic Cocaine Addicted Individuals with Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging. World J. Radiol. 2019, 11, 62–73. [Google Scholar] [CrossRef] [PubMed]
- United Nations Office on Drugs and Crime. Drug Market Trends of Cocaine, Amphetamine-Type Stimulants and New Psychoactive Substances; United Nations Office on Drugs and Crime: New York, NY, USA, 2022. [Google Scholar]
- Substance Abuse and Mental Health Services Administration (US); Office of the Surgeon General (US). The Neurobiology of Substance Use, Misuse, and Addiction. In Facing Addiction in America: The Surgeon General’s Report on Alcohol, Drugs, and Health; US Department of Health and Human Services: Washington, DC, USA, 2016; pp. 1–31. [Google Scholar]
- Volkow, N.D.; Morales, M. The Brain on Drugs: From Reward to Addiction. Cell 2015, 162, 712–725. [Google Scholar] [CrossRef]
- Rose, E.J.; Salmeron, B.J.; Ross, T.J.; Waltz, J.; Schweitzer, J.B.; Stein, E.A. Dissociable Effects of Cocaine Dependence on Reward Processes: The Role of Acute Cocaine and Craving. Neuropsychopharmacology 2017, 42, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Garavan, H.; Pankiewicz, J.; Bloom, A.; Cho, J.-K.; Sperry, L.; Ross, T.J.; Salmeron, B.J.; Risinger, R.; Kelley, D.; Stein, E.A. Cue-Induced Cocaine Craving: Neuroanatomical Specificity for Drug Users and Drug Stimuli. AJP 2000, 157, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Makris, N.; Gasic, G.P.; Seidman, L.J.; Goldstein, J.M.; Gastfriend, D.R.; Elman, I.; Albaugh, M.D.; Hodge, S.M.; Ziegler, D.A.; Sheahan, F.S.; et al. Decreased Absolute Amygdala Volume in Cocaine Addicts. Neuron 2004, 44, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Lacadie, C.; Skudlarski, P.; Fulbright, R.K.; Rounsaville, B.J.; Kosten, T.R.; Wexler, B.E. Neural Activity Associated with Stress-Induced Cocaine Craving: A Functional Magnetic Resonance Imaging Study. Psychopharmacology 2005, 183, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Wang, G.-J.; Telang, F.; Fowler, J.S.; Logan, J.; Childress, A.-R.; Jayne, M.; Ma, Y.; Wong, C. Cocaine Cues and Dopamine in Dorsal Striatum: Mechanism of Craving in Cocaine Addiction. J. Neurosci. 2006, 26, 6583–6588. [Google Scholar] [CrossRef] [PubMed]
- Duncan, E.; Boshoven, W.; Harenski, K.; Fiallos, A.; Tracy, H.; Jovanovic, T.; Hu, X.; Drexler, K.; Kilts, C. An fMRI Study of the Interaction of Stress and Cocaine Cues on Cocaine Craving in Cocaine-Dependent Men. Am. J. Addict. 2007, 16, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Li, C.R.; Luo, X.; Sinha, R.; Rounsaville, B.J.; Carroll, K.M.; Malison, R.T.; Ding, Y.-S.; Zhang, S.; Ide, J.S. Increased Error-Related Thalamic Activity during Early Compared to Late Cocaine Abstinence. Drug Alcohol Depend. 2010, 109, 181–189. [Google Scholar] [CrossRef]
- Volkow, N.D.; Fowler, J.S.; Wang, G.-J.; Telang, F.; Logan, J.; Jayne, M.; Ma, Y.; Pradhan, K.; Wong, C.; Swanson, J.M. Cognitive Control of Drug Craving Inhibits Brain Reward Regions in Cocaine Abusers. NeuroImage 2010, 49, 2536–2543. [Google Scholar] [CrossRef]
- Fotros, A.; Casey, K.F.; Larcher, K.; Verhaeghe, J.A.; Cox, S.M.; Gravel, P.; Reader, A.J.; Dagher, A.; Benkelfat, C.; Leyton, M. Cocaine Cue-Induced Dopamine Release in Amygdala and Hippocampus: A High-Resolution PET [18F]Fallypride Study in Cocaine Dependent Participants. Neuropsychopharmacology 2013, 38, 1780–1788. [Google Scholar] [CrossRef]
- Xu, K.; Seo, D.; Hodgkinson, C.; Hu, Y.; Goldman, D.; Sinha, R. A Variant on the Kappa Opioid Receptor Gene (OPRK1) Is Associated with Stress Response and Related Drug Craving, Limbic Brain Activation and Cocaine Relapse Risk. Transl. Psychiatry 2013, 3, e292. [Google Scholar] [CrossRef] [PubMed]
- Konova, A.B.; Moeller, S.J.; Parvaz, M.A.; Froböse, M.I.; Alia-Klein, N.; Goldstein, R.Z. Converging Effects of Cocaine Addiction and Sex on Neural Responses to Monetary Rewards. Psychiatry Res. 2016, 248, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Kaag, A.M.; Reneman, L.; Homberg, J.; van den Brink, W.; van Wingen, G.A. Enhanced Amygdala-Striatal Functional Connectivity during the Processing of Cocaine Cues in Male Cocaine Users with a History of Childhood Trauma. Front. Psychiatry 2018, 9, 317230. [Google Scholar] [CrossRef] [PubMed]
- Zhornitsky, S.; Dhingra, I.; Le, T.M.; Wang, W.; Li, C.R.; Zhang, S. Reward-Related Responses and Tonic Craving in Cocaine Addiction: An Imaging Study of the Monetary Incentive Delay Task. Int. J. Neuropsychopharmacol. 2021, 24, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Koob, G.F.; McLellan, A.T. Neurobiologic Advances from the Brain Disease Model of Addiction. N. Engl. J. Med. 2016, 374, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Kwako, L.E.; Koob, G.F. Neuroclinical Framework for the Role of Stress in Addiction. Chronic Stress 2017, 1, 247054701769814. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.-J.; Volkow, N.D.; Fowler, J.S.; Cervany, P.; Hitzemann, R.J.; Pappas, N.R.; Wong, C.T.; Felder, C. Regional Brain Metabolic Activation during Craving Elicited by Recall of Previous Drug Experiences. Life Sci. 1999, 64, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, D.A.; Kim, Y.K.; Bencherif, B.; Boyd, S.J.; Nelson, R.; Copersino, M.; Endres, C.J.; Dannals, R.F.; Frost, J.J. Imaging Brain Mu-Opioid Receptors in Abstinent Cocaine Users: Time Course and Relation to Cocaine Craving. Biol. Psychiatry 2005, 57, 1573–1582. [Google Scholar] [CrossRef]
- Risinger, R.C.; Salmeron, B.J.; Ross, T.J.; Amen, S.L.; Sanfilipo, M.; Hoffmann, R.G.; Bloom, A.S.; Garavan, H.; Stein, E.A. Neural Correlates of High and Craving during Cocaine Self-Administration Using BOLD fMRI. NeuroImage 2005, 26, 1097–1108. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.-J.; Telang, F.; Fowler, J.S.; Logan, J.; Childress, A.-R.; Jayne, M.; Ma, Y.; Wong, C. Dopamine Increases in Striatum Do Not Elicit Craving in Cocaine Abusers Unless They Are Coupled with Cocaine Cues. NeuroImage 2008, 39, 1266–1273. [Google Scholar] [CrossRef]
- Wilcox, C.E.; Teshiba, T.M.; Merideth, F.; Ling, J.; Mayer, A.R. Enhanced Cue Reactivity and Fronto-Striatal Functional Connectivity in Cocaine Use Disorders. Drug Alcohol Depend. 2011, 115, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Haney, M.; Hanson, C.; Biswal, B.; Hanson, S.J. Modeling Causal Relationship Between Brain Regions Within the Drug-Cue Processing Network in Chronic Cocaine Smokers. Neuropsychopharmacology 2015, 40, 2960–2968. [Google Scholar] [CrossRef] [PubMed]
- Milella, M.S.; Fotros, A.; Gravel, P.; Casey, K.F.; Larcher, K.; Verhaeghe, J.A.J.; Cox, S.M.L.; Reader, A.J.; Dagher, A.; Benkelfat, C.; et al. Cocaine Cue–Induced Dopamine Release in the Human Prefrontal Cortex. J. Psychiatry Neurosci. 2016, 41, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, W.; Zhornitsky, S.; Li, C.R. Resting State Functional Connectivity of the Lateral and Medial Hypothalamus in Cocaine Dependence: An Exploratory Study. Front. Psychiatry 2018, 9, 390158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhornitsky, S.; Le, T.M.; Li, C.-S.R. Hypothalamic Responses to Cocaine and Food Cues in Individuals with Cocaine Dependence. Int. J. Neuropsychopharmacol. 2019, 22, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhornitsky, S.; Wang, W.; Le, T.M.; Dhingra, I.; Chen, Y.; Li, C.R. Resting State Hypothalamic and Dorsomedial Prefrontal Cortical Connectivity of the Periaqueductal Gray in Cocaine Addiction. Addict. Biol. 2021, 26, e12989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, C.-S.R. Ventral Striatal Dysfunction in Cocaine Dependence—Difference Mapping for Subregional Resting State Functional Connectivity. Transl. Psychiatry 2018, 8, 119. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Hitzemann, R.; Angrist, B.; Gatley, S.J.; Logan, J.; Ding, Y.-S.; Pappas, N. Association of Methylphenidate-Induced Craving With Changes in Right Striato-Orbitofrontal Metabolism in Cocaine Abusers: Implications in Addiction. AJP 1999, 156, 19–26. [Google Scholar] [CrossRef]
- Kilts, C.D.; Gross, R.E.; Ely, T.D.; Drexler, K.P.G. The Neural Correlates of Cue-Induced Craving in Cocaine-Dependent Women. AJP 2004, 161, 233–241. [Google Scholar] [CrossRef]
- Zhang, S.; Zhornitsky, S.; Angarita, G.A.; Li, C.R. Hypothalamic Response to Cocaine Cues and Cocaine Addiction Severity. Addict. Biol. 2020, 25, e12682. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.-J.; Ma, Y.; Fowler, J.S.; Wong, C.; Ding, Y.-S.; Hitzemann, R.; Swanson, J.M.; Kalivas, P. Activation of Orbital and Medial Prefrontal Cortex by Methylphenidate in Cocaine-Addicted Subjects But Not in Controls: Relevance to Addiction. J. Neurosci. 2005, 25, 3932–3939. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhornitsky, S.; Zhang, S.; Li, C.R. Noradrenergic Correlates of Chronic Cocaine Craving: Neuromelanin and Functional Brain Imaging. Neuropsychopharmacology 2021, 46, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.F.; Kuwabara, H.; Schretlen, D.J.; Bonson, K.R.; Zhou, Y.; Nandi, A.; Brašić, J.R.; Kimes, A.S.; Maris, M.A.; Kumar, A.; et al. Increased Occupancy of Dopamine Receptors in Human Striatum during Cue-Elicited Cocaine Craving. Neuropsychopharmacology 2006, 31, 2716–2727. [Google Scholar] [CrossRef]
- Zubieta, J.-K.; Gorelick, D.A.; Stauffer, R.; Ravert, H.T.; Dannals, R.F.; Frost, J.J. Increased Mu Opioid Receptor Binding Detected by PET in Cocaine–Dependent Men Is Associated with Cocaine Craving. Nat. Med. 1996, 2, 1225–1229. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-S.R.; Kosten, T.R.; Sinha, R. Sex Differences in Brain Activation during Stress Imagery in Abstinent Cocaine Users: A Functional Magnetic Resonance Imaging Study. Biological. Psychiatry 2005, 57, 487–494. [Google Scholar] [CrossRef]
- Zhang, S.; Zhornitsky, S.; Wang, W.; Dhingra, I.; Le, T.M.; Li, C.R. Cue-Elicited Functional Connectivity of the Periaqueductal Gray and Tonic Cocaine Craving. Drug Alcohol Depend. 2020, 216, 108240. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Logan, J.; Gatley, S.J.; Hitzemann, R.; Chen, A.D.; Dewey, S.L.; Pappas, N. Decreased Striatal Dopaminergic Responsiveness in Detoxified Cocaine-Dependent Subjects. Nature 1997, 386, 830–833. [Google Scholar] [CrossRef]
- Childress, A.R.; Mozley, P.D.; McElgin, W.; Fitzgerald, J.; Reivich, M.; O’Brien, C.P. Limbic Activation During Cue-Induced Cocaine Craving. AJP 1999, 156, 11–18. [Google Scholar] [CrossRef]
- Potenza, M.N.; Hong, K.A.; Lacadie, C.M.; Fulbright, R.K.; Tuit, K.L.; Sinha, R. Neural Correlates of Stress-Induced and Cue-Induced Drug Craving: Influences of Sex and Cocaine Dependence. AJP 2012, 169, 406–414. [Google Scholar] [CrossRef]
- Wexler, B.E.; Gottschalk, C.H.; Fulbright, R.K.; Prohovnik, I.; Lacadie, C.M.; Rounsaville, B.J.; Gore, J.C. Functional Magnetic Resonance Imaging of Cocaine Craving. AJP 2001, 158, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Li, C.R.; Huang, C.; Yan, P.; Bhagwagar, Z.; Milivojevic, V.; Sinha, R. Neural Correlates of Impulse Control During Stop Signal Inhibition in Cocaine-Dependent Men. Neuropsychopharmacology 2008, 33, 1798–1806. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.Z.; Volkow, N.D. Dysfunction of the Prefrontal Cortex in Addiction: Neuroimaging Findings and Clinical Implications. Nat. Rev. Neurosci. 2011, 12, 652–669. [Google Scholar] [CrossRef] [PubMed]
- Li, C.R.; Milivojevic, V.; Kemp, K.; Hong, K.; Sinha, R. Performance Monitoring and Stop Signal Inhibition in Abstinent Patients with Cocaine Dependence. Drug Alcohol Depend. 2006, 85, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Kosten, T.R.; Scanley, B.E.; Tucker, K.A.; Oliveto, A.; Prince, C.; Sinha, R.; Potenza, M.N.; Skudlarski, P.; Wexler, B.E. Cue-Induced Brain Activity Changes and Relapse in Cocaine-Dependent Patients. Neuropsychopharmacology 2006, 31, 644–650. [Google Scholar] [CrossRef]
- Yager, L.M.; Garcia, A.F.; Wunsch, A.M.; Ferguson, S.M. The Ins and Outs of the Striatum: Role in Drug Addiction. Neuroscience 2015, 301, 529–541. [Google Scholar] [CrossRef]
- Koob, G.F.; Volkow, N.D. Neurocircuitry of Addiction. Neuropsychopharmacology 2010, 35, 217–238. [Google Scholar] [CrossRef]
- Torrico, T.J.; Munakomi, S. Neuroanatomy, Thalamus; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Mokhtar, M.; Singh, P. Neuroanatomy, Periaqueductal Gray; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- AbuHasan, Q.; Reddy, V.; Siddiqui, W. Neuroanatomy, Amygdala; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Fogwe, L.A.; Reddy, V.; Mesfin, F.B. Neuroanatomy, Hippocampus; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Gong, M.; Shen, Y.; Liang, W.; Zhang, Z.; He, C.; Lou, M.; Xu, Z. Impairments in the Default Mode and Executive Networks in Methamphetamine Users During Short-Term Abstinence. Int. J. Gen. Med. 2022, 15, 6073–6084. [Google Scholar] [CrossRef]
- Venniro, M.; Russell, T.I.; Ramsey, L.A.; Richie, C.T.; Lesscher, H.M.; Giovanetti, S.M.; Messing, R.O.; Shaham, Y. Abstinence-dependent dissociable central amygdala microcircuits control drug craving. Proc. Natl. Acad. Sci. USA 2020, 117, 8126–8134. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paludetto, L.S.; Florence, L.L.A.; Torales, J.; Ventriglio, A.; Castaldelli-Maia, J.M. Mapping the Neural Substrates of Cocaine Craving: A Systematic Review. Brain Sci. 2024, 14, 329. https://doi.org/10.3390/brainsci14040329
Paludetto LS, Florence LLA, Torales J, Ventriglio A, Castaldelli-Maia JM. Mapping the Neural Substrates of Cocaine Craving: A Systematic Review. Brain Sciences. 2024; 14(4):329. https://doi.org/10.3390/brainsci14040329
Chicago/Turabian StylePaludetto, Letícia Silvestri, Luiza Larrubia Alvares Florence, Julio Torales, Antonio Ventriglio, and João Maurício Castaldelli-Maia. 2024. "Mapping the Neural Substrates of Cocaine Craving: A Systematic Review" Brain Sciences 14, no. 4: 329. https://doi.org/10.3390/brainsci14040329
APA StylePaludetto, L. S., Florence, L. L. A., Torales, J., Ventriglio, A., & Castaldelli-Maia, J. M. (2024). Mapping the Neural Substrates of Cocaine Craving: A Systematic Review. Brain Sciences, 14(4), 329. https://doi.org/10.3390/brainsci14040329