Research on Brain Networks of Human Balance Based on Phase Estimation Synchronization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Data Preprocessing
2.4. Phase-Locking Synchronous Screening
2.5. Phase Lag Functional Brain Network
3. Results
3.1. Analysis of Phase-Locking Synchronization Screening
3.2. Comparative Analysis of Phase Lag Indexes
3.3. Phase Lag Brain Network Visualization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bassett, D.S.; Sporns, O. Network neuroscience. Nat. Neurosci. 2017, 20, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Barollo, F.; Hassan, M.; Petersen, H.; Rigoni, I.; Ramon, C.; Gargiulo, P.; Fratini, A. Cortical Pathways During Postural Control: New Insights From Functional EEG Source Connectivity. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, R.; McCloskey, D.I. Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. J. Physiol. 1994, 478 Pt 1, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, G.A.; Harris, L.R.; Gnanasegaram, J.J.; Cushing, S.L.; Gordon, K.A.; Haycock, B.C.; Campos, J.L. Age-related changes to vestibular heave and pitch perception and associations with postural control. Sci. Rep. 2022, 12, 6426. [Google Scholar] [CrossRef] [PubMed]
- Balayi, E.; Sedaghati, P.; Ahmadabadi, S. Effects of neuromuscular training on postural control of children with intellectual disability and developmental coordination disorders. BMC Musculoskelet. Disord. 2022, 23, 631. [Google Scholar] [CrossRef] [PubMed]
- Lopes, P.G.; Lopes, J.A.F.; Brito, C.M.; Alfieri, F.M.; Battistella, L.R. Relationships of Balance, Gait Performance, and Functional Outcome in Chronic Stroke Patients: A Comparison of Left and Right Lesions. BioMed Res. Int. 2015, 2015, 716042. [Google Scholar] [CrossRef] [PubMed]
- van Diessen, E.; Otte, W.M.; Stam, C.J.; Braun, K.P.J.; Jansen, F.E. Electroencephalography based functional networks in newly diagnosed childhood epilepsies. Clin. Neurophysiol. 2016, 127, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Varone, G.; Boulila, W.; Lo Giudice, M.; Benjdira, B.; Mammone, N.; Ieracitano, C.; Dashtipour, K.; Neri, S.; Gasparini, S.; Morabito, F.C.; et al. A Machine Learning Approach Involving Functional Connectivity Features to Classify Rest-EEG Psychogenic Non-Epileptic Seizures from Healthy Controls. Sensors 2022, 22, 129. [Google Scholar] [CrossRef] [PubMed]
- Rubega, M.; Di Marco, R.; Zampini, M.; Formaggio, E.; Menegatti, E.; Bonato, P.; Masiero, S.; Del Felice, A. Muscular and cortical activation during dynamic and static balance in the elderly: A scoping review. Aging Brain 2021, 1, 100013. [Google Scholar] [CrossRef]
- Solis-Escalante, T.; van der Cruijsen, J.; de Kam, D.; van Kordelaar, J.; Weerdesteyn, V.; Schouten, A.C. Cortical dynamics during preparation and execution of reactive balance responses with distinct postural demands. Neuroimage 2019, 188, 557–571. [Google Scholar] [CrossRef]
- Dasdemir, Y.; Yildirim, E.; Yildirim, S. Analysis of functional brain connections for positive-negative emotions using phase locking value. Cogn. Neurodynamics 2017, 11, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Roerdink, M.; Hlavackova, P.; Vuillerme, N. Center-of-pressure regularity as a marker for attentional investment in postural control: A comparison between sitting and standing postures. Hum. Mov. Sci. 2011, 30, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Zhavoronkova, L.; Zharikova, A.; Kushnir, E.; Mikhalkova, A.J.H.P. EEG markers of upright posture in healthy individuals. Hum. Physiol. 2012, 38, 604–612. [Google Scholar] [CrossRef]
- Stam, C.J.; Nolte, G.; Daffertshofer, A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 2007, 28, 1178–1193. [Google Scholar] [CrossRef] [PubMed]
- Vinck, M.; Oostenveld, R.; van Wingerden, M.; Battaglia, F.; Pennartz, C.M.A. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 2011, 55, 1548–1565. [Google Scholar] [CrossRef] [PubMed]
- Lau, T.M.; Gwin, J.T.; McDowell, K.G.; Ferris, D.P. Weighted phase lag index stability as an artifact resistant measure to detect cognitive EEG activity during locomotion. J. Neuroeng. Rehabil. 2012, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Christodoulakis, M.; Hadjipapas, A.; Papathanasiou, E.S.; Anastasiadou, M.; Papacostas, S.S.; Mitsis, G.D. On the effect of volume conduction on graph theoretic measures of brain networks in epilepsy. In Modern Electroencephalographic Assessment Techniques; Humana Press: New York, NY, USA, 2015; pp. 103–130. [Google Scholar]
- Tse, Y.Y.F.; Petrofsky, J.S.; Berk, L.; Daher, N.; Lohman, E.; Laymon, M.S.; Cavalcanti, P. Postural sway and Rhythmic Electroencephalography analysis of cortical activation during eight balance training tasks. Med. Sci. Monit. 2013, 19, 175–186. [Google Scholar] [PubMed]
- Thompson, J.; Sebastianelli, W.; Slobounov, S. EEG and postural correlates of mild traumatic brain injury in athletes. Neurosci. Lett. 2005, 377, 158–163. [Google Scholar] [CrossRef]
- Mesquita, L.; de Carvalho, F.T.; Freire, L.; Neto, O.P.; Zângaro, R.A. Effects of two exercise protocols on postural balance of elderly women: A randomized controlled trial. BMC Geriatr. 2015, 15, 61. [Google Scholar] [CrossRef]
- Palazzo, F.; Nardi, A.; Lamouchideli, N.; Caronti, A.; Alashram, A.; Padua, E.; Annino, G. The effect of age, sex and a firm-textured surface on postural control. Exp. Brain Res. 2021, 239, 2181–2191. [Google Scholar] [CrossRef]
- Patel, M.; Buckwell, D.; Hawken, M.; Bronstein, A.M. Does outstretching the arms improve postural stability? Neurosci. Lett. 2014, 579, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Objero, C.N.; Wdowski, M.M.; Hill, M.W. Can arm movements improve postural stability during challenging standing balance tasks? Gait Posture 2019, 74, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M.; Miyai, I.; Hatakenaka, M.; Kubota, K.; Sakoda, S. Role of the prefrontal cortex in human balance control. Neuroimage 2008, 43, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Dietz, V.; Quintern, J.; Berger, W. Cerebral evoked potentials associated with the compensatory reactions following stance and gait perturbation. Neurosci. Lett. 1984, 50, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Collado-Mateo, D.; Adsuar, J.C.; Olivares, P.R.; Cano-Plasencia, R.; Gusi, N. Using a dry electrode EEG device during balance tasks in healthy young-adult males: Test-retest reliability analysis. Somatosens. Mot. Res. 2015, 32, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Zhou, H.; Wu, J.; Jiang, W.; Zuo, G.; Shi, C. Exploring rhythmic visual cue impacts on gait initiation using functional EEG source connectivity. In Proceedings of the 2023 8th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 21–23 April 2023; pp. 272–278. [Google Scholar]
- Sun, L.; Liu, Y.; Beadle, P.J. Independent component analysis of EEG signals. In Proceedings of the 2005 IEEE International Workshop on VLSI Design and Video Technology, Suzhou, China, 28–30 May 2005; pp. 219–222. [Google Scholar]
- Banks, M.I.; Krause, B.M.; Endemann, C.M.; Campbell, D.I.; Kovach, C.K.; Dyken, M.E.; Kawasaki, H.; Nourski, K.V. Cortical functional connectivity indexes arousal state during sleep and anesthesia. Neuroimage 2020, 211, 116627. [Google Scholar] [CrossRef] [PubMed]
- Slobounov, S.; Hallett, M.; Cao, C.; Newell, K. Modulation of cortical activity as a result of voluntary postural sway direction: An EEG study. Neurosci. Lett. 2008, 442, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.S.; Yu, M.; Kwon, T.K. Effect of Lower Limb Exercise on Posture Stability and Brain Activity during Whole Body Vibration for the Elderly. J. Mech. Med. Biol. 2021, 21, 2140043. [Google Scholar] [CrossRef]
- Roelfsema, P.R.; Engel, A.K.; Konig, P.; Singer, W. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 1997, 385, 157–161. [Google Scholar] [CrossRef]
- Zheng, R.; Feng, Y.; Wang, T.; Cao, J.; Wu, D.; Jiang, T.; Gao, F. Scalp EEG functional connection and brain network in infants with West syndrome. Neural Netw. 2022, 153, 76–86. [Google Scholar] [CrossRef]
- Liu, M.; Xu, G.; Yu, H.; Wang, C.; Sun, C.; Guo, L. Research on characteristics of brain functional network in stroke patients during convalescent period under transcranial direct current stimulation. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = J. Biomed. Eng. 2021, 38, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Tass, P.; Rosenblum, M.; Weule, J.; Kurths, J.; Pikovsky, A.; Volkmann, J.; Schnitzler, A.; Freund, H.-J. Detection of n:m phase locking from noisy data: Application to magnetoencephalography. Phys. Rev. Lett. 1998, 81, 3291. [Google Scholar] [CrossRef]
- Le Van Quyen, M.; Foucher, J.; Lachaux, J.; Rodriguez, E.; Lutz, A.; Martinerie, J.; Varela, F.J. Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J. Neurosci. Methods 2001, 111, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Lachaux, J.P.; Rodriguez, E.; Martinerie, J.; Varela, F.J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 1999, 8, 194–208. [Google Scholar] [CrossRef]
- Salehi, F.; Jaloli, M.; Coben, R.; Nasrabadi, A.M. Estimating brain effective connectivity from EEG signals of patients with autism disorder and healthy individuals by reducing volume conduction effect. Cogn. Neurodyn. 2022, 16, 519–529. [Google Scholar] [CrossRef]
- Van de Steen, F.; Faes, L.; Karahan, E.; Songsiri, J.; Valdes-Sosa, P.A.; Marinazzo, D. Critical Comments on EEG Sensor Space Dynamical Connectivity Analysis. Brain Topogr. 2019, 32, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M.; Miyai, I.; Hattori, N.; Hatakenaka, M.; Yagura, H.; Kawano, T.; Kubota, K. Cortical control of postural balance in patients with hemiplegic stroke. Neuroreport 2012, 23, 314–319. [Google Scholar] [CrossRef]
- Liu, Y.C.; Yang, Y.R.; Tsai, Y.A.; Wang, R.Y.; Lu, C.F. Brain Activation and Gait Alteration During Cognitive and Motor Dual Task Walking in Stroke-A Functional Near-Infrared Spectroscopy Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2416–2423. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; He, Y. Power spectrum estimation of the welch method based on imagery EEG. Appl. Mech. Mater. 2013, 278, 1260–1264. [Google Scholar] [CrossRef]
- Hardmeier, M.; Hatz, F.; Bousleiman, H.; Schindler, C.; Stam, C.J.; Fuhr, P. Reproducibility of Functional Connectivity and Graph Measures Based on the Phase Lag Index (PLI) and Weighted Phase Lag Index (wPLI) Derived from High Resolution EEG. PLoS ONE 2014, 9, e108648. [Google Scholar] [CrossRef]
Paradigm | Vision | Proprioception |
---|---|---|
P1 | Unblocked | Unblocked |
P2 | Blocked (closing eyes) | Unblocked |
P3 | Unblocked | Blocked (stepping on a sponge pad with the feet) |
P4 | Blocked (closing eyes) | Blocked (stepping on a sponge pad with the feet) |
Paradigm | Core Nodes | |
---|---|---|
Fz–Cz | Fz–Pz | |
P1 | 0.5440 | 0.5203 |
P2 | 0.6334 | 0.4842 |
P3 | 0.5395 | 0.6050 |
P4 | 0.6135 | 0.5747 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Luo, Z. Research on Brain Networks of Human Balance Based on Phase Estimation Synchronization. Brain Sci. 2024, 14, 448. https://doi.org/10.3390/brainsci14050448
Qiu Y, Luo Z. Research on Brain Networks of Human Balance Based on Phase Estimation Synchronization. Brain Sciences. 2024; 14(5):448. https://doi.org/10.3390/brainsci14050448
Chicago/Turabian StyleQiu, Yifei, and Zhizeng Luo. 2024. "Research on Brain Networks of Human Balance Based on Phase Estimation Synchronization" Brain Sciences 14, no. 5: 448. https://doi.org/10.3390/brainsci14050448
APA StyleQiu, Y., & Luo, Z. (2024). Research on Brain Networks of Human Balance Based on Phase Estimation Synchronization. Brain Sciences, 14(5), 448. https://doi.org/10.3390/brainsci14050448