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Abstract: Decreased attentional function causes problems in daily life. However, a quick and easy
evaluation method of attentional function has not yet been developed. Therefore, we are searching
for a method to evaluate attentional function easily and quickly. This study aimed to collect basic data
on the features of electroencephalography (EEG) during attention tasks to develop a new method for
evaluating attentional function using EEG. Twenty healthy young adults participated; we examined
cerebral activity during a Clinical Assessment for Attention using portable EEG devices. The Mann–
Whitney U test was performed to assess differences in power levels of EEG during tasks between
the low- and high-attention groups. The findings revealed that the high-attention group showed
significantly higher EEG power levels in the δ wave of L-temporal and bilateral parietal lobes, as well
as in the β and γ waves of the R-occipital lobe, than did the low-attention group during digit-forward,
whereas the high-attention group showed significantly higher EEG power levels in the θ wave of
R-frontal and the α wave of bilateral frontal lobes during digit-backward. Notably, lower θ, α, and
β bands of the right hemisphere found in the low-attention group may be key elements to detect
attentional deficit.

Keywords: attentional function; electroencephalography; brain function; neuroimaging; neuroscience;
brain injury

1. Introduction

Decreased attentional function causes problems in daily life, such as an increase in
traffic accidents and an inability to concentrate on work. Attentional function is considered
the basis of other cognitive processes [1], and impairment of attentional function can impede
rehabilitation interventions. In clinical settings, attentional function is frequently evaluated
using assessment tools such as the Clinical Assessment for Attention (CAT), a standardized
evaluation method, and the Trail Making Test (TMT). However, the CAT has many test
items, and it takes approximately 3 h to evaluate all seven types of attentional functions.
In addition, the TMT can only assess a few aspects of attentional function, leading to
discrepancies between clinical conditions and assessment results. To date, a method for the
quick and easy evaluation of attentional function has not yet been developed. Therefore,
our focus remains on searching for a method to evaluate attentional function easily and
quickly. If attentional function could be evaluated quickly and easily using a portable EEG,
this would lead to a reduction in the time required for evaluating attentional function in
clinical settings, ultimately reducing the burden on patients and examiners.

Recently, functional and relevant neuroimaging techniques have become principal
instruments in rehabilitation research. These methods can be applied to explore the impacts
of cerebral injury or disorder on brain systems associated with cognition and behavior
and determine how rehabilitation could alter brain systems, including functional magnetic
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resonance imaging (fMRI), positron emission tomography (PET), electroencephalography
(EEG), magnetoencephalography (MEG), near-infrared spectroscopy (NIRS), and transcra-
nial magnetic stimulation (TMS) [2]. Among these, EEG is a noninvasive, easy-to-use,
and relatively inexpensive method for assessing neurophysiological function in a variety
of situations, collecting basic data, and reliably assessing cerebral function [3]. Other in-
vestigations with greater specificity and sensitivity have largely superseded its value in
the diagnosis and evaluation of neurological diseases other than epilepsy. EEG is mostly
important for cases of impaired consciousness or altered mental status [4]. Electroen-
cephalography (EEG), the earliest modality for imaging human cortical brain activities, has
garnered increasing scientific and clinical interest. For over 40 years, EEG research has been
conducted to identify and measure the neurophysiology of attention-deficit/hyperactivity
disorder [5], as well as diagnose disorders with unique patterns of atypical resting-state
EEG [6]. Brain–computer interfaces (BCIs) are a fast-evolving technology with potential
for revolutionizing how humans interact with computers [7]. BCIs quantify brain activity
and transform it into commands for computers or other instruments, including EEG, al-
lowing operators to solely guide apparatus and tools with their own thoughts. Therefore,
continuously interpreting EEG signals to evaluate brain function is clinically important for
developing an attentional function evaluation method. Although EEG has shown promise
in measuring attentional function, no method has been developed to easily evaluate atten-
tional function using EEG, resulting in a growing interest in the evaluation of attentional
functions using EEG.

A Convolutional Neural Network (CNN), a deep learning method, may be helpful
for developing a short and simple method for evaluating attentional functions. A CNN
enables the interpretation of EEG signals that are difficult for humans to read. Developing
a trained prediction model that accurately predicts attention functions using a CNN and
incorporating it into a portable EEG may allow for the easy and quick evaluation of
attention functions in the future. Furthermore, a previous study reported that a CNN
trained using signals obtained from an EEG could classify four imagined objects with a 60%
success rate [8]. In other words, it has been suggested that brain activity related to cognitive
functions can be measured using EEG and that cognitive evaluation can be performed
by combining the data with a CNN. Specifically, eyes-open EEG alpha attenuation might
represent a neural biomarker for risk of attentional impairment [9]. Moreover, the left
frontoparietal network, which is related to spatial attention, had stronger connections in
the δ, β, and γ bands in the depressive emotion group compared with the healthy control
group [10].

Therefore, this study aimed to collect basic EEG feature data during attention tasks to
develop a new method for evaluating attentional function. We expect to shorten the evalu-
ation time for attentional function in clinical settings and reduce the burden on patients
and examiners, leading to an increase in training time and contribution to rehabilitation
interventions. Furthermore, the decline in attentional function not only occurs in subjects
with brain damage but can also appear with aging. Therefore, being able to easily evaluate
attentional function will be useful for a variety of settings and individuals. Based on these
findings, this study may play an important role in resolving these clinical issues. To achieve
these objectives, we used a portable EEG.

2. Materials and Methods
2.1. Participants

Twenty healthy young adults (14 men and 6 women; age: 20.6 ± 1.7 years) participated
in this research. All potential participants received extensive explanation about the safety
protocols of this study, assuring that their individual identifying information would be kept
confidential. Thereafter, the participants gave written informed consent for their inclusion
in the study. Additional informed consent was obtained from all participants whose
identifiable data were analyzed in this study. The inclusion criteria were patients without
a history of major physical disorders, including neurological illnesses, brain injuries, or
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psychiatric illnesses. The exclusion criteria were patients having a history of one or some
of these disorders. No participants had a history of major physical diseases, including
neurological disorders, cerebral injuries, or psychiatric impairments. This study was
approved by the Ethics Committee of Nishikyushu University (approval no. 23 NMR06;
25 May 2023) and conformed to the principles of the Declaration of Helsinki [11] and its
subsequent amendments.

2.2. Task

This comprised two tasks from the Japanese Society for Higher Brain Dysfunction.
One was the Digit Span Test, which is an auditory memory test. It involves the following
two conditions: participants immediately repeat the number sequence read out loud after
the examiner (digit-forward) and answer the number sequence in reverse after the examiner
(digit-backward). The other test was the Tapping Span test, which is a visual memory test.
It also had two conditions, as follows: the examiner pointed out nine squares drawn on
a test diagram in order, and participants immediately pointed to them in the same order
(tapping forward); then, the participants pointed to them in the reverse order (tapping
backward). Each number was in a range of 2–9 digits; there were first and second series.
If the participants answered or pointed correctly, they moved on to the next digit. If they
misplaced the same digit twice in a row, the test would end. The standard cut-off point
of each task was digit-forward—6 (6 digits or less indicated low attention function), digit-
backward—4 (4 digits or less referred to a group with low attention function), tapping
forward—6 (6 digits or less showed a group with low attention function), and tapping
backward—5 (5 digits or less referred to a group with low attention function).

2.3. Experimental Protocol

The participants were asked to sit in a quiet room on chairs with backrests; their
forearms were placed in a relaxed position on a table. The participants were asked to
carry out the tasks without any additional movements, such as head movements, and
maintain the same posture during the experiment. EEG measurements were recorded using
a Polymate Pro MP6100 (Miyuki Giken, Tokyo, Japan). Prior to electrode introduction, the
skin was rinsed with alcohol; the electrodes were affixed to an elastic cap using a holder.
According to the international 10–20 EEG placement system, 19 gold-coated active EEG
electrodes were positioned at specific cortical locations, as follows: Fp1 (left frontal pole),
Fp2 (right frontal pole), F3 (left frontal), Fz (middle frontal), F4 (right frontal), F7 (left inferior
frontal), F8 (right inferior frontal), C3 (left central), Cz (middle central), C4 (right central),
P3 (left parietal), Pz (middle parietal), P4 (right parietal), O1 (left occipital), O2 (right
occipital), T3 (left mid temporal), T4 (right mid temporal), T5 (left posterior temporal), and
T6 (right posterior temporal) (Figure 1). EEG measurement at the scalp level represents
the aggregate currents of the electrical fields generated by neural activity in cortical neural
circuits [12].

2.4. Data Analysis

EEG data were collected at a rate of 1000 Hz and filtered within the 1–60 Hz range
using a bandpass filter. Artifacts from eye blinks or muscle movements were excluded.
Power spectrum analysis was performed using an electromagnetic source estimation data
editor (Cortech Solutions, Wilmington, NC, USA). The nine regions of interest (ROIs) were
set as L-frontal (Fp1, F3, F7, and Fz), R-frontal (Fp2, F4, F8, and Fz), L-temporal (T3 and T5),
R-temporal (T4 and T6), central (C3, C4, and Cz), L-parietal (P3 and Pz), R-parietal (P4 and
Pz), L-occipital (O1), and R-occipital (O2). EEG rhythms were categorized into six wave
bands according to their frequency ranges, as follows: δ (0–4 Hz), θ (5–8 Hz), α (9–13 Hz),
β (14–30 Hz), low-γ waves (31–50 Hz), and high-γ waves (51–70 Hz) based on previous
studies [13,14]. The mean power level of each waveband was calculated for each task.



Brain Sci. 2024, 14, 527 4 of 10

2.5. Statistical Analysis

The participants were divided into two groups with cutoff points for each of the
following tasks: digit-forward = 6, digit-backward = 4, tapping-forward = 6, and tapping
backward = 5. Those scoring at or below the cut-off points were allocated to the low-
attention groups, while those with over the cut-off points were allocated to the high-
attention groups. The Mann–Whitney U test was used to examine differences in EEG power
levels during tasks between groups. IBM SPSS Statistics (version 20.0; IBM Corp., Armonk,
NY, USA) was used for the statistical analysis. Statistical significance was set at p < 0.05.

Brain Sci. 2024, 14, x FOR PEER REVIEW 4 of 10 
 

 
Figure 1. EEG electrode placement. EEG electrodes are positioned based on the international 10–20 
EEG placement method. The Fp1, Fp2, F3, Fz, F4, F7, F8, C3, Cz, C4, P3, Pz, P4, O1, O2, T3, T4, T5, 
and T6 are examined (EEG, electroencephalography; Fp1, left frontal pole; Fp2, right frontal pole; 
F3, left frontal; Fz, middle frontal; F4, right frontal; F7, left inferior frontal; F8, right inferior frontal; 
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parietal; O1, left occipital; O2, right occipital; T3, left mid temporal; T4, right mid temporal; T5, left 
posterior temporal; T6, right posterior temporal). 
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Figure 1. EEG electrode placement. EEG electrodes are positioned based on the international 10–20 EEG
placement method. The Fp1, Fp2, F3, Fz, F4, F7, F8, C3, Cz, C4, P3, Pz, P4, O1, O2, T3, T4, T5, and T6
are examined (EEG, electroencephalography; Fp1, left frontal pole; Fp2, right frontal pole; F3, left
frontal; Fz, middle frontal; F4, right frontal; F7, left inferior frontal; F8, right inferior frontal; C3, left
central; Cz, middle central; C4, right central; P3, left parietal; Pz, middle parietal; P4, right parietal;
O1, left occipital; O2, right occipital; T3, left mid temporal; T4, right mid temporal; T5, left posterior
temporal; T6, right posterior temporal).

3. Results

Comparisons between the groups are summarized in Figures 2–5. During the digit-
forward task, the high-attention group showed significantly higher EEG power levels in the
δ wave of the L-temporal and bilateral parietal lobes, as well as in the β and low and high γ

waves of the R-occipital lobe than the low-attention group. During the digit-backward task,
the high-attention group showed significantly higher EEG power levels in the θ wave of
the R-frontal and the α wave of the bilateral frontal lobes. No significant differences were
observed during the tapping period. The integrated topographic maps of the participants
are shown in Figure 6. The results suggest that similar areas, such as the central and
occipital areas during the Digit Span and frontal, central, and occipital areas during the
Tapping Span, had high EEG power levels.
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4. Discussion

The essential components of EEG signals comprise brain rhythms in various brain
regions, reflecting the activity of these regions. The electrical activity of the cerebral cortex
is sent to the scalp through the anatomical structure. Consequently, the measured EEG
signals are a combination of source signals from different brain regions that reflect a large
amount of spatial location information [15]. In this study, we examined the cerebral activity
during CAT using a portable EEG. The low-attention group in the digit-forward task
showed significantly lower EEG power levels in the δ wave of L-temporal and bilateral
parietal lobes, as well as in the β and γ waves of R-occipital lobe than the high-attention
group, whereas the low-attention group in the digit-backward task showed significantly
lower EEG power levels in the θ wave of R-frontal and α wave of bilateral frontal lobes;
however, no correlations were found during Tapping Span. The Tapping Span involved
body movements, which may have caused a variety of EEG data and affected the statistical
analysis results, as we could not find consistent results.

In our previous study, the power levels of brain waves varied depending on the type
of attention task. During the focused attentional task, the δ wave increased, and the α wave
decreased; during the alternating attentional task, the β and γ waves both increased [13].
The θ rhythms have the highest classification performance with visual search [16], cognitive
control has been strongly linked to midfrontal θ brain activity [17]. The EEG α rhythm is
one of the most salient human brain activity rhythms, modulated by the level of attention
and vigilance [18]. A review article suggested that higher α activity improves attention
scores [19], and even resting EEG α oscillations are correlated to vigilant attention [20]
and visual spatial attention [21]. A previous study investigated the neural patterns in
visual attention recognition (i.e., mental arithmetic), where attention states showed less
activation than did non-attention states in the prefrontal and occipital areas in the α, β,
and θ bands [22]. Another study suggested that α wave as α lateralization plays a causal
role in attention tasks [23,24]. Conversely, patients with schizophrenia, who typically
exhibit deficits in working memory, showed significantly lower α suppression in the task
preparation, memory encoding, maintenance, and retrieval phases, indicating strong α

power [25], whereas stronger connections in δ, β, and γ bands were found in the depressive
emotion group [10]. These results may imply that attentional network might be modulated
due to mental conditions. Clinically, a randomized controlled trial revealed that a lower
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frontal α power was significantly associated with a higher incidence of postoperative
delirium [26], which is usually a reversible disturbance in mental status with a degree
of inattention [27]. Another study reported that the results demonstrated a significant
correlation between the power spectral density of the EEG β band and students’ academic
performance, which relates to their attentional ability [28].

In this study, the lower δ, β, and γ waves during the digit-forward task, which was
an easier attentional task, may indicate that the low-attention group could not induce
focused or alternating attention. The lower θ and α waves during the digit-backward task,
which was more difficult and needed working memory, may indicate that the low-attention
group could pay more focused attention. Moreover, the lower EEG power level of the
right hemisphere may be representative of lower attentional skill, as the result suggested
that δ wave of bilateral parietal, β, γ waves of R-occipital lobe, θ wave of R-frontal, and
especially α wave of bilateral frontal lobe were lower in the low-attention group. The
role of θ and α power in frontal areas can be biomarkers for both cognitive and physical
performances [29]. The frontal poles are brain regions that play a key role in emotional
regulation and cognitive abilities [30]. Indeed, a review article suggested that the following
EEG biomarkers are most robust; task-induced EEG frontal–midline θ and EEG individual
α frequency [31].

These results suggest that we could detect attentional deficits with fewer electrodes
focusing on specific brain areas and brain waves such as the θ, α, and β bands (5–30 Hz) of
the right hemisphere, as other research has suggested that neural oscillations recorded with
ear-EEG could be used to reliably differentiate between levels of cognitive workload and
working memory, be integrated into wearable devices in the near future [32], and identify
mild cognitive impairments (MCIs) and neural alterations via portable EEG devices de-
signed to capture prefrontal selective attention in combination with behavioral assessments.
This approach could potentially augment the use of traditional neuropsychological tests
during clinical screening for MCIs [33]. In this study, we compared brain waves between
high- and low-attention groups. However, resting-state EEG should also be considered a
key point to detect attentional deficits, as previous research has pointed out that those with
attention-deficit/hyperactivity disorder have specific electrophysiological conditions [34].

On the other hand, although the task we used in this study was developed to detect
attentional dysfunction in patients with neurological disorders, 8 of 20 were consistently
detected with low attention function in all tasks, while 12 of 20 were detected with low
attention function in some of the tasks in the healthy participants. These might indicate that
the tasks are too difficult to evaluate actual patients. We should review the currently used
evaluation tools in clinical scenarios and simplify their application using some technologies.

This study has some limitations. First, the participants were all healthy young adults.
Therefore, whether our results could be generalized to older patients or those with neuro-
logical disabilities remains unclear. Second, the attentional task was limited to the span.
Therefore, whether brain waves during other attentional tasks could be comparable to those
observed during the span remains vague. Third, we did not distinguish handedness among
the participants. This may have affected the functional lateralization of brain processes and
the results obtained. Fourth, our sample size was small. Future studies must be conducted
with a larger number of participants under various conditions, and brainwaves should be
investigated during various attentional tasks.

5. Conclusions

Our study identified significant correlations between EEG power levels in specific
brain areas and attentional task performance. Notably, lower θ, α, and β bands (5–30 Hz)
of the right hemisphere were found in the low-attention group. Thus, the θ, α, and β bands
may be key elements to detecting attentional deficit. These results suggest that attentional
deficits can be detected with fewer EEG electrodes.
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