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Abstract: Disease prediction is greatly challenged by the scarcity of datasets and privacy concerns
associated with real medical data. An approach that stands out to circumvent this hurdle is the use
of synthetic data generated using Generative Adversarial Networks (GANs). GANs can increase
data volume while generating synthetic datasets that have no direct link to personal information.
This study pioneers the use of GANs to create synthetic datasets and datasets augmented using
traditional augmentation techniques for our binary classification task. The primary aim of this
research was to evaluate the performance of our novel Conditional Deep Convolutional Neural
Network (C-DCNN) model in classifying brain tumors by leveraging these augmented and synthetic
datasets. We utilized advanced GAN models, including Conditional Deep Convolutional Generative
Adversarial Network (DCGAN), to produce synthetic data that retained essential characteristics of
the original datasets while ensuring privacy protection. Our C-DCNN model was trained on both
augmented and synthetic datasets, and its performance was benchmarked against state-of-the-art
models such as ResNet50, VGG16, VGG19, and InceptionV3. The evaluation metrics demonstrated
that our C-DCNN model achieved accuracy, precision, recall, and F1 scores of 99% on both synthetic
and augmented images, outperforming the comparative models. The findings of this study highlight
the potential of using GAN-generated synthetic data in enhancing the training of machine learning
models for medical image classification, particularly in scenarios with limited data available. This
approach not only improves model accuracy but also addresses privacy concerns, making it a viable
solution for real-world clinical applications in disease prediction and diagnosis.

Keywords: augmented dataset; brain tumor; C-DCNN model; DCGAN; GANs; image datasets;
kidney tumor; synthetic dataset; model performance

1. Introduction

Medical researchers and practitioners play a critical role in disease prediction, di-
agnosis, and treatment. However, a significant challenge faced by these professionals is
the limited availability of adequate and diverse datasets [1,2]. The success of predictive
models in medical disease analysis heavily relies on the quantity of data used for train-
ing [3,4]. To address these limitations, researchers have turned to augmentation techniques
and the creation of synthetic datasets as practical solutions to expand and enhance the
available data.

Brain Sci. 2024, 14, 559. https://doi.org/10.3390/brainsci14060559 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci14060559
https://doi.org/10.3390/brainsci14060559
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0001-8582-409X
https://orcid.org/0000-0001-8653-3809
https://orcid.org/0000-0002-3141-6805
https://doi.org/10.3390/brainsci14060559
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci14060559?type=check_update&version=2


Brain Sci. 2024, 14, 559 2 of 25

Some experts and researchers, for example [5], and many more, often mistake image
augmentation to be the same thing as synthetic datasets. However, there is a clear difference
between augmentation and synthetic datasets. Image augmentation involves manipulating
the training set by changing its geometric and color space properties (such as rotation,
scaling, cropping, brightness, zooming, and contrast) [6]. One major disadvantage of
using primary data or augmented data is that there is always a risk of an accidental
breach and lack of preservation of the privacy of patients represented by the data, as data
collection through Magnetic Resonance Imaging (MRI) or Computed Tomography (CT)
scans could contain images of the head, facial images, or comparable representations in
a manner that allow the identities of research participants to be readily and accurately
ascertained [7,8]. On the other hand, synthetic data can be used to circumvent this hurdle
while also enhancing the performance of models where data size is not adequate to train
models. Hence, synthetic datasets refer to artificially generated data that closely resemble
the characteristics of the primary datasets. The original dataset is not utilized in the creation
of synthetic data; rather, it is generated artificially to produce new sets of datasets that
serve as supplementary or alternative sources of data, particularly in scenarios where there
is a dearth of sufficient authentic data. The generation of synthetic datasets typically entails
the utilization of generative models, such as Generative Adversarial Networks (GANs),
Variational Autoencoders (VAEs), or other methodologies, such as rule-based generators or
simulation models [9].

The utilization of GANs for generating synthetic data in medical research is a relatively
novel approach that has not been extensively explored in the existing literature. For
example, in the context of brain tumor prediction, GANs have not been widely studied for
generating synthetic datasets. While there have been some applications of GANs in medical
image synthesis for brain tumor segmentation in studies by Myronenko et al., Huang et al.,
and Cirillo et al. [10–12], the use of GANs, specifically for generating synthetic data to
improve brain cancer prediction models, remains relatively unexplored. In cardiac disease
diagnosis, the availability of large and diverse datasets is crucial for training accurate
predictive models [13]. While augmentation techniques have been explored in this domain,
typically in a study by Anwar et al. [14], the use of GANs to generate synthetic data for
improving cardiac disease diagnosis models remains underexplored. The use of GANs for
generating synthetic medical images to augment existing datasets is an emerging field of
research (e.g., for retinal image synthesis in diabetic retinopathy diagnosis) [15]. However,
a comprehensive investigation comparing the impact of GAN-generated synthetic images
versus traditional augmentation techniques on the performance of medical image analysis
models is relatively limited. While GANs have shown promise in generating synthetic data
for various applications, their application, specifically for disease prediction and diagnosis,
remains a relatively unexplored territory in the existing literature. This study’s focus on
using GANs to create synthetic datasets and directly comparing their performance with
classical augmentation techniques in the context of disease prediction, particularly for
brain tumors, contributes to filling this gap and adding valuable insights to the field of
medical research.

This study seeks to make several significant contributions to the domain of disease
prediction, specifically for brain tumors. Because of the stressful lifestyle of humans all
over the world, brain tumor occurrences are on a steady rise at an alarming rate. If a
brain tumor is not detected at an early stage, it can have deleterious consequences on
mortality. The first contribution of this study is to develop a novel Conditional Deep
Convolutional Neural Network (C-DCNN) model from CNN architectures that are capable
of detecting tumors and differentiating brain tumors from kidney tumors and then conduct
a thorough comparison of the performance of our novel C-DCNN model with state-of-
the-art models such as ResNet50, VGG19, InceptionV3, and VGG16 when trained on
augmented datasets versus synthetic datasets. By analyzing the effectiveness of these
two approaches, the study offers insights into which method leads to better predictive
performance. Secondly, the research focuses on assessing the impact of using synthetic
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datasets on the prediction accuracy of disease models, specifically for brain tumors and
kidney tumors. Understanding how synthetic datasets affect the performance of predictive
models is essential for developing more accurate and reliable diagnostic tools for medical
professionals. Moreover, this study undertakes a comprehensive evaluation of the potential
advantages and limitations of utilizing synthetic datasets compared to augmented datasets
in disease prediction. Identifying the strengths and weaknesses of each approach can guide
researchers and practitioners in making informed decisions regarding dataset selection for
their specific medical studies.

2. Related Studies

The concept of GANs was initially presented by Goodfellow and colleagues in their
study [16]. The researchers employed the backpropagation approach to train their multi-
layer perceptron models for generators and discriminators. Over the years, GANs have
gained a lot of popularity as a result of numerous modifications that have improved the
quality of the images that are created and expanded the range of applications that may
be used with them. A specific architectural design known as the Deep Convolutional
Generative Adversarial Network (DCGAN), according to Radford et al. [17], aims to lessen
the distinction between Convolutional Neural Networks (CNNs) utilized for supervised
and unsupervised learning. Using the least squares loss function for the discriminator, as
stated by Mao et al. [18], the Least Squares Generative Adversarial Network (LSGAN) is
able to increase both the stability of training and the quality of the images that are produced.
Study [19] proposed the use of a Conditional Generative Adversarial Network, also known
as a CGAN. The discriminator and generator in this network were taught to generate im-
ages by integrating class labels. This was accomplished through training [20]. Through the
process of combining the Deep Convolutional Generative Adversarial Network (DCGAN)
and the Conditional Generative Adversarial Network (CGAN), the Conditional Deep Con-
volutional Generative Adversarial Network (C-DCGAN) was created. Feature extraction
from the C-DCGAN model was accomplished by Luo et al. [21] through the utilization of a
convolutional neural network. There is also a conditional extension included to enhance
the data. Another model called the InfoGAN model was introduced by Chen et al. [22]
and is built on an information-theoretic framework, allowing for the manipulation of the
latent space. This model makes it possible to manipulate the latent space. In addition, the
sleep–wake algorithm is incorporated into the process of training InfoGAN [23]. Similarly,
the Wasserstein Generative Adversarial Network (WGAN), proposed by [24], has been
developed as an improved training technique to solve the issues associated with mode
collapse and to provide improved learning curves. As stated by Dharanya et al. [25], label
conditioning is an essential element that is included in the Auxiliary Classifier Generative
Adversarial Network (ACGAN). Nevertheless, study [26] developed the Energy-Based
Generative Adversarial Network (EBGAN), which is capable of producing low-energy
samples by incorporating energy functions into both the generator and discriminator com-
ponents of the network. A Boundary-Seeking Generative Adversarial Network (BGAN)
was developed in Hjelm et al. [27]. This network is used to train the discriminator by as-
sessing the difference between the images that are generated and the images that are being
targeted; study [28], on the other hand, presented the Boundary Equilibrium Generative
Adversarial Network (BEGAN), which is a framework that combines an equilibrium-based
technique to improve the Wasserstein GAN (WGAN) framework.

Several notable applications of GANs have been discovered in existing studies. These
applications include object detection [29], handwriting recognition [30], facial age progres-
sion [31] as a concept related to face recognition, super-resolution imaging [32], visual
saliency prediction [33], and unsupervised domain adaptation [34]. GANs have been
used by researchers for data augmentation due to their impressive performance in image
synthesis. In the beginning, these techniques were utilized to enhance the overall quality of
the photographs, and later on, they were utilized for additional training and the generation
of synthetic data. The addition of emotions to neutral faces to increase the number of
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underrepresented categories has also been performed. Previous studies have explored
augmentation techniques and synthetic datasets have used GANs in various domains;
for example, Abdulraheem et al. [35], conducted a study in which they leveraged GAN
models to develop additional datasets to offer correct results for the automatic recognition
of expiration dates in photos. This type of recognition demands a significant number of
data for learning purposes. To augment the data, the study installed and evaluated state-
of-the-art GAN models, such as WGAN with Gradient Penalty (WGAN-GP), Wasserstein
Divergence GAN (WGAN-DIV), Multi-Modal GAN (MMGAN), Non-Saturating GAN
(NSGAN), Least Squares GAN (LSGAN), DRAGAN (Deep Regret Analytic GAN), Auxil-
iary Classifier GAN (ACGAN), Deep Convolutional GAN (DCGAN), Energy-Based GAN
(EBGAN), and Variational Autoencoder (VAE). Although not a GAN, VAEs are used for
data generation by learning a probabilistic latent space and Boundary Equilibrium GAN
(BEGAN). These models were used to augment the existing data. Their method proved
that GAN-generated datasets are particularly useful in boosting the overall performance
of object identification applications, which is a very promising development. Similarly,
in the health domain, the authors of Srivastav et al. [36] conducted a study in which they
used deep learning algorithms for the classification of images from chest X-rays to diag-
nose diseases such as pneumonia. To improve the performance of the model, GANs were
trained to augment synthetic images and were then used to oversample the dataset. Image
classification was performed using the VGG16 as the base model. The model was able
to attain an accuracy of 94.5% when tested on the validation set using the augmented
datasets. Another study by the authors of Qin et al. [37] used GAN-generated synthetic
datasets alone for the detection of lung diseases. Some of the applied network architectures
included state-of-the-art ResNet, DenseNet, EfficientNet, and CNN. The obtained results
showed that GAN-generated synthetic datasets achieved improved classification perfor-
mance. Additionally, for the classification and timely detection of liver lesions, the authors
of Frid-Adar et al. [38] also used GAN-based synthetic medical augmentation techniques to
increase the performance of a CNN model for up to 85.7% sensitivity and 92.4% specificity.

The benefits of GAN-based image synthesis and augmentation for brain cancer were
highlighted in a review study of data augmentation techniques for brain tumor segmenta-
tion by Nalepa et al. [39]. So, the researchers of Safdar et al., and Srinivas et al. [40,41] used
these methods to improve brain tumor classification with state-of-the-art models, such as
VGG-16 and ResNet-50. Although all of these successes have been achieved in existing
studies, there remains a gap in the literature when it comes to the comprehensive com-
parison of these two approaches (synthetic and augmented datasets) for medical disease
prediction, particularly focusing on brain cancer. Some studies have reviewed the use of
augmented and synthetic data independently, but they fail to address the critical question
of which method is more suitable and effective for medical disease prediction. For instance,
the authors of Iglesias., [42] conducted a review of different studies that used augmented
and synthetic data, but the study’s scope was too broad and lacked an application-specific
focus. On the other hand, the authors of Mirshekarian et al. [43] compared real data with
synthetic data for the prediction of blood glucose, but their study did not involve com-
paring machine learning models with state-of-the-art models, and the aim was different
from the premises of this present study. Thus, the need for a study that directly compares
augmented and synthetic image datasets using GANs in the context of medical disease
prediction remains unaddressed in the existing literature. This research aims to fill this gap
and provide insights that have been long-awaited in the medical research community.

To the best of our knowledge, no previous study has explored this particular aspect in
the literature, although some studies, such as Gupta et al., and Mukherkjee et al. [44,45],
have employed the use of GANs to increase data size for their classification task using
existing machine learning models, without making any clear comparison between synthetic
and augmentation techniques to correct the impression that they are the same, making
this investigation an original and pioneering effort in the field of disease prediction. By
adopting GANs, specifically the sophisticated DCGAN, to generate synthetic datasets of
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brain and kidney tumors and conduct a direct comparison with the augmented datasets,
this research takes a unique approach to address the scarcity of data in medical research
and to prevent the risk of an accidental breach and lack of preservation of the privacy of
patients represented by datasets. This research also corrects the impression that image
augmentation is the same thing as synthetic datasets, which is widely presumed by many
researchers. This study also builds a novel C-DCNN model from CNN architectures for the
classification of brain tumors and kidney tumors and then conducts a thorough comparison
of the performance of our novel C-DCNN model with state-of-the-art models, such as
ResNet50, VGG19, InceptionV3, and VGG16, when trained on augmented datasets versus
synthetic datasets. The results and insights obtained from this study not only contribute
to enhancing predictive accuracy in disease prognosis but also pave the way for further
innovations and advancements in medical research using synthetic or augmented data.

3. Materials and Methods

This section describes the data collecting and analysis processes used to meet the
research objectives, together with the experimental design that is depicted in Figure 1. It
offers a thorough rundown of all the models, procedures, and strategies used in this study.
Model training, testing, optimization, and evaluation were conducted using the Keras
package and Python programming language in the Jupyter Notebook environment.
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3.1. Data Collection

This study relies on data that were obtained from the Cancer Imaging Archive
database [46]. This database is available for use in research, and informed consent was
obtained to publish the images in an online open-access publication. This dataset includes
data from 20 individuals who had primary glioblastoma after diagnosis. Two MRI tests
were provided by each patient. All collected images were confirmed to be diseased. The
images were in the DICOM format and included binary tumor masks created from T1w
images, normalized cerebral blood flow, normalized relative cerebral blood volume, T2w,
ADC (apparent diffusion coefficient), FLAIR (fluid-attenuated inversion recovery), and T1w
(before and post-contrast agent) images [46]. A dynamic susceptibility contrast (GRE-EPI
DSC) imaging post-contrast agent preload was used to create perfusion images. The T1 + C
images were co-registered with every series. This dataset provided useful training data
for machine learning algorithms in a variety of applications, such as the segmentation and
classification of brain tumors.

Since this was a classification task and all of the acquired image data (brain) were
diseased images, we required a different type of disease to train the model. This could
enable the model to differentiate between the brain tumor and the other disease. We chose
the kidney tumor images in this instance. A supplementary dataset from the segmentation
challenge for kidney and kidney tumors in 2019 (KiTS19) training set data [47] was used
because the study uses binary classification modeling. This collection used clinical images
matched to participants, including scans from 210 University of Minnesota Medical Centre
patients who had nephrectomy. The MRI scans, which varied in terms of scanner manufac-
turers and acquisition techniques, were obtained during standard patient care [47]. The
distribution of the data is shown in Table 1.

Table 1. Distribution of data.

References Class Data Class
Distribution

After
Augmentation

Synthetic Data
Using DCGAN

Training/Testing
Dataset Label

(Clark et al., 2013)
[46] Brain Tumor 1000 20,000 20,000 80/20 1

(Heller et al., 2019)
[47] Kidney Tumor 1000 20,000 20,000 80/20 0

3.2. Image Preprocessing

By eliminating unnecessary variations, image pre-processing increased important
characteristics and fine details [48]. Given that all algorithms were susceptible to noise,
properly pre-processed images enhanced segmentation and classification tasks [49]. Tech-
niques for pre-processing images can be categorized according to the size of the desired
pixel region. These methods work on the sub-images surrounding pixels to reduce noise
and distortion and enhance the quality of the image. MRI images can be prevented from
being distorted by low image quality, external influences, and a constrained user interface,
which can lead to a loss of visual information and processing issues [48]. The regions of
interest in the two datasets used in this study were displayed more effectively through
image contrast enhancement. DICOM images were initially used to gather MRI images of
the kidney and brain tumors. Working directly with DICOM images in CNN frameworks
can be difficult because of their non-standard format, lack of software support, and possible
compatibility problems. On the other hand, converting DICOM images to the JPG (Joint
Photographic Experts Group) format makes managing data easier, minimizes file size, and
enhances CNN framework compatibility. The DICOM images were, therefore, converted
to the JPG format. Libraries, such as pathlib, shutil, NumPy, os, Pydicom, and PIL, were
used for the conversion. The resulting grayscale image was then rescaled, normalized, and
saved as a JPG file.
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3.3. Traditional Data Augmentation Techniques

By subjecting the model to a wider range of variations and scenarios, traditional data
augmentation techniques were utilized to expand the size and diversity of our training
dataset and improve the model’s robustness [6,50]. This entails using different transforma-
tions, such as flipping, shifting, rotating, or zooming, on the current data to produce new
training examples that are marginally different from the initial ones, as Table 2 illustrates.
By adding more data, the model’s sensitivity to noise or tiny changes in the input data is
reduced, improving the generalization performance, as seen in Figure 2. The area circled in
the red color shows the tumors. The images in (E) for the brain and (F) for the kidney are
the zoomed-in images that show the areas where the tumors are located. (E) represents a
zoomed-in view of an augmented brain tumor image and allows for a detailed examination
of the specific region where the tumor is located. This zoomed-in view provides insights
into how the augmentation process affects the detailed features of the tumor in the image.
Similar to part E, (F) shows the augmented kidney tumor image (MRI), which contributes to
the diversity of the training dataset for kidney tumor images. (A) The original brain tumor
image (MRI) represents the original MRI scan focused on the brain, specifically showcasing
a tumor. It is the unaltered, initial image used in the training dataset. (B) The augmented
brain tumor image (MRI) corresponds to the image of the brain tumor that underwent
traditional data augmentation techniques. These techniques involved applying various
transformations like flipping, shifting, rotating, or zooming to create slightly different
versions of the original image. Part B displays the augmented version, contributing to an
expanded and more diverse training dataset. (C) The original kidney tumor image (MRI)
represents the original unaltered MRI scan focused on the kidney, specifically showcasing
a tumor. (D) The augmented brain tumor image (MRI) corresponds to the image of the
kidney tumor that underwent traditional data augmentation techniques.

Table 2. Data augmentation techniques and their range.

Techniques Range/Scale

0 Horizontal flip True
1 Vertical flip True
2 Width shift range 0.3
3 Height shift range 0.3
4 Shear range 0.2
5 Zoom range 0.2
6 Rotation range 0.2
7 ZCA whitening False
8 Channel shift range 0.2

To prevent overfitting, which occurs when a model memorizes training data instead
of discovering significant patterns, data augmentation is essential. Through data augmen-
tation, randomness and variability are added, making it less likely for the model to overfit
and allowing it to develop more reliable and broadly applicable representations [6,51].
We used shear transformations within a maximum shear angle, channel shifting within a
specified range, zooming in or out via a specified range, rotation within a certain angle, zero
component analysis (ZCA) whitening (disabled in our case), horizontal and vertical flips to
mirror images, and width and height shifts to randomly shift images within a fraction of
their total width or height. These scales or ranges give the freedom to regulate the degree
of transformations used during data augmentation, enabling the customization of the
augmentation procedure to the particular needs of the dataset and the deep learning task.
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Figure 2. MRI images of original and augmented brain and kidney tumor data. The area circled in
red color delineates the tumors. (A): Original brain tumor image (This represents the unaltered, initial
image used in the training dataset, (B): Augmented brain tumor image (This corresponds to the image
of the brain image that has undergone traditional data augmentation techniques), (C): Original kidney
tumor image (This represents the original unaltered MRI scan focused on the kidney, (D): Augmented
brain tumor image (This corresponds to the image of the kidney tumor, that has undergone traditional
data augmentation techniques. (E): Magnified view of augmented brain tumor image, (F): Magnified
view of augmented kidney tumor image.

3.4. Creating Synthetic Dataset Using Deep Convolutional Generative Adversarial Network
(DCGAN)

A GAN comprises two distinct phases and two essential components, namely the
training phase and the generation phase, with the components being the generator network
and the discriminator network [16]. During the training phase, the generator and the
discriminator undergo training through an adversarial process. The generator utilizes
random input vectors to generate images that possess a realistic appearance, while the
discriminator learns to differentiate between real and fake images. During the training
process, the generator’s objective is to produce synthetic images that are indistinguishable
from real images, while the discriminator’s goal is to accurately categorize both real and
synthetic images. The generator gradually improves its ability to generate realistic-looking
images, while the discriminator enhances its capacity to distinguish between real and
generated images. Equilibrium is achieved in the process when the discriminator becomes
unable to differentiate between real and fake images, leading to a competitive drive for
both parties to enhance their performance. During the generation phase, once the generator
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network has been trained to generate artificial data points, random input vectors are
selected from the latent space and input into the generator. As shown in Figure 3, the
generator converts these arbitrary vectors into artificial data instances, which exhibit the
patterns and features acquired during the training process [20]. The synthetic images
produced can serve as an independent synthetic dataset or can be merged with preexisting
real data to form an augmented dataset.
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In this study, DCGAN was employed. DCGAN is a specific type of GAN designed to
generate high-quality synthetic images. It was first introduced in [17]. DCGANs employ
CNNs as both the discriminator and generator. DCGANs have been extensively utilized
and adapted for many imaging production tasks, including object detection, handwrit-
ing recognition, facial age progression, and realistic faces and scenes. They have made a
substantial contribution to the field of generative models. The DCGAN generator utilizes
tf.keras.layers.Conv2DTranspose (upsampling) layers to produce synthetic images from a
seed (random noise). Commonly, it consists of layers, such as Conv2DTranspose, Reshape,
Dense, etc. For this process, start with a dense layer that takes the seed as its input, then up-
sample it several times until it reaches the desired image size of 64 × 64 × 1. The generator
network (Figure 4) generates a 64 × 64 × 1 brain tumor image from a vector input shape of
100 random integers selected from a uniform distribution. A fully connected layer and four
fractionally strided convolutional layers make up the network architecture, which is used
to upsample images with a 5 × 5 kernel size. The 64 × 64 × 1 input image is fed into the
discriminator CNN architecture, which determines if the lesion is real or fake. This network
uses a fully linked layer and four convolution layers, each with a kernel size of 5 × 5. Rather
than employing pooling layers to minimize spatial dimensionality, strided convolutions are
performed on each convolution layer. The tf.keras.layers.LeakyReLU activation functions
for each layer are commonly used, except for the output layer, which uses tanh to ensure
that the pixel values are within the range of [−1, 1]. Batch normalization can enhance
and accelerate training. The discriminator, as a CNN, is used to distinguish between real
images from the dataset and fake images generated by the generator. Usually, it comprises
LeakyReLU activation functions and Batch Normalization applied after Conv2D layers.
The sigmoid activation of the output layer produces a probability score.
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3.5. Optimization and Hyperparameter Tuning

As hyperparameters directly affect the model’s performance and training, they must
be optimized, particularly for our DCGAN and the novel model built from CNN architec-
tures. Hyperparameters are configurations or settings that are set by the researcher and not
picked up by the model. They have a major impact on the model’s capacity, regularization,
and convergence speed [52]. We opted to maintain the hyperparameters of popular models,
such as ResNet50, VGG16, VGG19, and InceptionV3, unchanged for the classification task
in our study. This choice guarantees the integrity of the knowledge gained by transfer
learning, and adjusting these hyperparameters could have a substantial impact on the
architecture and functionality of the model. We adjusted the learning rate to be between
0.0002 and 0.0001, the beta 1-exponential decay rate for the first moment estimates in
the Adam optimizer to be 0.5, the batch sizes to be 16, 32, 64, and 128 depending on the
available computing power, the noise dimension (Latent Dimension) to be 100, and the
number of epochs to be between fifty and several thousand depending on the complexity
to optimize DCGAN’s hyperparameters. In accordance with complexity, the generator and
discriminator architectures were also set. We used the grid-search optimization strategy
for our novel C-DCNN model for the classification task. Using a grid-search optimization
technique, the optimal configuration for maximizing the model’s performance was found
by thoroughly searching through a predetermined set of hyperparameter combinations [53].
This method is important since it allows us to assess the model’s performance in a variety of
combinations while methodically exploring the hyperparameter space. By comparing vari-
ous hyperparameter values, we can determine which configuration is ideal and produces
the greatest outcomes for our particular work. The four main hyperparameters that we
optimized were the learning rate, batch size, epochs, and optimizer selection. The number
of data processed prior to updating the weights in the model was determined by the batch
size, which can be anywhere between 10 and 100. The number of epochs, which can be any-
thing between 30 and 100, determines how many times the whole dataset is run through the
model while it is being trained. We took into consideration the following seven optimizers:
SDG, RMSProp, Adagrad, Adadelta, Adam, Adamax, and Nadam in order to investigate
various optimization strategies. Furthermore, we experimented with several learning rates
0.0001, 0.001, 0.01, 0.1, and 0.2 to see how they affected the model’s performance and conver-
gence. Our grid-search optimization revealed that the ideal collection of hyperparameters
for our unique C-DCNN model was 32 batches, 50 epochs, an Adam optimizer, and 0.0001
learning rate. These parameters were chosen to optimize the model’s performance on our
particular job while preventing problems like slow convergence or overfitting.

3.6. Conditional Deep Convolutional Neural Network (C-DCNN) Model

The C-DCNN is an innovative and novel CNN model that utilizes conditional multi-
modal contextual fusion to extract distinct features from the dataset. The study utilized the
C-DCNN model to showcase the capabilities of a CNN model that was built from scratch,
incorporating specific modifications and peculiarity to the data being used to obtain the best
possible performance. It aligns with the data utilized and the framework of the problem
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we aim to address. The C-DCNN model was initially built as a basic CNN model and
subsequently enhanced by the addition of layers and the fine-tuning of hyperparameters to
maximize its performance. During the process of hyperparameter tuning, we took measures
to prevent both overfitting and underfitting in order to achieve sufficient generalization
of the unseen data. This may be observed in the model’s performance when compared
to the performance of the most advanced pre-trained model assessed in this study. This
model is specifically engineered to effectively address both image classification and object
recognition tasks. The framework comprises modules specifically designed for extracting
features, detecting objects through the region proposal network (RPN), and performing the
final classification. We created a CNN model with a well-defined architecture using the
classification detection approach. The model includes multiple convolutional and dense
layers, as well as dropout for regularization, which helps decide the output information
from a single image. The architecture of our CNN comprises a 2D CNN. The network
consists of four convolutional layers and three max-pooling layers. The two layers utilized
kernel sizes of 3 × 3 and 2 × 2 for pooling. The classification task was accomplished using
a sigmoid activation function and a sequence of four fully connected layers. These layers
consisted of 128, 64, 32, and 16 neurons, respectively, as depicted in Figure 5. The sigmoid
activation function compresses the output of each neuron within the interval of 0 and 1,
indicating the likelihood of being classified as part of the positive class. The information
pertaining to the training is as follows: the Adam optimizer, which relies on gradients, was
used with a batch size of 32. A dropout rate of 25% was applied to the convolutional and
fully connected layers, respectively. We employed the binary cross entropy loss function to
evaluate the consistency between the anticipated probability and the actual class output,
which can only take values of 0 or 1. Ultimately, we proceeded to assemble the model by
employing accuracy criteria. The rectified linear activation function (ReLU) was used as the
activation function throughout the network, except for the final layer, where the sigmoid
activation function was used. Our model is distinguished by its distinctive and innovative
approach in multiple dimensions. Firstly, it includes supplementary components, such as
batch normalization layers, dropout layers, residual connections, and attention techniques.
These changes boost the stability of training, prevent overfitting, improve the flow of gradi-
ents, and enable the model to capture long-range dependencies. Furthermore, our model
is specifically developed to effectively address image classification tasks. Additionally,
it can also be utilized for object recognition tasks, all within a cohesive and integrated
framework. This versatile and efficient architecture eliminates the necessity of having dis-
tinct models for different activities. Furthermore, the inclusion of an attention mechanism
in our model facilitates the capture of interdependencies among spatial locations. This
enables the model to concentrate on pertinent regions within the image and comprehend
contextual associations. The utilization of this attention mechanism significantly improves
performance in activities related to image classification. The combination of convolutional
layers and residual connections enhances the model’s ability to effectively learn intricate
image features and structures. The convolutional layers collect hierarchical characteristics,
while residual connections enhance gradient flow and enable the training of deeper models.
Finally, our model is a useful tool for researchers and practitioners due to its adaptability
and versatility.
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4. Results

This study performed model training and evaluation on augmented datasets and the
generated synthetic dataset using the Keras package and Python programming language
in the Jupyter Notebook environment. The pre-processed data, totaling 40,000, were
split into a training set comprising 80% and a test set comprising 20% for both synthetic
and augmentation data. These sets were then fed into the novel C-DCNN model. The
model’s performance was assessed by validating it on a randomly selected 20% subset
of the training data and later validated on new sets of larger and more diverse datasets
of over 18,200 images to confirm our findings. This approach ensured that the model
was robust and generalized well to unseen data, highlighting the effectiveness of using
both augmented and synthetic data in training. The model was trained for 50 epochs.
We implemented the dropout regularization technique following the third max pooling
layer and in the thick layers. Dropout regularization is a straightforward and user-friendly
technique for regularization. By deactivating certain neurons during the training process,
it generates a neural network that is both uncomplicated and effective. A simple neural
network leads to lower complexity and, hence, mitigates overfitting. Two callbacks were
implemented to enhance the training process, optimize model performance, and prevent
overfitting. The first callback, EarlyStopping, monitors the validation loss and terminates
the training process prematurely if the loss does not improve for a specified number of
epochs. The second callback, ReduceLROnPlateau, reduces the learning rate when the
validation loss does not improve for a certain number of epochs, with a patience value
of three.

4.1. Validation Metrics

Performance evaluation metrics play a vital role in the development, testing, and
deployment of machine learning models, enabling the creation of more precise and efficient
AI solutions [54]. They offer a means to objectively assess the model’s accuracy, precision,
sensitivity, specificity, and other performance parameters. Performance evaluation metrics
allow for the assessment of a model’s performance and provide comparisons across different
models. Performance evaluation metrics are crucial for enhancing the transparency and
interpretability of machine learning models, which is vital for establishing confidence in
these systems. This study assessed the predictive efficacy of the novel C-DCNN model
by employing performance evaluation metrics on both synthetic and augmented datasets.
The results for both datasets demonstrate that the C-DCNN model achieved exceptional
accuracy in detecting and classifying brain tumors and kidney tumors. The augmented
dataset yielded a precision of 99% for both types of tumors, while the synthetic dataset
achieved a precision of 99% for brain tumors and kidney tumors, as indicated in Table 3.
This model’s exceptional precision score suggests its ability to accurately detect brain and
kidney tumors in the majority of instances. The recall score of 99% for brain and kidney
tumors in both the synthetic and enhanced datasets indicates that this model accurately
identified all positive instances. This demonstrates a very responsive model for both
artificially generated and augmented datasets with significant therapeutic relevance in
precisely identifying tumors in the brain and kidneys in MRI images. The specificity score of
99% for brain tumor and kidney tumors, obtained from both the synthetic and augmented
datasets, indicates that the model accurately identified all negative cases. This suggests
that the model has a high level of specificity and can effectively determine the absence
of a tumor with accuracy. Moreover, an F1 score of 99% achieved by the model for brain
tumor and kidney tumors, using both synthetic and augmented datasets, demonstrates
its ability to effectively maintain a balance between precision and sensitivity. A high F1
score indicates a favorable equilibrium between precision and recall. Consequently, the
model demonstrated an ability to accurately detect instances of brain and kidney tumors
while effectively reducing the occurrence of false positive results. The accuracy score of
99% for augmented datasets and 99% for synthetic datasets demonstrates that the model
can accurately categorize the generated synthetic and augmented MRI images of brain
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and kidney tumors and that there is no difference in model performance when augmented
or synthetic datasets are used, which further encourages the used of synthetic datasets
for classification tasks because of its enormous benefits, especially in increasing primary
datasets and circumventing the hurdles of possible breach in data privacy. The C-DCNN
model has exceptional efficacy in detecting and precisely categorizing brain and kidney
tumors in MRI images. This has profound therapeutic consequences, especially in areas
with restricted availability of specialized medical services and resources, as it enables
prompt and accurate diagnoses. The C-DCNN model demonstrates the potential to be a
powerful tool for detecting and categorizing brain and kidney tumors using CT images.

Table 3. Validation metrics of the novel C-DCNN model.

Type
of Dataset Class Data Precision

%
Sensitivity

%
Specificity

%
F1-Score

% Accuracy %

Synthetic Data Brain Tumor 99 99 99 99 99
Augmented Data Kidney Tumor 99 99 99 99 99

4.2. Confusion Matrix

A confusion matrix is a widely used statistical tool for assessing the performance
of models. It aids in assessing the efficacy of our model in accurately categorizing all
the images into two distinct classes. The matrix displays the numbers of true positive
(TP), true negative (TN), false positive (FP), and false negative (FN) predictions generated
by the model. A confusion matrix is crucial for assessing the accuracy and efficacy of
models as it offers a concise visual depiction of the model’s performance [55]. Through a
thorough analysis of the matrix, one can identify the model’s strengths and weaknesses and
implement appropriate enhancements to ensure more precise and dependable diagnoses.
The C-DCNN model yielded excellent results, as seen by the confusion matrix. This model
accurately identified 4028 MRI images as brain tumors (true positives) while incorrectly
classifying 5 images as kidney tumors (false positives), as depicted in Figure 6 for the
synthetic datasets. Regarding these augmented datasets, the model accurately identified
4033 MRI images as brain tumors (true positives), while there were no instances where
kidney tumors were mistakenly categorized as brain tumors (false positives). This outcome
demonstrates that the model exhibits a high level of precision and dependability in the
diagnosis of brain tumors. Furthermore, the model accurately classifies 3963 MRI images as
kidney tumors (true negatives) and misclassifies 4 as brain tumor images (false negatives)
for the synthetic datasets. Similarly, for the augmented dataset, this model correctly
classifies 3966 MRI images as kidney tumors (true negatives) but misclassifies 1 as brain
tumor images (false negatives), as depicted in Figure 7. The confusion matrix obtained from
the C-DCNN model’s detection and classification of MRI images holds great significance in
medical diagnosis.

4.3. Learning Curve

Learning curves are a crucial tool for assessing the effectiveness of these models. It
offers insights into the precision and error of a model throughout the training process,
enabling the detection of possible performance concerns and providing guidance for
enhancing the model. The learning curve of the model accuracy illustrates the progression
of this model’s accuracy on both the training and validation datasets as it progresses
over time. It can determine whether the model is exhibiting overfitting or underfitting
with respect to the training data. An overfitting model exhibits a high level of accuracy
when trained on a certain dataset, but its accuracy significantly decreases when tested
on a different dataset, suggesting a need for improved generalization to handle new and
unfamiliar data. A model that is underfitted can have a poor level of accuracy on both
the training and validation data, suggesting that it needs more improvement in order to
effectively determine the patterns within the data. By monitoring the learning curve of
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this model’s accuracy, it becomes feasible to determine the ideal number of epochs for
training the model and ensuring that it is neither overfitting nor underfitting. The C-DCNN
model demonstrated a robust fit and successfully captured the inherent patterns in the
data without experiencing overfitting or underfitting. The progressive enhancement in
training accuracy throughout the epochs signified the model’s acquisition and refinement
of knowledge. Figure 8 illustrates that the training process began gradually at epoch 0
and consistently improved, resulting in a training accuracy of approximately 99.81% at
epochs 25/50 for the synthetic dataset and approximately 99.97% at epochs 23/50 for the
augmented datasets. It is crucial to assess the model’s performance on the validation
data, which consists of new and unseen data, in order to guarantee that the model is
well-balanced with the training data. The training accuracy is equally significant in this
evaluation. Like the training accuracy, the validation accuracy initially progresses slowly
and encounters a minor inconsistency. Nevertheless, the test’s accuracy gradually rises and
reaches a plateau at epoch 25 for synthetic datasets, with an accuracy of 99.89%. Similarly,
for augmented datasets, it reaches a plateau at epoch 23 with a test accuracy of 99.99%. This
suggests that additional training is unlikely to enhance the model’s performance on fresh
data. The model loss learning curve depicts the variation in the loss function of a model
during its training across numerous epochs. The training loss diminishes progressively
as the model acquires a better match to the data, indicating positive progress. The initial
training loss for synthetic datasets was 0.3383 at epoch 1, and it consistently reduced to
0.0065 by epoch 25. Similarly, for augmented datasets, the training loss started at 0.2408
at epoch 1 and steadily decreased to 0.0017 at epoch 23. This suggests that the model
enhances its capacity to precisely predict the desired outcome with a reduced margin
of error. By contrast, the validation loss exhibited a continuous downward trend from
epochs 1 to 17, followed by variability between epochs 18 and 24, and finally, stabilizing at
epoch 25 without any consistent drop in the synthetic dataset. The validation loss for the
augmented datasets exhibited a steady decline from epochs 1 to 13, followed by fluctuation
between epochs 14 and 20, and then stabilizing at epoch 21. From epoch 21 onwards, the
validation loss continuously reduced until it reached a plateau at epoch 23. The validation
loss quantified the discrepancy between the predicted and actual outputs on an unseen
dataset used for evaluating the model’s performance, which was not used for training.
Therefore, it calculated the model’s performance using previously unseen data. An optimal
fit was attained when the model’s training and validation losses reached a steady state
after multiple epochs. Overfitting is indicated by low training loss and high validation
loss, but both losses being large may suggest underfitting. Hence, it is imperative to assess
the model’s performance and determine the necessary enhancements by scrutinizing the
learning curves of model accuracy and model loss.

4.4. Receiver Operating Characteristic (ROC) Curve

The area under the ROC curve (AUC ROC) is a crucial assessment metric for classifica-
tion jobs. It offers a visual depiction of the diagnostic accuracy of a classification model.
This statistic provides a comprehensive evaluation of a classifier’s performance across all
potential classification criteria. The AUC ROC evaluates the sensitivity (true positive rate)
and specificity (true negative rate). It offers a singular numerical value that succinctly rep-
resents the classifier’s capacity to differentiate brain tumors from kidney tumors. A higher
AUC ROC indicates superior model performance. The Receiver Operating Characteristic
(ROC) curve is a graphical representation of a binary classification model’s performance
as the threshold for discrimination is adjusted. On the other hand, the area under the
curve (AUC) is a numerical measure that measures the overall performance of a binary
classification model based on its ROC curve. The AUC value measures the overall ability
of the model to distinguish between different classes, where a value of 1 indicates perfect
classification, and 0.5 suggests random chance [56]. An AUC ROC curve of 1.00 for both
synthetic and augmented datasets, as depicted in Figure 9, indicates that the C-DCNN
model possesses a strong ability to distinguish between brain tumors and kidney tumors.
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This indicates that the model has the ability to accurately distinguish between true positive
instances (MRI images correctly identified) and false positive cases (MRI images wrongly
classified) with a high degree of precision. This model demonstrates outstanding perfor-
mance in accurately diagnosing brain tumors and kidney tumors, as evidenced by its high
AUC value. This indicates that the C-DCNN model has the capacity to offer dependable
and precise diagnostic assistance for oncologists.
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4.5. Comparative Evaluation of C-DCNN Model with State-of-the-Art Advanced Deep
Learning Models

By comparing our novel C-DCNN model with other sophisticated deep learning
models, like ResNet50, VGG16, VGG19, and InceptionV3, we provide a standard for
evaluating its potential to generalize, contribute to progress in the field, and assist in
making practical decisions. These models are renowned and extensively utilized transfer
learning models in the field of computer vision, exhibiting exceptional performance and
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making major contributions to tasks such as image recognition and classification [57,58].
Through a comparative analysis of the C-DCNN model with these established models, we
can accurately evaluate its performance, competitiveness, and potential superiority. This
comparison aims to situate the unique C-DCNN model in relation to current cutting-edge
methods and validate its credibility and significance in the field of computer vision. Jupyter
Notebooks were utilized for the implementation of all cutting-edge transfer learning models,
just like the C-DCNN model. The fine-tuning approach implemented in our innovative
C-DCNN model to mitigate the issues of overfitting and underfitting was conducted using
all the state-of-the-art models utilized in our comparative evaluation work.

ResNet50 is a CNN architecture renowned for its use as a profound residual learning
methodology. It tackles the issue of diminishing gradients in highly complex networks,
enabling the training of exceptionally deep models. It has achieved success in many image
classification tasks and is widely recognized for its capability to capture intricate features
from CT and MRI images. VGG16 and VGG19 are CNN conceptions that were created
by the Visual Geometry Group (VGG) at the University of Oxford. These models exhibit
a consistent structure, including numerous layered convolutional and fully linked layers.
VGG16 and VGG19 are renowned for their outstanding and unique performances in large-
scale image categorization tasks, demonstrating excellent accuracy as a result of their
profound and detailed feature extraction capabilities. The InceptionV3, sometimes referred
to as GoogleNet, pioneered the idea of inception modules, which effectively capture multi-
scale information by utilizing parallel convolutions at various spatial resolutions. This
architectural design minimizes computing complexity while still ensuring a high level of
accuracy. InceptionV3 has been extensively utilized in many image recognition applications
and has exhibited exceptional performance in object detection and localization.

The comparative evaluation of the novel C-DCNN model with state-of-the-art ad-
vanced deep learning models demonstrates differences in performance and offers distinct
clinical implications. The C-DCNN model demonstrates superior performance compared
to other models, exhibiting enhanced predictive capabilities. The C-DCNN model out-
performs VGG16, InceptionV3, VGG19, and ResNet50 in terms of accuracy, precision,
sensitivity, specificity, F1 score, AUC, and loss. The model attains 99% accuracy for both
synthetic data and augmented datasets, outperforming the other models by a small margin,
as demonstrated in Table 4. The C-DCNN model exhibits superior precision, sensitivity, and
specificity compared to ResNet50, VGG16, VGG19, and InceptionV3. An F1 score of 99% for
both synthetic and augmented data demonstrates an exceptional equilibrium between pre-
cision and sensitivity. In addition, the C-DCNN model demonstrates a perfect AUC value
of 1.00 for both datasets, demonstrating exceptional discriminative capability. Furthermore,
it exhibits a smaller loss value, suggesting superior optimization and a reduced number of
errors. The enhanced precision of the C-DCNN model has notable clinical importance. The
C-DCNN model achieves a perfect classification accuracy of 99% for identifying brain and
kidney tumors in MRI images, ensuring dependable and accurate outcomes. Oncologists
and healthcare professionals engaged in the diagnosis and treatment of these tumors can
considerably benefit from this exceptional level of accuracy. It decreases the likelihood of
misdiagnosis, facilitating prompt identification and suitable response, hence enhancing
patient outcomes. The C-DCNN model surpasses previous models in multiple criteria,
making it a more reliable and precise tool for aiding oncologists in crucial decision making.

The exceptional efficacy of the novel C-DCNN model can be ascribed to various
variables, including its distinctive architectural configuration, efficient training method-
ology, and enhanced capacity to acquire and depict the pertinent characteristics in brain
and kidney tumors. The inclusion of particular design elements, such as the Mixed-Scale
Dense Convolution Layer, Self-Attention Mechanism, Hierarchical Feature Fusion, and
Attention-Based Contextual Information, allowed the C-DCNN model to more efficiently
capture and extract pertinent features for brain tumor classification. The C-DCNN model
was developed utilizing an optimized configuration and successful training methodologies,
including the meticulous selection of hyperparameters, such as the learning rate, batch size,
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and regularization approaches. These combinations expedite the process of convergence
and enhance the model’s ability to discover a more optimal solution. Although ResNet50 is
a complex model renowned for its deep architecture and skip connections, it demonstrated
the lowest performance when compared to other models. The performance metrics indicate
that ResNet50 achieved an accuracy of 93.67% for synthetic data and 92.59% for augmented
data, a precision of 92.6%, and an F1 score of 92.6% for augmented datasets. However,
these results reveal that ResNet50 had a relatively larger number of false positives and
false negatives, leading to less-than-optimum predictions. This outcome may arise because
of the distinctive attribute of the utilized data and the intricate structure of the ResNet50
model. The InceptionV3, also known as the GoogleNet model, exhibited somewhat inferior
performance compared to VGG19, which is an enhanced version of the VGG16 model. This
is evident in its lower sensitivity, specificity, F1 score, true positive rate (TP), area under the
curve (AUC), and accuracy. This discrepancy can potentially be ascribed to reasons such as
the heightened intricacy of the InceptionV3 and VGG19 models, resulting in an inadequate
depiction of the particular features pertinent to the categorization tasks.

Table 4. Comparative evaluation of C-DCNN model with state-of-the-art advanced deep learn-
ing models.

Type of
Dataset Models Precision

%
Sensitivity

%
Specificity

%
F1-Score

% TP FP TN FN AUC Loss Accuracy
%

Synthetic
Data

C-DCNN 99 99 99 99 4028 5 3963 4 1.00 0.002 99
VGG19 97.8 97.8 97.8 97.8 4027 6 3954 13 0.99 0.005 97.76
VGG16 97.9 97.9 97.9 97.9 4024 9 3962 5 0.99 0.004 97.83

ResNet50 93.6 93.6 93.6 93.6 3950 83 3704 263 0.72 0.111 93.67
InceptionV3 97.7 97.7 97.7 97.7 4017 16 3956 11 0.99 0.011 97.66

Augmented
Data

C-DCNN 99 99 99 99 4033 0 3966 1 1.00 0.001 99
VGG19 97.9 97.9 97.9 97.9 4032 1 3964 3 0.99 0.003 97.95
VGG16 97.9 97.9 97.9 97.9 4032 1 3965 2 1.00 0.001 97.96

ResNet50 92.6 92.6 92.6 92.6 3919 114 3648 319 0.99 0.156 92.59
InceptionV3 97.8 97.8 97.8 97.8 4021 12 3963 4 0.99 0.007 97.80

4.6. Expert Assessment of DCGAN-Generated Synthetic Data

To evaluate the synthesized data of brain and kidney tumors, we tasked two expe-
rienced radiologists with categorizing real, augmented, and synthetic images for both
datasets. This experiment aimed to determine whether radiologists could distinguish
between the real images and synthetic images generated by the DCGAN. Consistent clas-
sification outcomes would indicate the utility of the artificial data for training machine
learning models.

Evaluation Process:
Image Presentation: The experts were shown a randomized mix of real primary images,
augmented images, and synthetic images. Each set included the following:

i. Original brain tumor images (MRI);
ii. Augmented brain tumor images (MRI);
iii. Synthetic brain tumor images generated by the DCGAN;
iv. Original kidney tumor images (MRI);
v. Augmented kidney tumor images (MRI);
vi. Synthetic kidney tumor images generated by the DCGAN.

Task: The radiologists were asked to classify each image as either real (original/augmented)
or synthetic.
Scoring: The accuracy of their classifications was recorded, with a focus on the difference
in performance between real and synthetic images.
Results:

i. Expert 1: accurately recognized both real and synthetic brain and kidney tumors
with a 20% success rate.
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ii. Expert 2: accurately classified the real, augmented, and synthetic brain and kidney
images with a 25% success rate for each category.

Both experts achieved comparable classification performances for real, augmented,
and synthetic images. This indicates that the synthetic images generated using the DCGAN
have significant similarity to real and augmented images, thus validating their potential
utility for training machine learning models.

Sample Images: To provide further clarity on the quality of the synthetic images, we
include sample images in Figure 10.
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The comparable performance of the radiologists in categorizing real, augmented, and
generated images confirmed the efficacy of the DCGAN in producing realistic synthetic
images. The DCGAN not only generated new images but also provided notable benefits,
such as the ability to generate synthetic images with diverse variations, enhance image
qualities, and streamline the training process by eliminating artifacts. These images can
be confidently used for training machine learning models, enhancing the diversity and
robustness of the datasets to enhance the accuracy of model performance.

4.7. Data Quality Assessment Using MSE

To evaluate the quality of synthetic images generated by the DCGAN, we further
calculated the Mean Squared Error (MSE) between the original and synthetic images.
MSE measures the average squared difference between the original and synthetic images,
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providing a quantitative assessment of image quality and thereby providing insights into
the effectiveness of the DCGAN in generating high-quality synthetic data.

To calculate the MSE between the original and synthetic images, we followed these steps:

Step 1: Preprocess the images to ensure they are in the same format and size.
Step 2: Compute the pixel-wise differences between the original and synthetic images.
Step 3: Square the differences.
Step 4: Compute the mean of the squared differences.

The formula for MSE is as follows:

MSE =
1
N

N

∑
i=1

(Ii − Si)2

where Ii is the pixel value of the original image, Si is the pixel value of the synthetic image,
and n is the total number of pixels when the implementation of the MSE was computed in
the Python environment using NumPy version: 1.24.3.

Results:

The MSE was computed for a representative sample of original and synthetic images
from the brain tumor and kidney tumor datasets. With a pixel value in the range [0, 255],
the results showed an average MSE of 0.166, indicating that the synthetic images closely
resembled the original images. These findings support the effectiveness of the DCGAN in
generating high-quality synthetic data that can be used for model training and evaluation.

5. Conclusions

In conclusion, this study introduces a technique that emphasizes the medical impor-
tance of deep learning models, particularly the novel C-DCNN model, in the detection
and diagnosis of brain tumors when fed with MRI images generated by GANs, specifically
the sophisticated DCGAN and images augmented through traditional techniques, such as
manipulating the training set by changing its geometric and color space properties (such
as rotation, scaling, cropping, brightness, zooming, and contrast) to enhance classification
accuracy, and comparing the performances of state-of-the-art deep learning models, such
as ResNet50, VGG16, VGG19, and InceptionV3 when trained on augmented and synthetic
datasets. We applied this methodology to brain and kidney tumor images. The C-DCNN
model, built entirely from scratch using CNN architectures, demonstrated exceptional
accuracy, precision, sensitivity, specificity, and F1 score, underscoring its potential as an
efficient tool for swift and precise diagnosis. The novel C-DCNN model demonstrated its
performance efficiency by effectively classifying between brain and kidney tumors when
trained with augmented and synthetic datasets.

The primary discovery of this study is that synthetic datasets created using GANs
can achieve comparable performance to augmented datasets when utilized for training
deep learning models. This is consistent with studies such as [23,59,60] that have recorded
improved accuracy utilizing synthetic datasets generated using GANs. This demonstrates
the considerable potential of synthetic datasets to be widely used as an established augmen-
tation technique for deep learning in industrial applications. These applications typically
feature small-sized datasets and offer many advantages, such as privacy preservation. The
proposed DCGAN (Deep Convolutional Generative Adversarial Network) for generating
synthetic data provides a considerable advantage by reducing the time and opportunity
costs associated with collecting real-world data. The results of this work enhance the
continuous progress in AI-driven cancer diagnosis and highlight the capability of deep
learning models to enhance diagnostic precision and patient care, even when trained on
synthetic datasets.

Despite the promising findings, several limitations warrant our acknowledgment.
Firstly, our study primarily compared the novel C-DCNN model with state-of-the-art
models, such as ResNet50, VGG16, VGG19, and InceptionV3. While these models are
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well-regarded in the literature, there may be other models with superior performance that
we did not consider. Future studies should include a broader range of sophisticated models
to ensure a comprehensive comparison with our novel C-DCNN model. Secondly, our
study utilized the DCGAN to generate synthetic images. While the DCGAN is effective,
there are more advanced models available that might produce higher-quality synthetic
images. Future research should explore and test other GAN architectures to determine
if they offer improved image-generation capabilities. Future research could incorporate
additional clinical factors and expert insights to refine the evaluation and selection criteria
for these models. This would provide a more holistic approach to the model assessment
and potentially improve performance. To enhance the applicability and generalizability of
our findings, future studies should expand the scope of our analysis to include a broader
range of imaging modalities and cancer types. This can enable the model to be applicable in
diverse clinical scenarios and improve its robustness. Finally, our study focuses on binary
classification. Extending the research to multi-class classification problems is an important
area for future work. This would allow the model to handle more complex scenarios and
provide more detailed diagnostic information.

Incorporating synthetic data and the C-DCNN model into radiological workflows
holds significant promise for improving diagnostic accuracy, enhancing training, and sup-
porting clinical decision making. However, addressing the outlined limitations is essential
for successful integration. Future research should focus on validating these technolo-
gies, gaining acceptance among medical professionals, ensuring technical compatibility,
maintaining data privacy, and establishing frameworks for continuous learning.

Our future plans involve expanding our work to include additional medical fields that
can benefit from synthetic data produced using GANs. This expansion can enhance training
efforts and lead to improved classification outcomes across various medical disciplines.
By leveraging synthetic data, we aim to address data scarcity issues and improve the
robustness and accuracy of diagnostic models.
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