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Abstract: This study introduces Multi-Threshold Recurrence Rate Plots (MTRRP), a novel methodol-
ogy for analyzing dynamic patterns in complex systems, such as those influenced by neurodegener-
ative diseases in brain activity. MTRRP characterizes how recurrence rates evolve with increasing
recurrence thresholds. A key innovation of our approach, Recurrence Complexity, captures structural
complexity by integrating local randomness and global structural features through the product of Re-
currence Rate Gradient and Recurrence Hurst, both derived from MTRRP. We applied this technique
to resting-state EEG data from patients diagnosed with Alzheimer’s Disease (AD), Frontotemporal
Dementia (FTD), and age-matched healthy controls. The results revealed significantly higher recur-
rence complexity in the occipital areas of AD and FTD patients, particularly pronounced in the Alpha
and Beta frequency bands. Furthermore, EEG features derived from MTRRP were evaluated using a
Support Vector Machine with leave-one-out cross-validation, achieving a classification accuracy of
87.7%. These findings not only underscore the utility of MTRRP in detecting distinct neurophysiolog-
ical patterns associated with neurodegenerative diseases but also highlight its broader applicability
in time series analysis, providing a substantial tool for advancing medical diagnostics and research.

Keywords: multi-threshold recurrence rate plot; recurrence complexity; electroencephalogram (EEG);
neurodegenerative disease; support vector machine (SVM)

1. Introduction

Neurodegenerative diseases, such as Alzheimer’s Disease (AD) and Frontotemporal
Dementia (FTD), pose complex challenges in neuroscience due to their complex pathologies,
which include progressive neuronal loss leading to cognitive decline and altered brain
function. AD primarily affects older adults, manifesting as memory loss, confusion, and
mood changes, while FTD typically arises in younger adults (45–65 years) and affects
personality and language more than memory. These diseases not only differ in symptomatic
expression but also in their underlying pathological and neurodynamical mechanisms,
including abnormal protein accumulation and neurotransmitter disruption. With an aging
global population, the prevalence of AD and FTD is expected to reach 150 million by 2050,
presenting significant diagnostic and caregiving challenges [1].

Traditionally, diagnosing Alzheimer’s involves patient history, clinical observations,
and cognitive tests like the MMSE [2,3]. Recent research has shifted towards sophisti-
cated imaging techniques such as CT, PET, and MRI [4,5]. However, these methods come
with limitations like high costs and potential side effects [6], which restrict their routine
clinical application. As an alternative, Electroencephalogram (EEG) analysis has gained
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prominence, providing non-invasive insights into the brain’s electrical activity and offering
potential for early biomarker detection in neurodegenerative diseases. In particular, the
nonlinear dynamics of EEG signal analysis have been growing as a hot topic in the study
of neurodegenerative diseases, such as AD and FTD [7–9]. For instance, EEG complex-
ity measured by permutation entropy was decreased in AD [10]. Alpha band functional
connectivity was decreased in patients with AD [11].

Recent advancements in fractal analysis have significantly enriched the study of
EEG signals, especially in the context of neurodegenerative diseases [12–14]. While the
application of the fractal dimension and the Hurst exponent have been applied in the
context of neurodegenerative diseases [15–19], these metrics have often been applied in
isolation, overlooking their potential synergy. The fractal dimension was interpreted as
a measure of structural complexity [20], which quantifies the irregularity, intricacy, and
self-similarity of a nonlinear complex system. The Hurst exponent was used to analyze the
fractal-like or self-similarity behavior and to quantify long-term memory or persistence in a
time series [17,21–23], but it sometimes fails to capture the shorter, more transient dynamics
prevalent in pathological brain states.

Furthermore, neural signals, together with other natural phenomena, often display
distinctive recurrent behaviors, ranging from regular to irregular patterns, as illustrated
in Figures 1 and 2. Such recurrent behaviors could be characterized by the recurrence
plot, a method pioneered by Eckmann et al. [24], but this remains underexplored. The
recurrence plot serves as an insightful tool for visualizing the recurring nature of states
in a dynamical system’s trajectory through its phase space. Current applications, such
as alterations in recurrence structures in Alzheimer’s disease [25] and combined recur-
rence and cross-recurrence quantification for mild cognitive impairment classification [26],
have shown promise but lack a unified approach that encompasses the full spectrum of
dynamical behaviors. Recent innovations like the no-threshold recurrence plot convolution
network [27] and the multiscale dispersion recurrence plot [28] offer advancements in
disease characterization, yet they frequently omit considerations of scale and threshold
sensitivity, which are critical for comprehensive analysis.

In addition, multiscale recurrence analysis was proposed and utilized in heart rate
variability [29], MEG signals of schizophrenia [30], financial time series [31–33], and bridge
dynamics [34]. These works focus on the time length (scale) of the input data, while neglect-
ing the threshold of the recurrence quantification analysis. Although the Scale Dependent
Lyapunov Exponent (SDLE) developed by Gao and colleagues [35,36] and the correlation
integral developed by Grassberger et al. [37] also utilize multiple thresholds of recurrence,
they serve distinct purposes within the field of dynamical systems analysis. SDLE was
designed to distinguish chaos from noise by characterizing how the Lyapunov exponent
changes with increasing recurrence thresholds, and the correlation integral was developed
to capture the entropy. In contrast, our Multi-Threshold Recurrence Rate Plot (MTRRP)
focuses on capturing the structural complexity and local randomness in EEG signals, par-
ticularly in the context of neurodegenerative diseases, offering a different approach and
application. This distinct approach not only differentiates MTRRP from existing methods
but also highlights its potential utility in medical diagnostics and research into complex neu-
rological conditions. Further, the existing literature lacks a comprehensive exploration of
the intersection between recurrence plot analysis, fractal theory, and structural complexity
in the context of neurodegenerative diseases.

To bridge this gap, we have created an innovative methodology that integrates frac-
tal analysis with recurrence plot analysis through our novel MTRRP and the Recurrence
Complexity metric. This approach is premised on the idea that neurodegenerative diseases
induce distinctive alterations in the brain’s electrical activity, which can be elucidated
through sophisticated signal processing techniques. MTRRP allows for the dynamic ad-
justment of recurrence thresholds, revealing changes in recurrence rates that correlate
with disease progression. Recurrence Complexity, developed as a product of two novel
metrics—Recurrence Rate Gradient and Recurrence Hurst—effectively captures the nu-
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anced interplay between local randomness and global structural features. Recurrence
Rate Gradient assesses the initial rate at which similar states become more frequent as
the threshold increases. A high Recurrence Rate Gradient suggests a behavior similar to
Gaussian noise, thus reflecting local randomness. In contrast, the Recurrence Hurst uses
fractal concepts to quantify the long-term memory or persistence of the signal, indicative
of underlying global structures.

Figure 1. Recurrence Plots for Various Time Series. (A) Time series, each followed by its corresponding
recurrence plot, including A1 stochastic data, A2 harmonic oscillation, A3 chaotic data, A4 fractional
Brownian motion, and A5 EEG signal. (B) EEG recording, with B1 showing the distribution of
electrodes on the EEG scalp, along with B2 illustrating two EEG time series samples: one from a
healthy participant and another from a patient with Alzheimer’s Disease. (C,D) Recurrence plots
with five different thresholds, derived from the EEG time series of a healthy participant and an
Alzheimer’s Disease patient, respectively.
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Our study applies this methodology to resting-state EEG data from patients with
Alzheimer’s Disease (AD) and Frontotemporal Dementia (FTD), alongside healthy controls,
to identify the distinct neurophysiological patterns that differentiate these conditions. By
leveraging the sensitivity of the Recurrence Rate Gradient to subtle changes in recurrence
behavior and the depth of analysis provided by the Recurrence Hurst, we enhance the
diagnostic capabilities for neurodegenerative diseases, with the generated features being
evaluated through a support vector machine (SVM). SVM and other machine-learning
approaches have been proved to be promising in the computer-aided diagnosis of degen-
erative diseases [38–40]. This not only provides deeper insights into their neurodynamic
processes but also underscores the potential of MTRRP and its metrics to be significant
advancements in the field, offering a comprehensive tool for advancing medical diagnostics
and research.

2. Materials and Methods
2.1. Dataset

Resting-state EEG recordings from a dataset of 88 participants (29 AD, 23 FTD, and
36 matched healthy controls) were collected by Miltiadous et al. [41], retrieved from Open-
neuro Platform (https://openneuro.org/datasets/ds004504), and accessed on 20 June 2023.
The demographic statistics can be seen in Table 1, where the Mini-Mental State Examination
(MMSE) evaluates cognitive neuropsychological state, which ranges from 0 to 30, with
lower MMSE scores indicating more severe cognitive decline. The duration of the disease
was measured in months and the median value was 25 with the IQR range (Q1–Q3) being
24–28.5 months. Concerning the AD groups, no dementia-related comorbidities have been
reported. Table 1 summarizes the most relevant demographic (i.e., age and gender) and
clinical (i.e., MMSE score) features of the three groups.

Table 1. Demographic and clinical data of the healthy control (HC), Alzheimer’s disease (AD), and
frontotemporal dementia (FTD) participants.

Group Gender (M/F) Age MMSE

AD 12/24 66.39 ± 7.89 17.75 ± 4.50
FTD 9/14 63.65 ± 8.22 22.17 ± 2.64
HC 11/18 67.90 ± 5.40 30.00 ± 0.00

2.2. EEG Data Acquisition

Resting-state EEG (rsEEG) data were acquired from the 2nd Department of Neurology
of AHEPA General Hospital of Thessaloniki by an experienced team of neurologists, using
a Nihon Kohden EEG 2100 clinical device equipped with 19 scalp electrodes (Fp1, Fp2,
Fz, F3, F4, F7, F8, Cz, C3, C4, T3, T4, T5, T6, Pz, P3, P4, O1, O2) following the 10–20 in-
ternational system (see Figure 1B). Two reference electrodes (A1 and A2) were positioned
on the mastoids for impedance verification. Prior to each recording, skin impedance was
maintained below 5 kΩ. The EEG signals were sampled at 500 Hz with a 10 µV/mm
resolution. Recording montages included anteroposterior bipolar and referential configura-
tions, utilizing Cz as the common reference. This experiment and the data collection were
approved by the Scientific and Ethics Committee of AHEPA University Hospital, Aristotle
University of Thessaloniki, with the protocol number 142/12-04-2023. For analysis, a 5 min
segment of data was selected for each participant, as the shortest recording duration was
5.1 min.

2.3. EEG Data Preprocessing

The EEG signal preprocessing encompassed several steps. Initially, a Butterworth
bandpass filter (0.5 to 45 Hz) was applied, and the signals were referenced to the mean
of channels A1 and A2. Subsequently, EEGLab [42], a open source MATLAB (version
2023a) tool for analysis of single-trial EEG dynamics including independent component

https://openneuro.org/datasets/ds004504
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analysis and other elements of EEG data preprocessing, was employed for artifact correc-
tion using the artifact subspace reconstruction approach. This step entailed the removal
of data segments exceeding the threshold of standard deviation within a 0.5 s window
(capped at 17). Independent component analysis (ICA) was performed using the RunICA
algorithm, resulting in the transformation of the 19 EEG signals into 19 distinct independent
components. It is noteworthy that despite the recordings being acquired during subjects’
rest with closed eyes, some signals exhibited evidence of eye and jaw movements. Conse-
quently, components identified by EEGLab’s ICLabel routine as associated with eye or jaw
movements were automatically excluded from the analysis.

2.4. Recurrence Plot

Recurrence plot [24] is a two-dimensional representation characterizing the dynamic
features of nonlinear systems and complex time series, by which the phase space trajectory
returns roughly to its previous states. For each moment x(i), estimate the distance of every
other time point, see x(j), and plot the points (i, j) on the recurrence plot as a revisit if the
distance is short enough (shorter than a threshold). This can be processed by the binary
recurrence matrix:

R(i, j) =1 i f ||x(i)−x(j)||≤ε
0 otherwise (1)

In this matrix, ||·|| represents a norm, and ε is the predefined recurrence threshold.
The recurrence plot visualizes this matrix (see Figure 1), typically using colored dots at
coordinates (i, j) to indicate a recurrence (R(i,j) = 1), with time on both the x- and y-axes.

The detailed calculation is described as follows:

(1) For a given time series, x1, x2, x3,. . ., x = n, reconstruct its phase space vectors X
using time-delay methods, such as taken time delay, in which parameters m and τ

for phase space reconstruction should be set. Immediately, we obtain phase space
vectors Xi = (xi, xi + τ,. . ., xi + (m − 1) × τ).

(2) Define the parameters of phase space reconstruction m and τ (as described in the first
step above) and distance threshold r for judging whether a points-pair is close enough
to take as a recurrence.

(3) Calculate the distance of all point-pairs and generate an n × n distance matrix, and
optionally visualize the matrix.

(4) Plot all of the points-pairs closer than the threshold r, and we immediately obtain the
so-called recurrence plot, shown in Figure 1.

(5) Estimate various nonlinear dynamic features of the recurrence plot using recurrence
quantification analysis (RQA) statistics [24], such as recurrence rate (RR), determinism
(DET), entropy (ENTR), MaxLine, Trend, Laminarity, Trapping Time. Recurrence rate
quantifies the density of recurrence points in a recurrence plot, that is, the rate of
recurrence points divided by all points in the recurrence plot. This rate corresponds
to the likelihood of a specific state reoccurring in the system and is closely related to
the correlation sum concept.

2.5. Fractional Brownian Motion and Hurst Exponent

Fractional Brownian motion (fBm) is a continuous-time Gaussian process that is a
cornerstone in the field of stochastic processes, particularly useful in modeling scenarios
with self-similarity and long-range dependence. In this study, fBm signals with different
levels of long-term dependence were generated by wfbm, a wavelet-based fBm procedure,
by setting the Hurst exponent as input parameter. As illustrated in Figure 2, For different
fractional Brownian motions (characterized by varying Hurst exponents), the recurrence
plot varies as the recurrence threshold is altered. Especially, Hurst exponent decides how
the recurrence rate (a simple recurrence quantification metric) evolve with increasing
recurrence thresholds (see Figure 3).

The Hurst exponent (H) is a measure of fractal complexity and the long-range per-
sistence of the fractal process. There are 3 basic dimensions of Hurst: (1) 0 < H < 0.5, an
EEG time series exhibiting anti-persistent correlation, or the tendency to recover to the
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mean value; (2) H = 0.5, indicating that an EEG time series is memoryless or a random
walk process; (3) 0.5 < H < 1, a time series that is considered to have long-term correlation.
There are several methods to measure H, such as Detrended Fluctuation Analysis [43] and
Adaptive Fractal Analysis (AFA) [21], and the AFA is applied in this study. AFA uses an
adaptive detrending algorithm to measure the fit between the algorithm-generating trend
and the real data at different detrending windows. The detailed calculation is the following:

∑i
j = 1 x(j)

(1) For a given time series, x(1), x(2), x(3),. . ., x(n), integrate it from a fractional Gaussian
motion into a fractional Brownian motion by X(i) = ∑i

j = 1 x(j)
(2) Fit the time series X(i) using the weighted time window W = 2n + 1, with the highest

weight in the center point of the window, and the weights decaying linearly towards
both left and right sides. Thus, we obtain the fitting curves under each fitting window.

(3) Linearly fit the Log2(W) and Log2(F(W)), where F(W) is the variance of the magnitude
of the residuals according to the following:

F(W) = [
1
N

N

∑
i = 1

(u(i)− v(i))2]1/2 ∼ WH (2)

where the power coefficient H is the Hurst exponent, which is the slope of the linear fit
between Log2(W) and Log2(F(W)).
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2.6. MTRRP and Recurrence Complexity

In this section, we introduce MTRRP and the derived metrics, including the Recurrence
Rate Gradient, Recurrence Hurst, and Recurrence Complexity.

2.6.1. Methodology of MTRRP Construction

As the flow diagram of MTRRP illustrated in Figure 4A shows, the construction of
the MTRRP begins with the preparation of the time series data, as depicted in Figure 4. In
order to setting appropriate thresholds, the original time series data can be normalized to
ranges 0 to 1 by the following formula:

normalized data =
origninal data − minimum

maximum − minimum
(3)

It is important to appropriately set the parameters for MTRRP, including the em-
bedding dimension and delay time for constructing a phase space, and the threshold
for the recurrence plot. As illustrated in Figure 5, the parameters influence the MTRRP
significantly, with the recommended embedding dimension (M) being 2 or 3 and the rec-
ommended factor (Q) of the threshold being 0.3. The embedding dimension, M, is the
number of delayed versions of the time series used to reconstruct the phase space. It should
be large enough to unfold the dynamics of the system but not so large as to complicate
the model unnecessarily. Methods to select M include False Nearest Neighbors. This
method involves incrementally increasing mm and checking whether points that are close
in mm-dimensional space remain close when the dimension is increased to m + 1. The
smallest mm for which a small percentage of points are false neighbors is chosen as the
embedding dimension. The delay time, τ, determines how much the time series is shifted
to construct the vectors in the reconstructed phase space. A well-chosen τ ensures that
the vectors provide meaningful and independent information about the dynamics of the
system. Two common methods to determine τ are Autocorrelation Function and Mutual
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Information. Like the parameters for phase space, choosing appropriate thresholds for
MTRRP is crucial. Intuitively, thresholds should be set according to the statistical properties
of the data, such as the range and standard deviation.
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(C) The MTRRP, where each point stands for the recurrence rate under a specific threshold, where
the recurrence rate can be obtained through the recurrence plot, as illustrated in (B) above. Finally,
metrics based on MTRRP can be obtained immediately, including the Recurrence Rate Gradient,
Recurrence Hurst, and Recurrence Complexity.

The initial threshold, defined as a minimum threshold, is set at a predetermined
percentage of the total data range, typically 10% (or just 0.1, if the data have been normalized
to ranges from 0 to 1). Subsequent thresholds are determined by incrementally increasing
this base threshold by a factor (Q) proportional to the standard deviation of the dataset, thus
ensuring sensitivity to the inherent variability of the data. Each threshold defines a specific
condition under which the recurrence of the time series is analyzed using recurrence plot
techniques or recurrence quantification analysis [24]. The recurrence rates obtained at
each threshold are then plotted against their respective thresholds, forming the MTRRP,
which visually represents how the recurrence behavior of the data evolves with increasing
thresholds, as illustrated in Figure 4C.
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The formula used to characterize the MTRRP, based on the simulated data of various
fBms, is given by the following:

Recurrence Rate = α × (1 − Recurrence Hurst)× log(threshold) (4)

where α is a user-defined constant (typically 0.5 for classical fWm), and the Recurrence
Hurst, a measure directly estimating the Hurst exponent from the data, is computed
as follows:

Recurrence Hurst = 1 − Recurrence Rate
α × log(Recurrence Threshold)

(5)

2.6.2. Calculation of Recurrence Rate Gradient

The Recurrence Rate Gradient is quantified through linear regression analysis of the
initial segment of the MTRRP. This segment’s slope provides a measure of how quickly
the recurrence rate increases with the threshold increments and is critical for identifying
local randomness in the time series data. The choice of the largest threshold for the fitting
process is pivotal and can be determined in two principal ways:

1. By setting a uniform maximum threshold across the dataset that allows most data
points to reach a recurrence rate plateau.

2. By customizing the maximum threshold for each specific time series based on the
stabilization point of its recurrence rate.

2.6.3. Recurrence Hurst Calculation

Additionally, we compute the Recurrence Hurst—a measure that estimates the Hurst
exponent directly from the time series data. As depicted in Formulas (4) and (5), this compu-
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tation is integrated into the MTRRP analysis to assess the long-term memory or persistence
characteristics of the time series, thereby complementing the Recurrence Rate Gradient.

2.6.4. Definition of Recurrence Complexity

Finally, Recurrence Complexity is defined as the product of the Recurrence Rate
Gradient and Recurrence Hurst. This product captures both the local randomness and the
persistence behavior, reflecting the overall structural complexity of the time series. Higher
values of the Recurrence Rate Gradient indicate greater local randomness, whereas higher
Recurrence Hurst values suggest pronounced long-term memory or persistence in the data.

These methodological steps and calculations are crucial for providing a comprehensive
and nuanced understanding of the dynamical properties of EEG signals, particularly in the
context of neurodegenerative diseases. This approach not only enhances traditional EEG
analysis but also leverages advanced metrics to offer deeper insights into the underlying
complexities of neurological conditions.

3. Results
3.1. ANOVA Analysis

For full-band EEG data (see Figure 6), ANOVA analysis (Bonfferoni corrected for
all multiple comparison issues in this paper) of the recurrence complexity revealed a sig-
nificant group difference in the occipital region (F(2.85) = 6.249, p = 0.003, η2p = 0.128,
90% CI = [0.029, 0.229]). To determine the specific differences between the three groups,
pairwise comparisons were conducted. Both patients with Alzheimer’s Disease (AD) and
Frontotemporal Dementia (FTD) exhibited significantly higher complexity than healthy
controls (p = 0.006 and p = 0.014, respectively). Similarly, for the Recurrence Rate Gradient,
a significant group difference was detected in the occipital region (F(2.85) = 3.691, p = 0.029,
η2p = 0.080, 90% CI = [0.005, 0.170]). Pairwise comparisons only reached marginal signifi-
cance between AD and FTD (p = 0.050 and p = 0.082, respectively). However, the statistical
analysis of the Recurrence Hurst provided no evidence of significant group differences
(ps > 0.447).
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Figure 6. Topography of Recurrence Complexity (RC), Recurrence Rate Gradient (RRG), Recurrence
Hurst (RH) in AD, FTD, and healthy controls (HC) with full-band EEG data. For visualization, the
metrics were normalized to a range from 0 to 1.

In consideration that the recurrence complexity is the most effective indicator for the
group differences of full-band data, we focus on the group differences in recurrence com-
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plexity on band-passed data. As shown in Figure 7, in comparison with healthy controls,
both the AD and FTD groups showed significantly increased recurrence complexity on the
occipital lobe at the Alpha band (p < 0.001 and p = 0.011) and the Beta band (p < 0.001 and
p = 0.001), while there was no significant group difference in occipital recurrence complexity
in the Delta, Theta, and Gamma bands. Considering the group difference at the alpha band
are the most significant, we present the MTRRP of alpha band signals from AD and healthy
control (see Figure 8).
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Figure 8. Multi-Threshold Recurrence Rate Plots for Alpha band signals in AD, FTD, and HC.

3.2. SVM Classification

To test the effectiveness of our proposed method in diagnosing AD and FTD, SVM
was used for classification tasks, using the recurrence complexity, Recurrence Hurst, and
Recurrence Rate Gradient as input features. By applying leave-one-out cross-validation, we
observed a promising classification performance, as seen in Table 2. The strategy for feature
selection involved calculating Pearson’s correlation between the features and group labels.
Features demonstrating a stronger correlation were considered to have a potentially higher
predictive value for classification. We tested the top 50 features (from 285 features = 19 EEG
channels × 5 frequency bands × 3 metrics, for each subject) with the highest correlation in
a SVM, and the classifier attained an accuracy of 86.36% in distinguishing AD and FTD
from HC, an accuracy of 87.69% in distinguishing AD from HC, an accuracy of 82.69%
in distinguishing FTD from HC, and an accuracy of 72.88% in distinguishing AD from
FTD. The details of the classification performance are listed in Table 2, including accuracy,
sensitivity, and specificity.

Table 2. Classification performance using SVM.

Accuracy (%) Recall
(%)

Specificity
(%)

Null Distribution
Accuracy (Mean ± sd)

HC/AD 87.69 97.22 75.86 66.50 ± 5.46
HC/FTD 82.69 73.91 89.66 68.01 ± 5.48
AD/FTD 72.88 94.44 39.13 68.53 ± 5.10

HC/AD&FTD 86.36 93.22 72.41 70.78 ± 3.11
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To access the statistical significance of the classification results, a permutation test
was performed by randomly shuffling the group labels of the samples. Specifically, each
time, we shuffled the labels and trained a new SVM classification model based on the new
data, thus obtaining and recording the performance of the classifier. The strategies and
specifics of training–testing in the permutation test section were performed identically to the
experiment using the real group labels, as reported above (e.g., in each shuffling, features
were ranked by correlation coefficient with the shuffled labels, and the top 50 correlated
features were selected as input features). This process was repeated 200 times to obtain
a null distribution for each classification task. As presented in Figure 9, the permutation
test result showed a significantly lower classifier performance in HC vs. AD (p < 0.001),
HC vs. FTD (p = 0.015), and HC vs. AD and FTD (p < 0.001), but not in AD vs. FTD
(p = 0.19), compared to the classification performance using real labels (see Figure 3 and
Table 2).
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4. Discussion

Our study introduces a novel methodology, termed the Multi-Threshold Recurrence
Rate Plot (MTRRP), as well as the generated metrics, including Recurrence Complexity,
Recurrence Rate Gradient, and Recurrence Hurst. This is a new approach for EEG signal
analysis in Alzheimer’s Disease (AD) and Frontotemporal Dementia (FTD), bridging re-
currence quantification analysis [24] with fractal theory [23]. By bridging recurrence plot
analysis with fractal theory, this approach offers a nuanced understanding of EEG patterns,
significantly enhancing the diagnostic accuracy for neurodegenerative conditions. Specifi-
cally, the application of Recurrence Complexity to resting-state EEG data highlighted how
the pronounced complexity increases in the occipital regions of patients with AD and FTD,
particularly in the Alpha and Beta frequency bands. Further, the efficacy of our methodol-
ogy was tested in SVM, which demonstrated high classification accuracies of 87.7% for AD
and 82.7% for FTD, underscoring the potential of MTRRP in medical diagnostics.
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By bridging fractal analysis and recurrence plot analysis in EEG signals, the diagnosis
of Alzheimer’s Disease (AD) is achieved by integrating the methodologies of both fields.
Fractal analysis, with its focus on understanding complex patterns at various scales, comple-
ments the recurrence plot analysis, which visualizes the recurrence of states in a dynamical
system. The two samples of the EEG time series shown in Figure 1B, which look similar but
vary considerably in MTRRP, are depicted in Figure 1C,D. The use of multiple thresholds in
our MTRRP reflects the ideas of multiscale analysis inherent in fractal theory. This allows
for a more nuanced examination of EEG signals, capturing variations across different scales,
which is critical in understanding the complex dynamics of neurodegenerative diseases.
This synergy between fractal analysis and recurrence plot analysis offers a comprehensive
tool for examining the intricate patterns present in the EEG data of AD patients, potentially
leading to more accurate diagnoses and insights into the disease’s progression.

The observation of increased Recurrence Complexity in both AD and FTD within
the occipital regions is a significant finding. This suggests a distinctive alteration in the
dynamical behavior of the EEG signals in these areas, which are typically associated
with visual processing. Previous studies have employed various entropy and complexity
measures in EEG data, such as Lempel–Ziv complexity [7], correlation dimension [37],
and maximum Lyapunov exponent [15]. For instance, the Lempel–Ziv complexity [7] and
entropy [44,45] were significantly decreased in AD at the parietal and occipital regions,
and these complexity changes can aid in the diagnosing of AD with 90% sensitivity and
73% specificity [7]. Morison et al. [46] demonstrated that permutation entropy, a simple
robustness measure widely used in quantifying observations and dynamic noise, is a good
biomarker for differentiating AD patients from healthy controls. Smits et al. [16] reported
that AD exhibited a decreased fractional dimension in the temporal–occipital regions at
resting state. However, these studies did not specifically focus on differentiating long-term
memory as an index by Hurst exponent values or randomness-based complexity among
AD, FTD, and healthy controls. Our study addresses this gap by exploring the nonlinear
dynamics in neural oscillations of AD and FTD, contributing to a deeper understanding of
the mechanisms underlying these neural disorders.

In this study, the application of MTRRP for the SVM classification of EEG signals
in neurodegenerative diseases achieved a classification accuracy of 87.7%. While this
may not reach the near-perfect accuracies reported in other conditions such as epilepsy
detection [40,41], it is important to contextualize these results within the broader landscape
of EEG analysis in neurodegenerative disorders, as the epilepsy signal is very different
to the normal controls and can be much more easily detected. Recent advancements
in machine-learning approaches for EEG analysis have shown promising results. For
instance, Prado et al. [47] reported impressive classification performances using multi-
metric rsEEG source–space connectivity features. However, their study was limited by
using a single data split for training and testing, which might not adequately reflect the
robustness of the classifier across different subsets of data. On the other hand, Vecchio
et al. [38] achieved a notable accuracy of 95% in distinguishing Alzheimer’s Disease (AD)
from healthy controls using EEG connectivity metrics. However, their approach of using
data segments rather than whole-subject levels might risk data leakage and affect the
generalizability of their findings.

The implications of this result are twofold. Firstly, it affirms the potential of Recur-
rence Complexity as a sensitive biomarker for neurodegenerative diseases. Secondly, it
suggests that AD and FTD may involve more widespread neural network disruptions than
previously thought, extending beyond the traditionally affected regions. This finding could
lead to a deeper understanding of the pathophysiological mechanisms underpinning the
neurodegenerative processes of these diseases and might influence future approaches to
diagnosis and treatment. However, our study does face certain limitations. The sample
size and diversity may affect the generalizability of our findings. Further research with a
larger and more varied cohort is essential to validate our results. Additionally, integrating
our approach with other diagnostic tools, such as MRI and PET scans, could offer a more
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comprehensive diagnostic framework. Future research should also explore the application
of Recurrence Complexity in other neurological conditions, potentially offering a universal
tool for neurophysiological analysis. Longitudinal studies could provide insights into the
progression of neurodegenerative diseases and the efficacy of treatment interventions.

The versatility of the MTRRP extends well beyond the scope of EEG signal analysis
in neurodegenerative disorders, opening new avenues across a broad spectrum of time
series analysis. The methodology is equally applicable to financial time series analysis,
such as monitoring stock market trends, as well as to evaluating bridge dynamic properties
in civil engineering and analyzing heart rate variability in cardiology. This adaptability
underscores the potential of MTRRP to revolutionize the way dynamic systems are an-
alyzed across various disciplines by providing a detailed and nuanced understanding
of underlying patterns. Moreover, the current study has focused primarily on the recur-
rence rate within the framework of multi-threshold recurrence plots. Future investigations
could expand this approach by incorporating other metrics of recurrence quantification
analysis such as Determinism, Maximum Line Length, Entropy, Trend, Laminarity, and
Trapping Time. Exploring these metrics could further enhance the diagnostic capabilities
of MTRRP, offering a more comprehensive toolset for analyzing complex time series data
across different fields. This expansion not only broadens the applicability of MTRRP but
also enhances its theoretical foundation, paving the way for its adoption in diverse scientific
and practical applications.

5. Conclusions

In conclusion, our study proposes the Multi-Threshold Recurrence Rate Plot (MTRRP),
and we applied this innovative methodology for EEG analysis in Alzheimer’s Disease
(AD) and Frontotemporal Dementia (FTD). Utilizing metrics like Recurrence Complexity,
which integrates Recurrence Rate Gradient and Recurrence Hurst, this approach high-
lights significant alterations in the EEG dynamics of the occipital regions in AD and FTD,
particularly within the Alpha and Beta frequency bands. The application of MTRRP re-
sulted in a classification accuracy of 87.7%, demonstrating its potential as a diagnostic
tool. This methodology not only advances EEG analysis by bridging recurrence plot and
fractal analysis but also opens new avenues for understanding the complex dynamics of
neurodegenerative diseases. Future research should expand the sample size and integrate
MTRRP with other diagnostic methods to enhance its effectiveness and applicability in
clinical settings.
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