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Abstract: As the population ages worldwide, Alzheimer’s disease (AD), the most prevalent kind of
neurodegenerative disorder among older people, has become a significant factor affecting quality
of life, public health, and economies. However, the exact pathogenesis of Alzheimer’s remains
elusive, and existing highly recognized pathogenesis includes the amyloid cascade hypothesis,
Tau neurofibrillary tangles hypothesis, and neuroinflammation hypothesis. The major diagnoses
of Alzheimer’s disease include neuroimaging positron emission computed tomography, magnetic
resonance imaging, and cerebrospinal fluid molecular diagnosis. The therapy of Alzheimer’s disease
primarily relies on drugs, and the approved drugs on the market include acetylcholinesterase drugs,
glutamate receptor antagonists, and amyloid-β monoclonal antibodies. Still, the existing drugs
can only alleviate the symptoms of the disease and cannot completely reverse it. This review aims
to summarize existing research results on Alzheimer’s disease pathogenesis, diagnosis, and drug
therapy, with the objective of facilitating future research in this area.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease divided into three stages:
preclinical AD, mild cognitive impairment (MCI), and dementia [1]. The symptom of
preclinical AD is cognitive impairment, and loss of independence is the primary feature
differentiating dementia from MCI [2,3]. There are several other prevalent diseases in
the elderly, such as Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS).
They share several common symptoms with AD. PD is a neurodegenerative disease. It
is caused by mutations in some genes, including Pink1 (PARK6), Parkin (PARK2), DJ-1
(PARK7), and alpha-synuclein (PARK1). Its main symptoms are motor dysfunctions, but
PD patients also suffer from comorbid non-motor symptoms, including cognitive decline,
sleep disorder, and depression. Furthermore, its patterns of progression vary considerably
across individuals [4–6]. ALS is a fatal neurodegenerative disease. It leads to muscle
loss and axonal loss in the lateral spinal cord columns, but its pathophysiology remains
incompletely understood [7,8].

AD is the single biggest cause of dementia among old people. As the population ages,
the worldwide prevalence of dementia is expected to reach approximately 150 million by
2050, particularly in developing countries [9,10]. Furthermore, AD causes a substantial
resource and economic burden on families and society. For example, it is estimated that in
the United States in 2018, some family members spent more than USD 10,000 caring for AD
patients, and the total cost for the nation was 277 billion [11].

Since the proposal of AD by Alois Alzheimer in 1906, through the pathological
anatomy of a woman, the exact pathogenesis of AD had not yet been definitively iden-
tified. However, various hypotheses have been put forward, most notably the amyloid
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cascade hypothesis, Tau neurofibrillary tangles hypothesis, and neuroinflammation hypoth-
esis [12–16]. With progressive research, it has also become evident that there is a certain
level of interaction between these hypotheses [17,18].

The clinical diagnostic methods for AD include noninvasive neuroimaging positron
emission computed tomography (PET), magnetic resonance imaging (MRI), and invasive
cerebrospinal fluid (CSF) molecular diagnosis [19,20]. CSF molecular diagnosis has a high
accuracy, but it is invasive. However, PET is expensive, and MRI cannot exactly distinguish
AD from some other neurodegenerative diseases. In recent years, there has been a rise
in using artificial intelligence to develop machine learning models to diagnose AD or
distinguish between MCI and AD [21].

To date, there are still no clinical methods that can completely reverse AD, and the
main therapy of AD is drugs. The early Food and Drug Administration (FDA)-approved
AD drugs were cholinergic drugs, such as Tacrine, Donepezil, Rivastigmine, Galantamine,
and the glutamate receptor antagonist Memantine [22,23]. Recently, the Aβ monoclonal
antibodies Aducanumab and Lecanemab have been approved by the FDA for marketing
through clinical trials [24,25]. Additionally, Sodium Oligomannate, the first drug targeting
the brain-gut axis, has also been approved for marketing in China [23].

In this review, we introduce the existing major pathogeneses of AD, including the
amyloid cascade hypothesis, the Tau neurofibrillary tangles hypothesis, and the neu-
roinflammation hypothesis. Diagnostic methods for AD, including PET, MRI, and CSF
molecular diagnosis, are discussed. We also list various FDA-approved drugs with their
curative effects and side effects. By comparing existing pathogeneses, diagnoses, and drug
therapies of AD, we aim to draw insights from previous research experiences and facilitate
future studies into AD (Figure 1).
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Figure 1. The pathogeneses, diagnoses, and therapies for AD.

2. Pathogenesis of Alzheimer’s Disease
2.1. Amyloid Cascade Hypothesis

The amyloid cascade hypothesis originated from observations made by researchers
studying prion particles. They found that entities in brain slices from Creutzfeldt-Jakob
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disease were similar to plaques in AD brains described years ago [26]. The hypothesis
suggests that the aggregation of amyloid-β (Aβ) plays a significant role in the development
of AD.

Aβ is generated through hydrolysis of the amyloid protein precursor (APP) [27].
AβPP is a type-1 membrane protein expressed in various tissues, particularly in neuronal
synapses. It plays an important role in the Aβ hypothesis. AβPP is composed of a
transmembrane structural domain, a large extracellular glycosylated n-terminus, and a
shorter cytoplasmic c-terminus [28]. There are two main pathways for the cleavage of
AβPP in vivo (Figure 2 [29]): the main pathway is being cleaved by α-secretase to produce
polypeptide chains with no aggregation [30]. The other is being cleaved by β-secretase to
form CTF-β and then cleaved by γ-secretase to form aggregated Aβ of different lengths [31].
The panels related to AD typically contain Aβ40 and Aβ42 [10]. Aβ42 often has stronger
aggregation [32] and neurotoxicity [33] than Aβ40.
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Aβ is toxic to neurons. Coordination compounds of Aβ and metal ions, such as
Zn2+ and Cu2+, can release oxygen free radicals, causing oxidative damage to peripheral
neurons [34]. Aβ can induce microglia to phagocytose synapses, resulting in the loss
of synaptic function or synaptic disappearance [35]. Aβ can attach to the receptors on
the surface of the neuronal membrane, causing Ca2+ to flow inward, increasing the Ca2+

concentration in neurons. This can result in mitochondrial dysfunction and apoptosis [36].

2.2. Tau Protein Hyperphosphorylation Hypothesis

The Tau protein hyperphosphorylation hypothesis suggests that neurofibrillary tan-
gles, formed by hyperphosphorylation of Tau proteins, are important causes of AD. In 1988,
Wischik et al. extracted Tau proteins from plaques in the brains of AD patients and first
demonstrated that they might be implicated in dementia [37]. Tau protein, a type of micro-
tubule protein, plays a critical role in promoting the assembly and stability of microtubules
and the transport process of axons [38]. Tau protein is encoded by the MAPT gene on
chromosome 17 [39] with a distinct primary structure, rarely with secondary and tertiary
structures. Additionally, Tau protein is highly soluble and typically does not aggregate [40].
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Tau protein has various modification pathways, with phosphorylation being the most
significant. There are several phosphorylation sites in Tau, typically including threonine,
tyrosine, and serine [41,42]. In a normal human brain, there are only 2–3 phosphorylation
sites in Tau protein, and the phosphorylation and dephosphorylation of Tau can reach
a dynamic balance. However, in the brains of AD patients, there can be as many as
40 phosphorylation sites, and there is a serious imbalance between phosphorylation and
dephosphorylation, resulting in the formation of neurofibrillary tangles [43].

Studies have shown that reversible hyperphosphorylation of Tau proteins is a normal
biological process during hibernation and sleep in animals. Reversible nonpathological
phosphorylation of Tau depends on synergistic interactions between Tau kinases (such as
Gsk3β, CdK5, etc.) and phosphatases (of which PP2A has the strongest catalytic role [44])
and alterations in the activity of either may lead to elevated Tau phosphorylation [45].

Later research has indicated that Tau hyperphosphorylation is associated with genetic
mutations. Mutations in the MAPT gene on chromosome 17 increase the number of phos-
phorylation sites for Tau protein [46,47]. Tau neurofibrillary tangles are toxic to neurons.
They lead to neuronal loss and affect microtubule assembly and stability [48,49]. Further-
more, they impede nutrient transport in microtubules, resulting in neuronal damage [50].

2.3. Inflammatory Hypothesis

In recent years, with the study of AD advancing, researchers have found that neu-
rofibrillary tangles caused by Aβ and Tau proteins often trigger neuroinflammation in the
brain. Neuroinflammation, in turn, promotes the aggregation of Aβ and Tau neurofibrillary
tangles [51]. Consequently, the mechanism of neuroinflammation is now considered to be
the third major mechanism of AD [52].

Neuroinflammation primarily involves microglia and astrocytes in the central nervous
system. Some of the cytokines they produce can regulate their physiological activities, such
as tumor necrosis factor-alpha (TNF-α), interleukins, etc. [53,54].

Microglia are “immunosurveillance” cells in the central nervous system. Under
normal conditions, microglia remain in a resting state. When they are stimulated by an
external stimulus, they can be activated to an M1 pro-inflammatory phenotype and an
M2 anti-inflammatory phenotype to protect neuronal cells [55]. Normal microglia can
clear Aβ and inhibit Tau aggregation [56–58]. However, when over-activated by Aβs,
microglia release cytotoxic factors such as interleukins and TNF-α. This creates a prolonged
neuroinflammatory environment, which is toxic to neuronal cells [59].

Astrocytes play a critical role in neuronal metabolism, especially glutamate uptake, and
in inter-synaptic neural signaling [60]. Similar to microglia, astrocytes shift to an activated
state in response to stimuli: an A1 neurotoxic state in neuroinflammatory environments
and an A2 neuroprotective state in ischemic states [61]. Under normal circumstances,
astrocytes can surround and remove Aβ, but excess Aβ or an inflammatory environment
can activate astrocytes to the A1 form, leading them to promote Aβ production and Tau
protein phosphorylation to form neurofibrillary tangles [62–64]. It has also been shown
that activated microglia have a role in activating astrocytes [65].

2.4. Other Hypotheses

In addition to the first two dominant AD hypotheses and the neuroinflammatory
hypothesis, several other hypotheses have been proposed. Furthermore, they offer a
mutually reinforcing relationship with the three hypotheses mentioned above.

2.4.1. Abnormal Mitochondrial Autophagy

Aβ and Tau neurofibrillary tangles lead to mitochondrial autophagy dysfunction,
resulting in the accumulation of damaged mitochondria in the brain. They cannot be
digested by the lysosome properly. Damaged mitochondria reduce ATP production capacity
and enhance reactive oxidative species (ROS) production capacity, thus leading to oxidative
stress due to excess ROS and a lack of energy sources for neurons. Ultimately, neuronal
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cells undergo apoptosis and produce positive feedback regulating the accumulation of AB
and neurofibrillary tangles [66–68].

2.4.2. Cholinergic Theory

Choline is essential for the synthesis of acetylcholine (ACh), an important neuro-
transmitter. Abnormal signaling and function of the cholinergic system leads to cognitive
deficits [69]. Studies have shown that cholinergic lesions in AD mainly occur presynaptic,
resulting in dysfunction of muscarinic-type ACh receptors on presynaptic membranes,
loss of nicotinic-type ACh receptors on postsynaptic membranes, and abnormalities of
ACh transmission in nerve cells [70]. Cholinergic systemic heterogeneity also promotes the
accumulation of Aβ and the formation of neurofibrillary tangles [71].

2.4.3. Insulin Resistance

Studies have shown that one of the common symptoms of both AD and type-2 diabetes
is insulin resistance [72–74]. In addition to its role in glucose metabolism in the brain,
insulin is also involved in signaling between neurons, promoting AβPP synthesis, and the
phosphorylation process of Gskβ [75]. A lack of insulin leads to the deposition of Aβ and
hyperphosphorylation of Tau [68,76].

2.4.4. Abnormal Gut Microflora

The gut microflora maintains bi-directional interactions with key parts of the central
nervous system and the immune system through direct and indirect pathways [77]. As
gut microbial abundance changes due to the aging process or daily diet, the microbial
balance can be disrupted. The disruption triggers neuroinflammation through the brain-gut
axis, promotes the travel and deposition of Aβ and Tau proteins, and exacerbates insulin
resistance. These effects all worsen the AD condition [78–81].

2.4.5. Presenilin Hypothesis

Genetic mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), and the amyloid
precursor protein (APP) are major causes of familial AD(FAD) and early-onset AD(<65 years
old) [82]. PSEN1 and PSEN2 are essential components of the γ-secretase complex and can
impair the cleavage of APP by γ-secretase. Mutations in PSEN1 and PSEN2 can increase the
production of Aβ40 and Aβ42 [83]. PSEN1 mutations are more pathogenic than PSEN2 due
to their higher frequency of mutations, and the onset age of carriers of PSEN1 mutations
can be as early as 28 [84,85].

2.4.6. Calcium Hypothesis

Calcium (Ca2+) is a requisite second messenger in all living organisms, and it regulates
several physiological activities of neurons, including growth and differentiation, synaptic
plasticity, learning and memory, necrosis, apoptosis, and degeneration [86,87]. Recent
evidence indicates that Ca2+ dyshomeostasis is closely interrelated with AD. Mutations
in PSEN1 and PSEN2 can interact with the inositol 1,4,5-trisphosphate receptor (InsP3R)
Ca2+ release channel. These interactions exaggerate the influx of Ca2+ and cause Ca2+

dyshomeostasis [88]. Mitochondria plays an important role in absorbing Ca2+. Studies
have shown that there is a mitochondrial Ca2+ dysregulation in AD, and this can lead
to the production of ROS, inhibition of ATP synthesis, and activation of caspases and
apoptosis [89–91]. Furthermore, Aβ can induce mitochondrial Ca2+ overload [92].

2.4.7. Oxidative Stress

Studies have shown that elevated markers for oxidative stress precede Aβ deposition
and Tau neurofibrillary tangles [93]. ROS are normally maintained at a low level in vivo
and act as signaling molecules to mediate several signaling pathways. However, excessive
ROS can lead to oxidative stress and be toxic to cells. This is especially damaging to
neurons due to their high demands for oxygen [94,95]. It has been found that mutations
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of mitochondrial DNA, abnormal mitochondrial autophagy, and the accumulation of Aβ

and Tau can increase the production of ROS [66,96,97]. In turn, oxidative stress can also
increase the production of Aβ and the phosphorylation of Tau, which aggravates the AD
condition [98,99].

3. Diagnosis of Alzheimer’s Disease
3.1. Cerebrospinal Fluid Molecular Diagnosis

The massive deposition of Aβ in the brain, neurofibrillary tangles formed by abnormal
deposition of Tau proteins, and inflammatory factors are listed in the previous section
as important contributors to the onset of AD. Likewise, these substances can be used as
markers for early AD screening. The three most recognized CSF markers in current studies
are Aβ42, t-Tau protein (total Tau protein), and p-Tau (phosphorylated Tau) [100].

CSF molecular diagnosis is invasive. It needs to perform a lumbar puncture on the
patient and collect a CSF specimen of sufficient sample volume, as it affects the composition
of the CSF [101]. Numerous experiments have shown that AD patients have reduced
levels of Aβ42 and increased levels of t-Tau and p-Tau in their CSF [102]. It has been
shown that abnormalities of the Aβ42 protein in CSF can lead to an earlier diagnosis of
AD than PET imaging of Aβ [103]. However, it is also controversial that Aβ and Tau
positivity do not fully confirm the diagnosis of AD. There are no defined criteria for the
diagnosis of AD for these three markers due to differences in conditions and samples
between laboratories [104,105]. Moreover, some studies have demonstrated that the ratio
of Aβ42 to Aβ40 characterizes the results more accurately than Aβ42 alone [106–108].

3.2. PET Neuroimaging Diagnosis

The structure of the patient’s brain can be observed through PET imaging, including
its shape, size, and depositions (Figure 3 [109]). It can be used to differentiate between AD
and MCI as well as to predict the process of transformation from MCI to AD.
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There are two main PET imaging types: 18F-flurodeoxyglucose positron emission
computed tomography (18F-FDG-PET) and amyloid PET. 18F-FDG-PET combines 18F-FDG
with PET. As it is known that glucose is the fundamental source in the brain, assessing
glucose consumption in certain regions can indicate neuronal dysfunctions. 18F-FDG-PET
is proven to be 12% more precise in predicting the process of transformation from MCI
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to AD compared to MRI and CSF molecular diagnosis [110]. Amyloid PET possesses a
significantly higher sensitivity in predicting MCI progression to AD, reaching 93%, much
higher than 18F-FDG-PET [111]. Experiments have shown that detecting Aβ and Tau
proteins alone is similar to detecting them together. Detecting them individually can reduce
the cost of diagnosis for hospitals and patients [112].

3.3. MRI Neuroimaging Diagnosis

MRI is more commonly used to distinguish between AD and MCI [113]. There are two
types of MRI: structural MRI and functional MRI. Structural MRI assesses the atrophy of
critical brain regions and cortical thickness [114]. Functional MRI studies activation or func-
tional connectivity and proton magnetic resonance spectroscopy for the N-acetylaspartate
(NAA)/creatine ratio in specific areas [115,116]. It has been proven that medial temporal
atrophy, particularly hippocampal atrophy, is the best MRI marker [117,118]. However,
some other neurodegenerative diseases exhibit similar atrophy to AD [1].

3.4. Blood Tests
3.4.1. Plasma Testing

Neuronal cells can secrete vesicle-like exosomes for the transport of metabolic wastes
and signal transduction among neurons [119]. Exosomes play an important role in the
synthesis and transport of Aβ and Tau proteins [58,120,121]. By detecting elevated levels
of Aβ and Tau proteins in exosomes, AD can be detected ten years earlier than clinical
diagnosis with an accuracy rate of 96% [120,122]. Exosomes contain several miRNAs, and
their relative content changes when AD occurs, so the extraction and analysis of miRNAs
is another way to detect AD [123].

Many previous studies indicated that there was no difference between plasma Aβ of
AD patients and those of healthy controls [124–126], but some studies have shown that
there is a decline of Aβ42 and an increase of Aβ40 [127,128]. The results correlated with CSF
tests and PET tests and indicated that plasma Aβ biomarkers are strongly linked with the
Aβ status of the central nervous system but less affected by the Aβ known to be produced
in peripheral tissues [129–131]. Recent studies have indicated that there is Aβ misfolding
in the plasma of AD patients [132]. Additionally, the plasma Aβ42/Aβ40 decline can be
used to predict the risk of AD, and it is highly consistent with the result of PET tests [133].

Recent studies have shown that the accuracy of plasma p-Tau testing has been compa-
rable to CSF molecular diagnosis, and the range of testing includes preclinical AD [134].

3.4.2. Blood–Brain Barrier Testing

It has been shown that the deposition of the APOEε4 gene, rather than Aβ protein and
Tau protein, can accelerate the disruption of the blood–brain barrier, which is associated
with early cognitive impairment [135,136].

3.4.3. Serum Testing

Some studies have shown that there is a significant decrease in brain-derived neu-
rotrophic factors in the serum of AD patients compared with that of healthy people. The
measurement of brain-derived neurotrophic factor content is expected to be used as a test
indicator for AD [137,138]. A study led by King’s College London and the University of
Oxford extracted serum from patients with MCI who converted to AD at a later stage
and from MCI patients who remained cognitively stable at a later stage. Then, they were
applied to treat hippocampal cells and tested the effect of the serum on the process of
hippocampal genesis in vitro. By drawing comparisons with healthy controls, the result
can make predictions about the conversion of MCI to AD, and it is expected to predict the
onset of AD up to 3.5 years in advance. Additionally, it is more accurate and comprehensive
than ordinary proteomics tests with the diagnosis of all proteins in the serum. However,
this test is less accurate than CSF molecular diagnosis [139].
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3.5. Artificial Intelligence Diagnosis

With the rapid development of artificial intelligence, diagnostic methods related to
machine learning and prediction computer algorithms are gradually emerging (Table 1).
Since the atrophy of the hippocampal region of the brain is significantly associated with the
onset of AD and the degree of dementia, the latest research aims to build a deep-learning
model based on MRI and PET to predict AD-level images [140]. A recent study used brain
MRI image segmentation techniques in particular. They constructed a deep-learning model
that only directed on the hippocampal region of the brain. The study utilized two datasets,
Kaggle and OASIS, to build a model. Training the model to extract the hippocampal region
from brain MRI images in the OASIS dataset, the Kaggle dataset served as the testing set
after selecting the best model. The final results showed that the method can reach the
simplification of existing algorithms while guaranteeing the accuracy of predicting AD [21].

Table 1. Diagnostic methods and their makers, advantages, and disadvantages.

Method Marker Advantage Disadvantage References

CSF molecular
diagnosis

Aβ42
T-Tau
P-Tau

accurate
invasive,

high rate of
misclassification

[102,108,141]

PET glucose metabolism
Aβ, Tau protein

noninvasive,
sensitive

expensive,
confused with other diseases [111,112]

MRI medial temporal
atrophy noninvasive expensive,

confused with other diseases [1,142]

blood tests

plasma exosomes
plasma Aβ40, Aβ42,

p-Tau
serum

blood–brain barrier

minimally invasive,
diversity of markers

relatively less
accurate [120,122,129,139]

artificial intelligence
diagnosis

a deep-learning model
based on MRI and PET efficient immaturity of

technology [140]

4. Therapy of Alzheimer’s Disease
4.1. Acetylcholinesterase Inhibitors

Tacrine: Tacrine is the earliest anti-AD drug. It is an acetylcholinesterase (AChE)
inhibitor and reduces its catabolism of ACh. It enhances cholinergic effects to main-
tain neuronal excitability and ensures normal memory and cognitive functions [143,144]
(Figure 4 [145]). Tacrine used to be the most effective AD drug, but it is no longer used due
to its strong hepatotoxicity and excessive adverse effects [146]. In recent years, research on
Tacrine derivatives has emerged, aiming to maintain Tacrine’s efficacy while minimizing
its side effects on humans [147].

Donepezil: Donepezil is a second-generation AChE inhibitor [148]. In addition to
inhibiting cholinesterase, it acts at the molecular and cellular levels at almost all stages of
AD pathogenesis, including inhibiting aspects of glutamate-induced excitotoxicity, reducing
early expression of inflammatory cytokines, and reducing oxidative stress induction [149].
Donepezil has various side effects, such as insomnia, nausea, loss of appetite, muscle
cramps, and muscle weakness. Side effects worsen with increasing doses [150]. Donepezil
is an approved drug for all stages of AD [151].

Rivastigmine: Rivastigmine, also known as carboplatin tartrate, is a second-generation
AChE inhibitor with a mechanism similar to that of Tacrine and Donepezil. Rivastigmine
prefers to bind to G1-type AChE, which plays a major role in synaptic cholinergic hydrol-
ysis [152]. Its inhibition of cholinesterase can last up to 10 h, which is much higher than
that of Tacrine, Donepezil, and Galantamine [153]. Rivastigmine is selective for the central
nervous system and causes less damage to the peripheral nervous system. Rivastigmine is
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mainly used for the treatment of mild and moderate AD, with its side effects focusing on
the gastrointestinal area [154].
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Galantamine: Galantamine is a second-generation AChE inhibitor. It is selective for
the central nervous system and typically binds to nicotinic cholinergic receptors [152].
However, resistance to Galantamine may occur with increasing doses, as well as side
effects such as convulsions, severe nausea, stomach cramps, vomiting, irregular breathing,
confusion, and muscle weakness [149].

All drugs above are FDA-approved AD drugs for clinical use [155]. Researchers have
tried to develop their derivatives or combine several of them to enhance their effective-
ness [152].

4.2. Glutamate Receptor Antagonists

Memantine is another AD drug approved by the FDA. Excessive accumulation of
glutamate in the synaptic gap continuously acts on NMDA receptors, triggering an inward
flow of Ca2+ and sustained neuronal excitation, resulting in neuronal apoptosis [156].
Memantine is a non-competitive NMDA receptor antagonist that impedes the binding of
glutamate to NMDA receptors by lowering glutamate levels, thus decreasing Ca2+ inward
flow and maintaining the normal physiological activity of neurons. Clinical trials have
shown that Memantine can effectively slow down the process of cognitive decline [157],
but its efficacy is not obvious for mild AD. Memantine is more suitable for the treatment
of moderate AD [31]. The most common adverse effects of Memantine are dizziness,
headache, and confusion. A small percentage of patients may experience agitation [158].

4.3. Aβ Monoclonal Antibody

Aducanumab Monoclonal Antibody: Aducanumab is a humanized antibody targeting
Aβ and is the first anti-Aβ drug approved by the FDA. Aducanumab barely interacts with
Aβ monomers but binds highly selectively to aggregated Aβ by recognizing the N-terminal
residues of Aβ [159]. Its mechanism includes activating microglia to phagocytose Aβ

through specific binding to Aβ. Aducanumab can originally inhibit Aβ by impeding the
formation of Aβ oligomer on the surface of primary fibers [160]. Numerous experiments
have demonstrated that Aducanumab can dose-dependently remove Aβ from the human
brain. However, Aducanumab has not been demonstrated to have a significant effect
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on the alleviation of AD symptoms in phase III trials, so there has been a controversy
over the marketing of Aducanumab [161]. In terms of safety, trials have shown high-dose
Aducanumab to have a 40% chance of side effects, such as cerebral edema, sulcus effusion,
and cerebral hemorrhage. The incidence rate increases with dose, and it is also higher in
ApoEϵ4 carriers [162]. Recent studies have shown that using MRI to temporarily open the
blood–brain barrier before taking Aducanumab can significantly reduce Aβ levels [163].

Lecanemab Monoclonal Antibody: In early 2023, the FDA formally approved a sec-
ond drug targeting Aβ called Lecanemab. Lecanemab is a humanized lgG1 monoclonal
antibody [25]. Opposed to the controversial phase III clinical trial of Aducanumab, the
phase III trial of Lecanemab clearly demonstrated its effectiveness in relieving cognitive
decline. Lecanemab binds tiny protofibrils with 100 times the affinity of Aducanumab
and big protofibrils with 25 times the affinity, with lower binding affinity for monomers
(Figure 5) [164]. Additionally, subsequent trials have proved that Lecanemab is effective in
prolonging the MCI period to slow the progression of AD [165]. However, Lecanemab can
cause minor cerebral hemorrhage and rare macrohemorrhage when removing Aβ [166].
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4.4. The Drug Targeting the Brain-Gut Axis

Sodium Oligomannate (GV-971): Sodium Oligomannate is extracted from seaweed
and is usually taken orally in capsules [167]. It has completed the phase III clinical trial
and was approved for marketing in China [168]. It is the first oligosaccharide anti-AD
drug targeting the cerebral-intestinal axis in the world [169]. Sodium Oligomannate can
regulate the balance of intestinal flora. This inhibits the activation of inflammatory cells
in the brain and helps clear the aggregation of Aβ as well as Tau in the brain, therefore
alleviating mild cognitive impairment [168]. Compared to several FDA-approved drugs,
Sodium Oligomannate has fewer side effects, but it is also relatively less effective (Table 2).
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Table 2. Approved AD drugs and their side effects.

Name of Drug Type of Drug Side Effect Approved by References

Tacrine acetylcholinesterase
inhibitor strong hepatotoxicity FDA [146]

Donepezil acetylcholinesterase
inhibitor

insomnia, nausea, loss of appetite, muscle cramps,
muscle weakness FDA [150]

Rivastigmine acetylcholinesterase
inhibitor

Relatively low side effects
focusing on the gastrointestinal area FDA [154]

Galantamine acetylcholinesterase
inhibitor

convulsions, severe nausea, stomach cramps,
vomiting, irregular breathing, confusion,

muscle weakness
FDA [149]

Memantine glutamate receptor
antagonist dizziness, headache, and confusion FDA [158]

Aducanumab Aβ monoclonal
antibody

cerebral edema, sulcus effusion
cerebral hemorrhage FDA [160]

Lecanemab Aβ monoclonal
antibody

minor cerebral hemorrhage
rare macrohemorrhage FDA [166]

Sodium
Oligomannate

the drug targeting
the brain-gut axis Relatively low side effects China-FDA [168,169]

4.5. Other Drugs under Study

There are many drugs targeting other targets being researched and developed (Table 3).
Drugs targeting the process of Aβ deposition and Tau protein phosphorylation remain
at the forefront of research and development [170], while others target the process of
inflammatory factor production by glial cells [171], the antibodies of β-secretase [172], and
inhibitors of the Ca2+ channel, which regulates the oxidative stress response [173], etc.

Table 3. Other drugs under study.

Mechanism of Action Phase of Clinical Trials References

(1) Aβ aggregation inhibitors in phase 2 [174]

(2) α-secretase modulators most are in phase 2 [175,176]

(3) β-secretase inhibitors most are in phase 1 and 2,
the farthest and is in phase 2/3 [171,177]

(4) γ-secretase inhibitors failed in phase 3 [178]

(5) inhibitors of Tau hyperphosphorylation failed in phase 2 [31]

(6) Tau protein aggregation inhibitors failed in phase 3 [179]

(7) drugs that enhance Tau clearance in phase 1 [179,180]

(8) intranasal insulin in phase 2 [181]

(9) TREM2-activating antibodies preclinical [171]

(10) Ca2+ channel inhibitors preclinical [173]

4.6. Nonpharmacological Therapy

There are also various nonpharmacological therapies to alleviate the symptoms of AD.
When the symptoms are mild, cognitive stimulation therapy can be used to help the AD
patient relive sounds, faces, numbers, and other areas involved in daily life. It is a way to
mentally stimulate the patient [182,183]. Exercise can improve blood flow and metabolic
rate in the brain [184].
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5. Summary and Prospects

For decades, there have been some advances in the research into the pathogenesis,
diagnosis, and therapy of AD. However, the research on each remains incomplete, leaving
many uncertainties about AD.

In terms of pathogenesis, although the exact pathogenesis of AD remains undeter-
mined, several hypotheses have been supported. The three major hypotheses are the
amyloid cascade hypothesis, Tau neurofibrillary tangles hypothesis, and neuroinflam-
mation hypothesis. It has been proved that abnormal mitochondrial autophagy, insulin
resistance, abnormal gut microflora, mutations of PSEN, calcium dyshomeostasis, and
oxidative stress can also lead to AD. In recent years, researchers have found that a single
hypothesis cannot fully explain the pathogenesis of AD, and there is a certain interaction
between the various mechanisms. For example, abnormal mitochondrial autophagy can
aggravate the deposition of Aβ and Tau neurofibrillary tangles.

The diagnosis methods for AD are mainly categorized into CSF molecular diagnosis,
neuroimaging testing, and emerging blood tests. Through the efforts of researchers, the
accuracy of blood tests has now reached the level of CSF molecular diagnosis, which is
cheaper than neuroimaging testing. Additionally, the diagnostic markers are becoming
more diverse, not only limited to Aβ and Tau protein, but also attempting to detect the
relative content of miRNA, the plasma Aβ, blood–brain barrier, and cerebral blood flow.

In terms of therapy, there is still no therapy that can effectively reverse AD. Approved
drugs are mainly cholinergic drugs, but all of them have certain side effects. Recently,
monoclonal antibodies targeting the Aβ have been approved for marketing after rounds
of clinical trials. Many experiments have confirmed the possible existence of some new
targets, and the derivatives of existing drugs or the combinations of several drugs are also
being put into experiments.

Future research on AD still needs to be vigorously pursued. For pathogenesis, future
research should focus on the interactions between existing pathogeneses and follow the
existing hypotheses to find other possible pathogeneses to cure the disease. For diagnosis,
there are two challenges: one is how to diagnose AD at an early stage, and the other is
the distinction between AD and MCI. In the future, we can find more possible biomarkers
through the existing pathogeneses of AD or compare the blood components of the AD
model with the healthy model to find out other abnormal indicators of the AD model. In
addition, it is also necessary to popularize the importance of early screening for AD, as most
of the existing drugs for AD are aimed at the early and middle stages of AD. To increase
awareness for early screening, the possible symptoms of the latent stage of AD should be
popularized to society as well. For drug therapy, due to the uncertainty of the pathogenesis
and the ethical issues in experimental research, the process of drug research has been
relatively slow, and the efficacy is relatively insufficient. However, we can reduce the risk
of AD as it has been pointed out that AD is closely related to daily behavioral habits such as
sleep, diet, smoking, and alcohol. Therefore, it is important to practice healthy living habits
such as exercising to maintain good physical health to prevent AD [4]. Moreover, brain-
computer interface (BCI) technology has gradually emerged in recent years. There have
been studies about using BCI to help stroke people operate a mechanical arm [185,186].
Several studies have suggested that using BCI technology can control objects through
the consciousness of animals, such as monkeys and pigs. Furthermore, BCI technology
has already been applied in studies of PD treatments and ALS treatments [187]. In early
2024, Neuralink completed the first BCI implantation in the human brain, and the patient
recovered well. We think BCI technology has a potential development in AD treatment and
assists in the movement of AD patients.
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