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Abstract: Despite most episodes of low back pain (LBP) being short-lasting, some transition into
persistent long-lasting problems. Hence, the need for a deeper understanding of the physiological
mechanisms of this is pertinent. Therefore, the aims of the present study are (1) to map pain-induced
changes in brain activity and blood gene expression associated with persistent LBP, and (2) to explore
whether these brain and gene expression signatures show promise as predictive biomarkers for the
development of persistent LBP. The participants will be allocated into three different pain groups (no
pain, mild short-lasting, or moderate long-term). One in-person visit, where two blood samples will
be collected and sent for RNA sequencing, along with resting 64-channel electro-encephalography
measurements before, during, and after a cold pressor test, will be conducted. Thereafter, follow-up
questionnaires will be distributed at 2 weeks, 3 months, and 6 months. Recruitment will start during
the second quarter of 2024, with expected completion by the last quarter of 2024. The results are
expected to provide insight into the relationship between central nervous system activity, gene
expression profiles, and LBP. If successful, this study has the potential to provide physiological
indicators that are sensitive to the transition from mild, short-term LBP to more problematic, long-
term LBP.

Keywords: low back pain; RNA sequencing; electro-encephalography (EEG)

1. Introduction

Globally, one of the most common musculoskeletal problems is low back pain (LBP),
with a global prevalence of 619 million cases [1]. LBP is the leading cause of years lived
with disability [1,2], and is most often classified as non-specific LBP [3], implying no
pathoanatomical cause for the pain [4,5]. While acute LBP often resolves relatively rapidly,
with fairly little impact on long-term health status, the development of chronic or persistent
LBP is associated with several serious health consequences [6,7]. Of those experiencing
acute pain, approximately 30% will transition to persistent pain [8].

Previous evidence shows that persistent pain, lasting 3 months or more [9], is asso-
ciated with neuronal changes in central nervous system (CNS) and autonomic nervous
system (ANS) activity [10,11]. One example is the observed shift in activity from sensory
areas to emotional/limbic areas seen in patients with persistent pain [12]. The experience
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of pain, arising from such areas of the brain, can be altered via bottom–up (e.g., stimulus
intensity) or top–down (e.g., expectations)-mediated factors [13]. Thus, physical factors,
but also emotional or psychosocial factors such as stress [14], can facilitate functional modi-
fications of the nervous system and have an impact on both the intensity and duration of
pain. Stress, which can be elicited both psychologically or from a painful stimulus, activates
the hypothalamic–pituitary–adrenal (HPA) axis [15] through the amygdala [16], which,
in turn, regulates cortisol levels. A disturbance or a dysregulation in cortisol levels has
been found to be associated with stress-related pain disorders [14,15], especially in chronic
stress. Psychosocial factors such as catastrophizing [17], depression [18], and anxiety [18,19]
have been associated with endogenous pain modulation via descending pain inhibitory
pathways leading to an increased experience of pain [17,20]. This may be especially true
for persistent pain where tissue damage may no longer be present in the painful area [21].

Such functional modifications of the nervous system are called neuroplastic changes.
At the cellular level, neuroplastic changes are caused by altered neuronal excitability,
synaptic efficacy, and subsequently increased or decreased firing patterns in neural circuits
and networks [22]. Such changes are often caused by changed activity or signaling in the
brain that, in turn, affect the gene expression of immune cells [23]. Also, neuro-physiological
processes, such as the activation of the HPA axis and autonomic dysregulation, have also
been found to be associated with this form of plasticity [24–26].

A non-invasive method for assessing brain activity is electro-encephalography (EEG).
EEG offers a window into rapidly changing brain dynamics. EEG features such as changes
in gamma band oscillations, amplitude, or latencies of so-called event-related potentials
have previously been associated with acute and/or persistent pain [27]. By combining
EEG recordings with a simple experimental manipulation of pain (the “tonic” cold pressor
test—CP test [28]), previous studies have identified a number of EEG signatures of pain
perception [29–31]. Thus, since experimental pain can be evoked by the CP test, and this
pain has been shown to mimic clinical pain [19], it is possible to combine the CP test and
EEG to assess the central processing of pain [28].

The central processing of pain often includes changes in the so-called “pain matrix”
(e.g., the prefrontal cortex, amygdala, insula), which also affect the HPA axis and the ANS.
The HPA axis and ANS play important roles in mediating bi-directional neural–immune
interactions [32,33]. Moreover, it is known that maladaptive changes in HPA axis activity
may lead to downstream effects such as increased circulating cortisol, which affects blood
cell gene expression (mRNA synthesis) [34] and, thus, the function of circulating immune
cells [35]. Moreover, both cortisol and the inflammatory molecules released from circulating
immune cells (e.g., monocytes) cross, or at least affect the permeability of substances that
could cross, the blood–brain barrier [35]. Therefore, maladaptive changes in the HPA axis
and/or the ANS may affect the immune system, which, in turn, affects the CNS and creates
a vicious circle, aiding in the development of persistent pain.

With persistent pain or prolonged psychological stress, i.e., prolonged HPA axis
activation, suppression of the immune system has been observed [32,36,37]. This has
been linked to pro-inflammatory effects in blood markers and functional changes in the
CNS [34,38]. If this cycle is not broken, it has the potential to enhance or maintain this
pain by upholding the HPA response and the increased levels of circulating cortisol levels,
further impacting the immune system. One of the effects of cortisol that has been shown is
changes in the gene expression profiles of peripheral blood mononuclear cells (PBMCs) in
healthy individuals [39]. A link has also been found between persistent pain and changes in
peripheral gene (mRNA) expression [40,41] and genes expressed in human brain tissues [42].
Hence, it is likely that physiological changes due to persistent LBP can be detected both
centrally, e.g., brain activity, and peripherally, e.g., gene expression in PBMCs.

Still, the predictive value of mapping the dynamic patterns of brain activity and blood
cell mRNA expression for the “chronification” of pain remains to be investigated. Therefore,
it is important to document any correlations between brain activity and peripheral RNA
profiles. In other words, the reciprocal interaction between the CNS and the immune
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system may contribute to predict at-risk patients with a potential persistent LBP trajec-
tory. In addition, the discovery of such predictive biomarkers may help to identify the
core pathophysiological mechanisms important for the development of more informative
examinations, novel therapeutics, and personalized medicine, i.e., a more cost-effective use
of limited clinical resources.

Main Objectives

The purpose of the present line of research is to better understand how the develop-
ment of persistent pain may be associated with (1) changes in brain activity and (2) how
this affects the gene expression profiles in blood. To achieve this, the current study aims to
explore brain activity (measured with EEG) and gene expression profiles pre and post an
acute stressful and painful intervention, i.e., the CP test, in three different pain populations
(no pain, mild short-lasting, and moderate long-lasting pain). The specific objectives are:

1. To identify the key EEG features that can robustly distinguish the different pain states,
rest vs evoked experimental pain (by the cold pressor test), and between individuals
with different clinical pain statuses.

2. To examine potential gene expression changes before and after CP test within individ-
uals with different clinical pain statuses.

3. To test for correlations between the EEG activity and blood mRNA profiles.
4. To investigate if an individual mRNA sequencing (seq) fingerprinting analysis can be

used to predict at-risk patients with a possible persistent LBP trajectory.

2. Materials and Methods

This study is designed as an observational prospective cohort study. The first visit will
be the only in-person visit, with follow-up questionnaires distributed to the participants
via email at 2 weeks, 3 months, and 6 months. The participants will be recruited from
the Auckland region, New Zealand. Ethical approval was obtained from the Health and
Disabilities Ethics Committee (HDEC, reference: 2023 EXP 19096). No serious adverse
events are expected for this study. However, some mild discomfort and soreness in the area
of blood sampling might occur.

2.1. Participants
2.1.1. Inclusion Criteria and Procedure

Participants of any gender between 18 and 50 years of age are invited to participate in
the study. Advertisement and recruitment for the study will occur on social media (e.g.,
Facebook and Instagram), at outpatient clinics at hospitals in the Auckland region, and
through flyers that will be posted at the surrounding educational centers, libraries, and
other public spaces. Information on how to contact the research team for those interested
in participation is provided on the flyers. Once the participant contacts the research team,
one of the researchers will be in touch by phone or email. During this conversation, more
information about the study will be provided, such as eligibility screening prior to inclusion
and a more detailed description of the data collection procedure. This is also an opportunity
for eligible participants to ask any questions and/or queries prior to accepting the invitation
to participate in the study. The participants will also receive an email containing the consent
form with the same information to read after the email/phone call. If participants have
not contacted the research team within three days of receiving the consent form an email
or a text message, they will be sent a reminder. On the day of the data collection, one
of the researchers will again go through the screening sheet to ensure the correct group
assignment and collect the signed consent forms before the participants are given the
study questionnaire and blood sampling and EEG measurements begin. Participants will
be assigned to either the healthy control group (no pain at time of inclusion), the mild
short-lasting pain group (numeric rating scale (NRS) < 4/10 recurrent or persistent spinal
ache, pain, or stiffness, lasting < 3 months), or the moderate/severe long-lasting pain group
(NRS ≥ 4/10 recurrent or persistent non-specific LBP lasting ≥ 3 months). Figure 1 shows
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the proposed flow of the exclusion criteria and group assignment. The aim for the total
number of participants in each group is set to at least 20 in each of the three groups. Figure 2
shows the proposed flow for the inclusion criteria and data collection.

Further, during the conversation on eligibility and inclusion, prior to the data collec-
tion, all participants will be informed about the purpose, benefits, and potential risks of
participating. They will also receive information on their right to withdraw their participa-
tion at any time, without having to give a reason and without any consequence to them.
All collected data (i.e., blood samples, EEG measurements, and questionnaires) will be
de-identified prior to any pre-processing and/or analyses.
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2.1.2. Exclusion Criteria

Participants who have a specific cause of LBP will be excluded. Also, if any potential
participants have LBP due to pregnancy, rheumatic disease, cauda equina, spinal stenoses,
and/or sciatica, they will not be able to participate in this study. Furthermore, if any
potential participants have a history of seizures, cancer, psychiatric diseases, and/or are on
any medications that may induce muscular pain such as statins or that have an impact on
EEG measurements such as sedatives, sleeping medication, or muscle relaxants, they will
also be excluded.

2.2. Questionnaires

The baseline questionnaire will be provided digitally using a laptop set-up for the
participants during the in-person visit. The participants will then receive links to follow-up
questionnaires by email and will be asked to complete these questionnaires at 2 weeks,
3 months, and 6 months after the in-person visit. More information on the time frame for
data collection and measurements is presented in Table 1.
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Table 1. Content of the questionnaires and collection times.

Demographics Baseline 2 Weeks 3 Months 6 Months

Gender X
Age X

Marital status X
Ethnicity X

Education X
Employment X

Dominant hand X
Currently experiencing low back pain a X X X X

Current severity of low back pain (11-point
numeric rating scale) X a X a X a X a

Severity of low back pain average last week
(11-point numeric rating scale) X a X a X a X a

Duration of current low back pain X a X a X a X a

Low back pain trajectory last 12 months X a X a X a X a

Symptom satisfaction (PASS 5-point Likert scale) X a X a X a X a

Onset of low back pain X a X a X a X a

Perceived cause of low back pain X a X a X a X a

Receiving treatment for low back pain X a X a X a X a

Fear Avoidance Belief Questionnaire—physical
activity X a X a X a X a

Pain Catastrophizing Scale X a X a X a X a

Roland–Morris Disability Questionnaire X a X a X a X a

Expectation of recovery within 3 months X a X a X a X a

Low back pain trajectories next 12 months X a X a X a X a

Current pain elsewhere X X X X
Bergen Insomnia Scale X X X X

Use of pain medication for low back pain b X X X X
Type of medication X b X b X b X b

Name of medication X b X b X b X b

Administration method for medication X b X b X b X b

Medication use frequency X b X b X b X b

Medication dosage X b X b X b X b

Medication use duration X b X b X b X b

Prescription Drug Use Questionnaire X b X b X b X b

Hopkins Symptom Check List—10 X X X X
Beck’s Depression Inventory X X X X

a—further questions will only appear if the answer is yes on the question “Currently experiencing low back
pain”. b—further questions will only appear if answer is yes on the question “use of pain medication for low back
pain”. All variables are self-reported. For the questionnaire, the primary outcomes measures are: (1) LBP intensity
measured by 11-point numeric rating scale (NRS), (2) symptom satisfaction measured by patient acceptable
symptom state (PASS), and (3) expectation of recovery within 3 months. These variables will be especially
important for uncovering self-reported persistent LBP trajectory which, in turn, will be analyzed in combination
with the EEG measurement and the mRNA expression profile.

2.2.1. Demographic

Sociodemographic characteristic variables, measured only at baseline, include gender,
age, marital status, ethnicity, education, employment, and dominant hand.

2.2.2. Pain

The initial question regarding pain is a yes/no question about whether the partici-
pant currently is experiencing LBP. Thereafter, if the participants select yes, the following
variables will be asked; current pain intensity measured by NRS [43], where 0 represents
“no pain” and 10 represents “worst pain imaginable”, pain intensity average over the last
week measured by NRS, duration of LBP, LBP trajectories (past 12 months and the next
12 months) [44], onset of LBP, perceived cause for LBP, and whether they are receiving
treatment for their LBP (by general practitioner, chiropractor, physical therapist, or other).
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If the participants select no, they will be directed past the above-mentioned questions and
to the question on whether they are experiencing pain elsewhere.

2.2.3. Symptom Satisfaction and Expectation

Symptom satisfaction will be measured using the patient acceptable symptom state [45],
a single item “How satisfied would you be if your current symptoms were to persist the
rest of your life?”. This is measured by a 5-point Likert scale categorized into: “very
satisfied”, “somewhat satisfied”, “neither satisfied nor dissatisfied”, “somewhat dissat-
isfied”, and “very dissatisfied”. Expectation will be measured with a single item “What
is your expectation of recovery from back pain within 3 months?”, with a 5-point Likert
scale categorized into: “complete recovery”, “somewhat better”, “no change”, “somewhat
worse”, and “worse I’ve ever been”.

2.2.4. Secondary Variables

To measure the psychological and functional aspects of experiencing pain, fear avoid-
ance, pain catastrophizing, and functional status, the Fear-Avoidance Questionnaire (physi-
cal activity) [46,47], Pain Catastrophizing Scale [48], and Roland–Morris Disability Ques-
tionnaire [49] are included, respectively. To measure sleep, the 6-item Bergen Insomnia
Scale will be used [50]. Questions regarding pain medication use for LBP, comprising type,
dosage, and frequency, in addition to the Prescription Drug Use Questionnaire [51], are
included. Further, to assess mental health, the Hopkins Symptom Check List—10 [52] and
the Beck’s Depression Inventory will be used [53].

2.2.5. EEG Measurement

The EEG will be recorded at a sampling rate of 1024 Hz from 62 channels using
an REFA amplifier (TMSi, Twente, The Netherlands) according to the 10–20 electrode
system. The reference electrodes will be placed on the right and left mastoids (M1 and M2,
respectively), while the ground electrode will be placed at AFz. These channels are shown
in Table 2. The impedance of the electrodes will be kept below 10 kΩ. The subjects will
be asked to focus on a fixation cross with a plain background displayed in the center of
a whiteboard while minimizing their eye blinks, eye movements, and facial movements.
Additionally, online filter settings will be adjusted to a range of DC-100 Hz.

The preparation for the EEG will take around 20 min, following which, the resting-
state EEG will be recorded at three different time points: before, during, and after the CP
test. During the pre and post recordings, the EEG will be measured while the participant
has their eyes open for 3 min, followed by 3 min recorded with their eyes closed, resulting
in a total of 12 min of EEG data recording. When the EEG is recorded during the CP test, the
participant will immerse their hand in ice water for 80 s (CP test). The EEG data collection
protocol is shown in Figure 3. Participants from the mild short-lasting pain group who
report persistent pain between baseline and 3 months will be invited for a second EEG
measurement and CP test shortly after the 3-month time point for follow-up.
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Table 2. Sixty-four channel names according to 10–20 system.

FP1 CP6 FC4

FPz P7 C5

FP2 P3 C1

F7 PZ C2

F3 P4 C6

FZ P8 CP3

F4 POZ CPZ

F8 O1 CP4

FC5 OZ P5

FC1 O2 P1

FC2 AF7 P2

FC6 AF3 P6

T7 AF4 PO5

C3 AF8 PO3

CZ F5 PO4

C4 F1 PO6

T8 F2 FT7

CP5 F6 FT8

CP1 FC3 TP7

CP2 FCZ TP8

PO7 PO8 M1

M2

2.2.6. Cold Pressor (CP) Test

The CP test will be performed using a circulating water bath (Grant, Fischer Scientific,
Slangerup, Denmark). The water will be cooled to 2 ◦C and the subjects will immerse their
left or right hand in the water up to the wrist for 80 s.

2.2.7. mRNA Sequencing

A total of two blood samples will be collected for each participant, pre and 30 min
post CP test. The blood sample collection will be performed by a registered nurse or
other qualified personnel using the BD vacutainer Push Button Blood Collection Set and
BD vacutainer Green Lithium Heparin tubes (10 mL). After the blood sample collection,
peripheral blood mononuclear cells (PBMC) will be isolated from the sample (using Sep-
Mate (STEMCELL Technologies, Vancouver, BC, Canada) see File S1 for full protocol). To
preserve the samples, a freezing medium will be added (using Cryostor CS10 (STEMCELL
Technologies, Vancouver, BC, Canada), see File S2 for full protocol). Thereafter, the samples
will be shipped to the commercial company Novogene Co., Ltd., Cambridge, UK, for
mRNA isolation and sequencing.

2.3. Statistical Analyses
2.3.1. Descriptive Analyses at Baseline

Categorical variables will be presented as percentages, whereas continuous variables
will be presented as means and standard deviations. Descriptive analyses will be presented
for the entire data set. A comparison will be made between the groups on demographic
characteristics in addition to primary outcomes to assess for selection bias. Regression mod-
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els (linear, logistic, and/or ordinal, depending on outcome) at baseline will be conducted
to assess for group differences at baseline.

To assess the clinical course of the primary outcome variable, multilevel models will
be used. For the statistical evaluation of differences across groups and changes over time,
linear mixed or generalized linear mixed regression models will be set up for continuous
outcomes, and ordinal mixed regression models will be used for ordinal outcomes. All these
models will have a longitudinal analysis of covariance structure, in which post-test outcome
means and odds ratios will be presented. Moreover, within-participant correlations arising
from repeat measurements will be controlled for by estimating participant-wise random
intercepts and/or participant-wise slopes across time. The choice of the final model
structure will be decided by minimizing the information loss quantified by Akaike’s
Information Criterion (AIC). The effect sizes for the baseline-adjusted between-group
differences and within-group changes over time estimated from the models will be reported
along with their 95% confidence intervals.

Moreover, a prediction model will be created to assess the gene expression profiles
as predictors for the main outcomes. This will be conducted using three-step backward
stepwise regression analyses; (1) gene expression profiles and other variables deemed to be
of importance will be used to fit a regression model with which the Akaike information
criterion (AIC) will be calculated, (2) the variable with the least significant p-value will be
removed. Step 2 will be repeated until the removal of any prognostic factors no longer
affects or increases the AIC or all p-values are <0.157 [54]. R-squared values will be used to
assess the overall model performance. Area under the curve (AUC) will be used to assess
discriminating ability (values of 0.7 to 0.8 are considered acceptable, 0.8 to 0.9 excellent,
and 0.9 to 1.0 outstanding) [55]. The Hosmer–Lemeshow test will be used to estimate the
calibration and calibration slope (p-value > 0.05 is considered good calibration). Internal
validation will also be conducted using 200 bootstrap samples.

2.3.2. Power Calculation

To assess the sample size requirements for the genetic aspect of the study, a power
calculation was conducted. Current mRNA sequencing analyses showed that 8 test subjects
versus 8 controls should provide a significant difference regarding the gene expression (see
Figure 4). This calculation was based on pilot data from a previous project including three
pain free patients and three pain patients. Hence, aiming for at least 20 participants in each
group is estimated to suffice.

Brain Sci. 2024, 14, x FOR PEER REVIEW 10 of 19 
 

 
Figure 4. Preliminary Ahus data from our own group. Power calculation based on mRNA seq anal-
yses (3 pain free + 3 participants with pain) showing a required 8 + 8 participants in each group to 
ensure sufficient statistical power of 0.95, p < 0.01. 

2.3.3. EEG Processing 
The raw EEG data will be preprocessed offline using EEGLAB (version 14.1.1) [56] 

and ERPLAB (version 6.1.4) [57] running on MATLAB (2015b) (the MathWorks, Inc, Na-
tick, MA, United States). For the EEG preprocessing, 62 electrodes will be used for the 
data processing, whereas the average of mastoids (M1 and M2) will be used as a reference. 
The PREP pipeline (version 0.55.1) [58] will be used to remove and interpolate bad chan-
nels, line noise, and re-referencing. The following PREP pipeline parameters will be used. 
Line frequencies of 50 Hz and their harmonics will be selected for noise removal while 
keeping the taper bandwidth and window size/step as their default settings. We will select 
the robust average referencing method for the PREP pipeline. The spline interpolation 
method will be used to interpolate bad channels highlighted by the PREP pipeline. This 
pipeline will try to interpolate bad channels, and very noisy channels will be left as “still 
noisy channels”. These “still noisy channels” will be removed from the data and adaptive 
mixture independent component analyses (AMICA) will be run. After the completion of 
the AMICA, the removed channels will be interpolated back into the data using spline 
interpolation.  

After running the PREP pipeline, the data-cleaning steps highlighted in a previous 
study [59] will be followed. The IClabel [60] will be used to mark the AMICA components 
into brain, eye, muscle, channel, and other noise. These markings will then be visually 
inspected based on the components’ features such as frequency response, activity win-
dow, and dipole formation (see Figure 5).  

Figure 4. Preliminary Ahus data from our own group. Power calculation based on mRNA seq
analyses (3 pain free + 3 participants with pain) showing a required 8 + 8 participants in each group
to ensure sufficient statistical power of 0.95, p < 0.01.
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2.3.3. EEG Processing

The raw EEG data will be preprocessed offline using EEGLAB (version 14.1.1) [56]
and ERPLAB (version 6.1.4) [57] running on MATLAB (2015b) (the MathWorks, Inc, Natick,
MA, United States). For the EEG preprocessing, 62 electrodes will be used for the data
processing, whereas the average of mastoids (M1 and M2) will be used as a reference. The
PREP pipeline (version 0.55.1) [58] will be used to remove and interpolate bad channels,
line noise, and re-referencing. The following PREP pipeline parameters will be used. Line
frequencies of 50 Hz and their harmonics will be selected for noise removal while keeping
the taper bandwidth and window size/step as their default settings. We will select the
robust average referencing method for the PREP pipeline. The spline interpolation method
will be used to interpolate bad channels highlighted by the PREP pipeline. This pipeline
will try to interpolate bad channels, and very noisy channels will be left as “still noisy
channels”. These “still noisy channels” will be removed from the data and adaptive mixture
independent component analyses (AMICA) will be run. After the completion of the AMICA,
the removed channels will be interpolated back into the data using spline interpolation.

After running the PREP pipeline, the data-cleaning steps highlighted in a previous
study [59] will be followed. The IClabel [60] will be used to mark the AMICA components
into brain, eye, muscle, channel, and other noise. These markings will then be visually
inspected based on the components’ features such as frequency response, activity window,
and dipole formation (see Figure 5).
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Figure 5. Different features of independent components. To ensure the results are actual brain
components, features such as 1/f frequency response, clear dipole formation, and activity resembling
random brain activity will be used.

After using IClabel and manual checks, the data will then be cleaned and loaded into
Brainstorm [61] for source estimation and EEGLAB [56] for frequency-based analysis. The
complete EEG processing pipeline is shown in Figure 6.
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2.3.4. EEG Source Localization

To estimate the location and activity of underlying neural sources based on measure-
ments obtained from multiple sensors or electrodes [62], EEG source reconstruction will
be performed using Brainstorm [61] in MATLAB R2022a. The overall process of source
reconstruction is shown in Figure 7.
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There are two main problems in EEG source reconstruction: forward modeling and
inverse modeling. Both are dependent on each other for accurate source reconstruction.
Forward modeling involves the human head, including its scalp, skull, cortex, and electro-
magnetic properties, as shown in Figure 7. The inverse modeling problem uses information
about cortical activity from forward modeling.

Forward Modelling

This section outlines the forward modeling process for EEG source reconstruction.
The goal in forward modeling is to determine the location and orientation of EEG sensors
relative to the cortical source, which requires defining the location and orientation of
the current dipole fields [61,63]. This will be accomplished by placing source dipoles
on a voxel grid space approximating the cortical space, ensuring that the orientation is
perpendicular to the cortex. The symmetric boundary element method (Open MEEG BEM)
will be used to model the dipoles for all subjects [61]. A default generic head model from
Brainstorm will be employed, which features 15,000 vertices and a three-layer compartment
(scalp, skull, and brain). Tissue conductivities will be set based on a previous study [63]:
scalp = 1, skull = 0.0125, and brain = 1. The forward model will be calculated after defining
the 64 electrode locations, including M1 and M2, on the scalp using the 10–12 electrode
placement system and the 64-channel location file of the TMSI 64-channel amplifier.
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Inverse Modelling

For the inverse modeling, the standardized low-resolution brain electro-magnetic
tomography (sLORETA) method will be used to adjust the current density maps of the
source dipoles, representing them as normalized current densities perpendicular to the
cortex [64]. To efficiently assess functional connectivity, high-resolution sources will be
grouped based on the Desikan–Killiany atlas, which defines 68 regions of interest (ROIs) on
the cortex surface. Averaging the time series within each ROI, a [ROIs × time] matrix will
be formed. The sign of the dipoles will be flipped in the opposite direction before averaging
to prevent activity cancellation. This approach will enable an accurate estimation of brain
activity and an understanding of how different brain regions are connected.

Once source reconstruction is completed, a functional connectivity analysis will be
calculated based on the Phase Lag Index (PLI). The data will be divided into narrow-band
signals. A fourth-order Butterworth filter will acquire the three frequency bands, alpha,
beta, and gamma. The frequency bands of the EEG sources of the brain will be defined from
the reported ranges: alpha (7.5–12.5 Hz), beta (12.5–30 Hz), and gamma (30–40 Hz) [65].
To create 68 × 68 connectivity matrices, the Desikan–Killiany atlas of 68 regions will be
used. Out of the 68 regions of the Desikan–Killiany atlas, brain areas will be selected based
on their previous association with the perception of pain, including but not limited to the
sensory cortex, anterior cingulate cortex, and prefrontal cortex [66]. The focus will be on the
three brain networks associated with pain: (1) Default Mode Network (DMN), (2) Central
Executive Network (CEN), and (3) Salience Network (SEN). The associated brain regions
of these networks in the Desikan–Killiany atlas are shown in Table 3.

Table 3. Desikan–Killiany brain regions forming DMN, CEN, and SEN.

bankssts (left) parsorbitalis (left)

caudalanteriorcingulate (left) parsorbitalis (right)

caudalanteriorcingulate (right) posteriorcingulate (left)

frontalpole (left) posteriorcingulate (right)

frontalpole (right) precuneus (left)

inferiorparietal (left) precuneus (right)

inferiorparietal (right) rostralanteriorcingulate (left)

insula (left) rostralanteriorcingulate (right)

insula (right) rostralmiddlefrontal (left)

isthmuscingulate (left) rostralmiddlefrontal (right)

isthmuscingulate (right) superiorparietal (left)

lateralorbitofrontal (left) superiorparietal (right)

lateralorbitofrontal (right) supramarginal (left)

medialorbitofrontal (left) supramarginal (right)

medialorbitofrontal (right)

parahippocampal (left)

parahippocampal (right)

These connectivity matrices (68 × 68) will be loaded into GraphVar 2.0 [67] along with
the brain source information from Table 2 for a cluster-based permutation test to identify
significant connectivity patterns within specified brain regions. These significant brain
regions will be plotted on the cortex using BrainNet viewer 1.7 [68].
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Cluster-Based Permutation Using GraphVar

In the present study, the GraphVar toolbox will be used to analyze Phase Lag Index
(PLI) connectivity matrices [67]. The connections between each pair of nodes within the ma-
trix will be examined. To handle the challenge of multiple comparisons, GraphVar organises
significant links into Graph-Components, which can be considered as sub-networks. These
components will be measured, such as how clusters are identified in fMRI [69]. GraphVar
compares these to randomly generated data within the software to determine if a graph
component’s size is non-random. GraphVar then computes a p-value for each non-random
component. This will allow GraphVar to pinpoint significant connectivity patterns. In
the statistical section of GraphVar, the within-subject design will be chosen, where data
from subjects will be collected across multiple sessions (before, during, and after CP test)
coupled with a between-group analysis. GraphVar then calculates the mean PLI differences
between two sessions simultaneously (e.g., pre–post) and between groups. Importantly,
these calculations will only consider significant non-random graph components. The results
will highlight the brain connections where the main PLI is significantly different between
sessions, hence identifying changes in connectivity patterns.

In summary, GraphVar will be provided with a 68 × 68 PLI matrix and 31 regions of
interest. In its output, GraphVar will provide a 31 × 31 probability matrix and a 31 × 31
effect size matrix, which will then be loaded into BrainNet Viewer [68] for visualization.

2.3.5. EEG Frequency and Time–Frequency Analysis

The clean data from all sensors (electrodes) will be used for the frequency analysis. The
average power of each classical frequency band, including delta (1–4 Hz), theta (4.1–8 Hz),
alpha (8.1–12 Hz), beta (12.1–32 Hz), and gamma (32.1–80 Hz) will be determined. These
measurements will be used to analyze differences in the basic EEG frequency-based pa-
rameters among different conditions (rest, CP test) and groups (control, short-lasting, and
long-lasting pain). Additionally, correlations between these measurements and key demo-
graphic and clinical variables will be assessed. This approach will help to identify potential
alterations in theta, alpha, and beta power, as previous studies have shown this in these
frequency bands during experimentally induced pain and a trend towards a decreased
alpha and beta power in persistent musculoskeletal pain conditions. A time–frequency
analysis will also be performed to investigate the dynamic changes in brain oscillations
during rest and experimentally induced pain conditions.

To investigate the dynamic changes in brain oscillations, a time–frequency analysis
on the pre-processed EEG data will be performed. The data will first be divided into 20 s
epochs (broader analysis). The power spectrum obtained from each epoch’s Fast Fourier
Transform (FFT) will then be multiplied by a set of complex Morlet [70] wavelets through a
process called convolution. This allows for a simultaneous examination of the power of
the EEG signals at different frequencies and time points. Morlet wavelets, characterized
by sinusoidal waves modulated by a Gaussian envelope, can capture dynamic changes
in brain oscillations across different frequency bands (e.g., delta, theta, alpha, beta, and
gamma) by observing how the power of these frequency bands varies over time within
each epoch. This method effectively reveals how brain activity evolves temporally and
across different frequencies.

2.3.6. mRNA Sequencing Analyses

Quality control and analyses of the gene expression data will be conducted as follows.
The quality of the raw sequencing files will first be assessed with fastqc (v0.11.9) and
multiqc (v1.11), and adapters together with the low-quality bases will be removed using
trimmomatic (v0.39). The trimmed reads will be mapped to the hg38 reference human
genome with the STAR aligner (v2.7.9a) [71], and postprocessing of the mapped reads will
be performed with samtools (v1.13) [72]. The gencode annotation corresponding to the
reference genome will be used to summarize the read counts across the relevant genomic
features (e.g., genes, exons, and promoters) with featureCounts (included in subread
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package v2.0.1) [73]. The obtained read counts will be used for the further downstream
phase of the expression data analysis. In the next phase of the data analysis, DESeq2
(v1.32.0) [74] will be used to identify differences in the expression profiles between the
patient groups. A gene set enrichment analysis will be performed with clusterProfiler
(v4.0.0) [75], and Weighted Gene Co-expression Network Analysis (WGCNA) (v1.70-3) [76]
will be used to identify groups of co-expressing genes, as well as to explore relatedness
between clinical variables and the groups of co-expressing genes.

3. Expected Results

Recruitment will start during the second quarter of 2024 and is expected to run for
6 to 9 months, with the final data collection completed within the first quarter of 2025. The
results are expected to be ready by the third quarter of 2025.

Upon the completion of this study, the expected results will (1) identify the key EEG
features that can distinguish different pain states, before and after evoked experimental
pain (CP test), (2) uncover potential gene expression changes before and after CP test within
and between individuals with different clinical pain statuses, (3) test if there is a correlation
between the EEG activity and mRNA profiles of the individuals, and (4) investigate if the
uncovered mRNA profiles can be used to predict a higher risk of a persistent LBP trajectory.
We hope that the combination of these methods can provide more knowledge on the
transition from acute to persistent pain, which, in turn, could guide future research focus.

4. Discussion

In this paper, we presented a protocol describing the design and methods for an unex-
plored combination of modalities using EEG and RNA seq of blood cells for investigating
the transition from mild short-lasting (acute) to moderate/severe long-lasting (persistent)
LBP. We hypothesize that this combination may reveal correlations between EEG, RNA seq,
and pain that can help to predict the development of persistent pain.

The initial aspect of the project will focus on establishing the groundwork, i.e., map-
ping any EEG features that can be seen in different pain states, and uncovering mRNA
expression profiles. These findings will then be assessed in relation to each other and the
outcomes. A comparison will also be made between the RNA profiles before and after the
CP test with the intent to investigate any resulting changes induced by the test. Further,
these results will then be used to determine if the mRNA expression profiles can be used
as predictors for an increased risk of persistent LBP. For those in the mild short-lasting
pain group who are invited back for a second round of EEG, a comparison of brain activity
between baseline and the 3-month follow-up will be conducted.

Despite EEG being a non-invasive and relatively simple method to use, it has some
challenges, such as, e.g., EEG source reconstruction. For accurate source reconstruction, for-
ward and inverse modeling are dependent on each other [63]. Forward modeling involves
the human head, including its scalp, skull, cortex, and electromagnetic properties [77].
Inverse modeling uses the information about cortical activity from forward modeling to
identify the most likely locations and strength [63].

Regardless, persistent LBP is famously a complex condition. Hence, understanding
the different influencing physiological factors leading to persistent LBP, as well as those
maintaining its vicious cycle, is paramount. This study will, therefore, be an important
first step in assessing whether the chosen modalities are compatible in assessing such
processes. By exploring both neuronal activity and gene expression as potential predictors,
the intention is to explore alternative ways of uncovering predictors and increasing the
understanding of the physiological processes involved in persistent LBP.

4.1. Limitations

As with all longitudinal studies, compliance may be a challenge. Due to the chosen
distribution of questionnaires, via email, there is a risk of participants forgetting to answer.
If an answer is not received within a couple of days, participants will be contacted by
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telephone with a gentle reminder. However, by distributing the questionnaires via email
and not asking participants to meet up in person, this may lower the effort needed to
respond, as the questionnaire can be answered on the participants’ own laptop or mobile
device at their leisure.

Another challenge could be the time between the CP test and the second blood sample
collection. Currently, there is a lack of peer-reviewed evidence providing guidelines re-
garding optimal time between stimuli and measurable changes in blood mRNA expression.
However, previous studies have collected blood samples at different time points from
immediately after their test protocol up to 20, 30, and 40 min and even 8 h [33,78,79]. The
post-CP-test sample for the present study will be taken at 30 min based on these previous
studies and also for pragmatic reasons. We do, however, acknowledge that this may be a
weakness that could directly influence the chance of detecting a measurable change in gene
expression peripherally.

Further, by including a potential second in-person assessment, there might be some
of those invited who will decline the invitation. Additionally, as it is expected that only a
small number of the mild short-lasting group will develop persistent pain, the number of
participants invited back might be small. Still, the first part of the study has an acceptable
power. Also, the study will be important for the design of further studies.

4.2. Data Management, Storage, and Security

The collected data from the questionnaires and EEG measurements will be stored
on institutional network drives with firewalls and security measures in place according
to national and European Union data protection regulations. Any hard copy records
will be locked in a secure location for storage. Any access to these records is limited to
selected study personnel. The collected blood samples will be de-identified prior to PBMC
processing and stored in a −80 ◦C freezer at AUT Roche Laboratory. The storage room is
secured by locked doors and is only accessible to approved staff at AUT Roche Laboratory.
The samples will be stored in this room safely until shipment to Novogene, Co., Ltd.,
Cambridge, UK, for further analyses. Biological material that is not used for the mRNA
sequencing will be destroyed according to the current regulations at AUT Roche Laboratory.
Only personnel directly involved in the sample collection will have access to the collected
material. All collected data will be de-identified and stored separately from the raw data.
For the purpose of analyses, only anonymized and de-identified data will be used.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci14070641/s1, File S1: Peripheral blood mononuclear cell
(PBMC) isolation protocol. File S2: Cryopreservation protocol.
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