Trunk Instability in the Pitch, Yaw, and Roll Planes during Clinical Balance Tests: Axis Differences and Correlations to vHIT Asymmetries Following Acute Unilateral Vestibular Loss
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Measurement Systems
2.3. Data Analysis
3. Results
3.1. vHIT Deficit-Side Gains and Asymmetries at Onset of aUVN and 5 Weeks Later
3.2. Trunk Balance Control at Acute Onset of UVN and 5 Weeks Later
3.3. Correlations between VOR and Trunk Sway Measures
4. Discussion
4.1. Differences between Balance Deficit Measures for Each Body Axis Compared to vHIT VOR Gain Asymmetries
4.2. Biomechanical Cross-Coupling Effects between Body Axes
4.3. Source of Enhanced Trunk Sway Kinematics in Pitch
4.4. Gender and Age Considerations for Future Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halmagyi, G.M.; Curthoys, I.S. Clinical Anatomy and Physiology of the Vestibular System. In Oxford Textbook of Vertigo and Imbalance; Bronstein, A., Ed.; Oxford University Press: Oxford, UK, 2013; p. 85. [Google Scholar]
- Allum, J.H.; Adkin, A.L. Improvements in trunk sway observed for stance and gait tasks during recovery from an acute unilateral peripheral vestibular deficit. Audiol. Neurootol. 2003, 8, 286–302. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, M.G.; Allum, J.H.; Honegger, F. Vestibular influences on human postural control in combinations of pitch and roll planes reveal differences in spatiotemporal processing. Exp. Brain Res. 2001, 140, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Allum, J.H.J.; Honegger, F. Correlation between Multi-plane vHIT Responses and Balance Control after Onset of an Acute Unilateral Peripheral Vestibular Deficit. Otol. Neurotol. 2020, 41, e952–e960. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, Y.; Bremova, T.; Kremmyda, O.; Strupp, M. Semicircular canal, saccular and utricular function in patients with bilateral vestibulopathy: Analysis based on etiology. J. Neurol. 2013, 260, 876–883. [Google Scholar] [CrossRef]
- Manzari, L.; MacDougall, H.G.; Burgess, A.M.; Curthoys, I.S. Selective otolith dysfunctions objectively verified. J. Vestib. Res. 2014, 24, 365–373. [Google Scholar] [CrossRef]
- Merfeld, D.M.; Zupan, L.H.; Gifford, C.A. Neural processing of gravito-inertial cues in humans. II. Influence of the semicircular canals during eccentric rotation. J. Neurophysiol. 2001, 85, 1648–1660. [Google Scholar] [CrossRef]
- Zupan, L.H.; Peterka, R.J.; Merfeld, D.M. Neural processing of gravito-inertial cues in humans. I. Influence of the semicircular canals following post-rotatory tilt. J. Neurophysiol. 2000, 84, 2001–2015. [Google Scholar] [CrossRef]
- Strupp, M.; Bisdorff, A.; Furman, J.; Hornibrook, J.; Jahn, K.; Maire, R.; Newman-Toker, D.; Magnusson, M. Acute unilateral vestibulopathy/vestibular neuritis: Diagnostic criteria. J. Vestib. Res. 2022, 32, 389–406. [Google Scholar] [CrossRef]
- Allum, J.H.J.; Honegger, F. Improvement of Asymmetric Vestibulo-Ocular Reflex Responses Following Onset of Vestibular Neuritis Is Similar across Canal Planes. Front. Neurol. 2020, 11, 565125. [Google Scholar] [CrossRef]
- Macdougall, H.; McGarvie, L.; Halmagyi, G.; Curthoys, I.; Weber, K. The video Head Impulse Test (vHIT) detects vertical semicircular canal dysfunction. PLoS ONE 2013, 8, e61488. [Google Scholar] [CrossRef]
- Freeman, L.; Gera, G.; Horak, F.B.; Blackinton, M.T.; Besch, M.; King, L. Instrumented Test of Sensory Integration for Balance: A Validation Study. J. Geriatr. Phys. Ther. 2018, 41, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Mossman, B.; Mossman, S.; Purdie, G.; Schneider, E. Age dependent normal horizontal VOR gain of head impulse test as measured with video-oculography. J. Otolaryngol. Head Neck Surg. 2015, 44, 29. [Google Scholar] [CrossRef] [PubMed]
- Pogson, J.; Taylor, R.; Bradshaw, A.; McGarvie, L.; D’Souza, M.; Halmagyi, G.M.; Welgampola, M. The human vestibulo-ocular reflex and saccades: Normal subjects and the effect of age. J. Neurophysiol. 2019, 122, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Oude Nijhuis, L.B.; Bloem, B.R.; Carpenter, M.G.; Allum, J.H.J. Incorporating voluntary knee flexion into nonanticipatory balance corrections. J. Neurophysiol. 2007, 98, 3047–3059. [Google Scholar] [CrossRef] [PubMed]
- Küng, U.M.; Horlings, C.G.; Honegger, F.; Allum, J.H. The effect of voluntary lateral trunk bending on balance recovery following multi-directional stance perturbations. Exp. Brain Res. 2010, 202, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.L.; McGarvie, L.A.; Reid, N.; Young, A.S.; Halmagyi, G.M.; Welgampola, M.S. Vestibular neuritis affects both superior and inferior vestibular nerves. Neurology 2016, 87, 1704–1712. [Google Scholar] [CrossRef] [PubMed]
- Gianoli, G.; Goebel, J.; Mowry, S.; Poomipannit, P. Anatomic differences in the lateral vestibular nerve channels and their implications in vestibular neuritis. Otol. Neurotol. 2005, 26, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Allum, J.H.J.; Yamane, M.; Pfaltz, C.R. Long-term modifications of vertical and horizontal vestibulo-ocular reflex dynamics in man. I. After acute unilateral peripheral vestibular paralysis. Acta Otolaryngol. 1988, 105, 328–337. [Google Scholar] [CrossRef]
- Büki, B.; Hanschek, M.; Jünger, H. Vestibular neuritis: Involvement and long-term recovery of individual semicircular canals. Auris Nasus Larynx 2017, 44, 288–293. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Park, J.; Kim, M.-B. Clinical Characteristics of Acute Vestibular Neuritis According to Involvement Site. Otol. Neurotol. 2020, 41, 143. [Google Scholar] [CrossRef]
- Naranjo, E.N.; Cleworth, T.W.; Allum, J.H.J.; Inglis, J.T.; Lea, J.; Westerberg, B.D.; Carpenter, M.G. Vestibulo-spinal and vestibulo-ocular reflexes are modulated when standing with increased postural threat. J. Neurophysiol. 2016, 115, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Boutabla, A.; Cavuscens, S.; Ranieri, M.; Crétallaz, C.; Kingma, H.; van de Berg, R.; Guinand, N.; Pérez Fornos, A. Simultaneous activation of multiple vestibular pathways upon electrical stimulation of semicircular canal afferents. J. Neurol. 2020, 267, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Diamond, S.G.; Markham, C.H. Ocular counterrolling as an indicator of vestibular otolith function. Neurology 1983, 33, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Tang, B.F.; Newlands, S.D.; King, W.M. Responses of monkey vestibular-only neurons to translation and angular rotation. J. Neurophysiol. 2006, 96, 2915–2930. [Google Scholar] [CrossRef] [PubMed]
- Curthovs, I.S. A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli. Clin. Neurophysiol. 2010, 121, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Curthoys, I.S.; Vulovic, V.; Burgess, A.M.; Manzari, L.; Sokolic, L.; Pogson, J.; Robins, M.; Mezey, L.E.; Goonetilleke, S.; Cornell, E.D.; et al. Neural basis of new clinical vestibular tests: Otolithic neural responses to sound and vibration. Clin. Exp. Pharmacol. Physiol. 2014, 41, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Murofushi, T.; Iwasaki, S.; Ushio, M. Recovery of vestibular evoked myogenic potentials after a vertigo attack due to vestibular neuritis. Acta Otolaryngol. 2006, 126, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Nham, B.; Wang, C.; Reid, N.; Calic, Z.; Kwok, B.Y.C.; Black, D.A.; Bradshaw, A.; Halmagyi, G.M.; Welgampola, M.S. Modern vestibular tests can accurately separate stroke and vestibular neuritis. J. Neurol. 2023, 270, 2031–2041. [Google Scholar] [CrossRef]
- Rosa, M.S.; Campagnoli, M.; Masnaghetti, D.; Taranto, F.; Pisani, G.; Garzaro, M.; Aluffi Valletti, P. Clinical and Prognostic Implications of Cervical and Ocular Vestibular Evoked Myogenic Potentials (cVEMP and oVEMP) in Benign Paroxysmal Positional Vertigo (BPPV): A Prospective Study. Audiol. Res. 2023, 13, 700–709. [Google Scholar] [CrossRef]
- McCaslin, D.L.; Jacobson, G.P.; Grantham, S.L.; Piker, E.G.; Verghese, S. The influence of unilateral saccular impairment on functional balance performance and self-report dizziness. J. Am. Acad. Audiol. 2011, 22, 542–549. [Google Scholar] [CrossRef]
- Pelosi, S.; Schuster, D.; Jacobson, G.P.; Carlson, M.L.; Haynes, D.S.; Bennett, M.L.; Rivas, A.; Wanna, G.B. Clinical characteristics associated with isolated unilateral utricular dysfunction. Am. J. Otolaryngol. 2013, 34, 490–495. [Google Scholar] [CrossRef]
- Angelaki, D.E.; Bush, G.A.; Perachio, A.A. Two-dimensional spatiotemporal coding of linear acceleration in vestibular nuclei neurons. J. Neurosci. 1993, 13, 1403–1417. [Google Scholar] [CrossRef]
- Soeda, K.; DiZio, P.; Lackner, J.R. Balance in a rotating artificial gravity environment. Exp. Brain Res. 2003, 148, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Houben, M.M.J.; Meskers, A.J.H.; Bos, J.E.; Groen, E.L. The perception threshold of the vestibular Coriolis illusion. J. Vestib. Res. 2022, 32, 317–324. [Google Scholar] [CrossRef]
- Nashner, L.M. A model describing vestibular detection of body sway motion. Acta Otolaryngol. 1971, 72, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Jeong, S.H.; Kim, G.J.; Chang, K.H.; Jun, B.C. Analysis of the coplanarity of functional pairs of semicircular canals using three-dimensional images reconstructed from temporal bone magnetic resonance imaging. J. Laryngol. Otol. 2015, 129, 430–434. [Google Scholar] [CrossRef]
- Maxwell, R.; von Kirschbaum, C.; Jerin, C.; Lehnen, N.; Krause, E.; Gürkov, R. Effect of Spatial Orientation of the Horizontal Semicircular Canal on the Vestibulo-Ocular Reflex. Otol. Neurotol. 2017, 38, 239–243. [Google Scholar] [CrossRef]
- Mandalà, M.; Salerni, L.; Ferretti, F.; Bindi, I.; Gualtieri, G.; Corallo, G.; Viberti, F.; Gusinu, R.; Fantino, C.; Ponzo, S.; et al. The incidence of vestibular neuritis in Italy. Front. Neurol. 2023, 14, 1177621. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.-H.; Cheng, P.-W.; Young, Y.-H. Effect of gender on ocular vestibular-evoked myogenic potentials via various stimulation modes. Clin. Neurophysiol. 2011, 122, 183–187. [Google Scholar] [CrossRef]
- Ochi, K.; Ohashi, T. Age-related changes in the vestibular-evoked myogenic potentials. Otolaryngol. Head Neck Surg. 2003, 129, 655–659. [Google Scholar]
- Janky, K.L.; Shepard, N. Vestibular evoked myogenic potential (VEMP) testing: Normative threshold response curves and effects of age. J. Am. Acad. Audiol. 2009, 20, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Layman, A.J.; Carey, J.P.; Agrawal, Y. Epidemiology of vestibular evoked myogenic potentials: Data from the Baltimore Longitudinal Study of Aging. Clin. Neurophysiol. 2015, 126, 2207–2215. [Google Scholar] [CrossRef] [PubMed]
- Lucieer, F.; van der Lubbe, M.; van Stiphout, L.; Janssen, M.; Van Rompaey, V.; Devocht, E.; Perez-Fornos, A.; Guinand, N.; van de Berg, R. Multi-frequency VEMPs improve detection of present otolith responses in bilateral vestibulopathy. Front. Neurol. 2024, 15, 1336848. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-A.; Hong, J.-H.; Lee, H.; Yi, H.-A.; Lee, S.-R.; Lee, S.-Y.; Jang, B.-C.; Ahn, B.-H.; Baloh, R.W. Otolith dysfunction in vestibular neuritis: Recovery pattern and a predictor of symptom recovery. Neurology 2008, 70, 449–453. [Google Scholar] [CrossRef] [PubMed]
vHIT Mean Asymmetry (sem) | vHIT Deficit Side Mean Gain (sem) | |||||
---|---|---|---|---|---|---|
Yaw | Pitch | Roll | Yaw | Pitch | Roll | |
Acute | 41.55 (4.04) | −0.73 (2.22) | 19.98 (4.01) | 0.38 (0.04) | 0.69 (0.03) | 0.56 (0.04) |
+5 weeks | 19.14 (5.45) | −1.79 (3.73) | 14.35 (4.5) | 0.64 (0.07) | 0.73 (0.06) | 0.63 (0.07) |
Task and Measure | Yaw | Pitch | Roll |
---|---|---|---|
s2ecfv | 0.012 | 0.004 | 0.0026 ● |
wtan8a | 0.0012 | <0.0001 ● | <0.0001 |
barriersa | 0.048 ● | 0.04 1-sided | 0.03 1-sided |
w3mhrv | 0.021 | 0.0035 ● | 0.03 |
w3mhpv | ns | 0.0002 ● | 0.008 |
w3mecv | ns | 0.036 ● | ns |
axis BCI | 0.003 | 0.0002 ● | 0.0027 |
Axis Balance Control Index (sem) | Standing on 2 Legs on Foam Vel (sem) | |||||
---|---|---|---|---|---|---|
Population | Yaw | Pitch | Roll | Yaw | Pitch | Roll |
AcuteUVN | 783.4 (43.1) | 557.8 (33.2) | 431.2 (21.6) | 24.8 (5.4) | 23.3 (4.4) | 12.7 (2.1) |
+5 weeks | 714.9 (73.1) | 510.4 (29.1) | 442.8 (25.7) | 17.2 (8.5) | 13.9 (4.2) | 7.8 (2.03) |
Controls | 562.5 (42.1) | 361.5 (52.3) | 330.8 (20.1) | 7.7 (1.0) | 5.7 (0.6) | 3.9 (0.5) |
Walking 8 tandem steps ang (sem) | Walk 3m with head pitching vel (sem) | |||||
Population | Yaw | Pitch | Roll | Yaw | Pitch | Roll |
AcuteUVN | 25.0 (2.7) | 14.8 (1.0) | 15.7 (1.1) | 83.0 (7.5) | 76.7 (2.6) | 51.9 (3.0) |
+5 weeks | 12.2 (1.5) | 10.7 (0.6) | 10.1 (1.2) | 88.9 (8.2) | 65.6 (5.2) | 57.9 (4.0) |
Controls | 11.7 (1.7) | 6.2 (0.5) | 7.7 (0.8) | 68.8 (5.7) | 50.8 (4.2) | 39.5 (2.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allum, J.H.J.; Candreia, C.; Honegger, F. Trunk Instability in the Pitch, Yaw, and Roll Planes during Clinical Balance Tests: Axis Differences and Correlations to vHIT Asymmetries Following Acute Unilateral Vestibular Loss. Brain Sci. 2024, 14, 664. https://doi.org/10.3390/brainsci14070664
Allum JHJ, Candreia C, Honegger F. Trunk Instability in the Pitch, Yaw, and Roll Planes during Clinical Balance Tests: Axis Differences and Correlations to vHIT Asymmetries Following Acute Unilateral Vestibular Loss. Brain Sciences. 2024; 14(7):664. https://doi.org/10.3390/brainsci14070664
Chicago/Turabian StyleAllum, John H. J., Claudia Candreia, and Flurin Honegger. 2024. "Trunk Instability in the Pitch, Yaw, and Roll Planes during Clinical Balance Tests: Axis Differences and Correlations to vHIT Asymmetries Following Acute Unilateral Vestibular Loss" Brain Sciences 14, no. 7: 664. https://doi.org/10.3390/brainsci14070664
APA StyleAllum, J. H. J., Candreia, C., & Honegger, F. (2024). Trunk Instability in the Pitch, Yaw, and Roll Planes during Clinical Balance Tests: Axis Differences and Correlations to vHIT Asymmetries Following Acute Unilateral Vestibular Loss. Brain Sciences, 14(7), 664. https://doi.org/10.3390/brainsci14070664