Aggression Unleashed: Neural Circuits from Scent to Brain
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Neural Substrates and Pathways of Aggression
3.1.1. Aggression-Provoking Stimulus and Its Detection
3.1.2. The Ventrolateral Portion of the Ventromedial Hypothalamus (VMHvl)
3.1.3. The Medial Amygdala (MeA)
3.1.4. Ventral Premammillary Nucleus (PMv)
Animal | Brain Target | References | Neuronal Directionality * | Molecular Phenotype |
---|---|---|---|---|
Mouse | VMHvl | Lin, 2011 [14] | ↑ | N/A ** |
Yang, 2013 [54] | ↑ | PR+/Esr1+ | ||
Falkner, 2014 [17] | ↑ | N/A | ||
Lee, 2014 [20] | ↑ | Esr1+ | ||
Hashikawa, 2017 [21] | ↑ | PR+/Esr1+ | ||
Liu, 2022 [25] | ↑ | Npy2r+ (β) cells | ||
Guo, 2023 [15] | ↑ | N/A | ||
Nair, 2023 [22] | ↑ | Esr1+ | ||
Wei, 2023 [23] | ↓ | cMPOA-VMHvl Esr1+ | ||
Yang, 2023 [24] | PR+ | |||
Mouse | MeA | Wang, 1997 [40] | ↑ | N/A |
Dulac et al., 2003 [10] | ↓ | Trp2+ | ||
Hasen Gammie et al., 2005 [47] | ↑ | N/A | ||
Hong et al., 2014 [41] | ↑ | GABA | ||
Nordman, 2020 [44] | ↑ | NMDAR | ||
Abellán-Álvaro et al., 2022 [48] | ↓ | N/A | ||
Lischinsky, 2023 [42] | ↑ | Foxp2+ | ||
He, 2024 [43] | ↑ | Tac1+ | ||
Mouse | PMv | Soden, 2016 [51] | ↑ | PMv-DAT |
Stagkourakis et al., 2018 [52] | ↑ | PMv-DAT | ||
Rat | VMHvl | Bard, 1958 [12] | ↓ | N/A |
Kruk, 1983 [13] | ↑ | N/A | ||
Veening, 2005 [39] | ↑ | N/A | ||
Rat | MeA | Vochteloo Koolhaas, 1987 [55] | ↓ | N/A |
Veening, 2005 [39] | ↑ | N/A | ||
Rat | PMv | Motta, 2013 [50] | ↑ | N/A |
Cavalcante, 2014 [49] | ↓ | N/A | ||
Syrian Hamster | VMHvl | Kollack-Walker et al., 1997 [56] | ↑ | N/A |
Delville et al., 2000 [57] | ↑ | N/A | ||
Pan et al., 2010 [58] | ↑ | N/A | ||
Syrian Hamster | MeA | Potegal et al., 1996a [59] | ↑ | N/A |
Kollack-Walker et al., 1995 [60] | ↑ | N/A | ||
Prairie Vole | AH | Gobrogge et al., 2007 [30] | ↑ | TH/AVP |
Gobrogge et al., 2009 [61] | ↑ | AVP (V1aR) | ||
Gobrogge et al., 2016 [62] | ↑ | AVP/CRH | ||
↓ | 5-HT | |||
Prairie Vole | MeA | Wang et al., 1997 [40] | ↑ | N/A |
Stetzik et al., 2018 [46] | ↓ | Esr1+ | ||
Meadow Vole | MeA | Pan et al., 2019 | ↑ | N/A |
Mongolian Gerbil | VMHvl | Pan et al., 2020 [31,32] | ↑ | N/A |
3.2. The Prefrontal Cortex and Its Control Over Aggression
4. Future Directions and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Inclusion and Diversity Statement
Conflicts of Interest
References
- Kruk, M.R. Hypothalamic Attack: A Wonderful Artifact or a Useful Perspective on Escalation and Pathology in Aggression? A Viewpoint. In Neuroscience of Aggression; Current Topics in Behavioral Neurosciences; Miczek, K.A., Meyer-Lindenberg, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 143–188. ISBN 978-3-662-44281-4. [Google Scholar]
- Lischinsky, J.E.; Lin, D. Neural Mechanisms of Aggression across Species. Nat. Neurosci. 2020, 23, 1317–1328. [Google Scholar] [CrossRef]
- Nelson, R.J.; Trainor, B.C. Neural Mechanisms of Aggression. Nat. Rev. Neurosci. 2007, 8, 536–546. [Google Scholar] [CrossRef]
- Dam, V.H.; Hjordt, L.V.; da Cunha-Bang, S.; Sestoft, D.; Knudsen, G.M.; Stenbæk, D.S. Trait Aggression Is Associated with Five-factor Personality Traits in Males. Brain Behav. 2021, 11, e02175. [Google Scholar] [CrossRef]
- Miczek, K.A.; DeBold, J.F.; Gobrogge, K.; Newman, E.L.; de Almeida, R.M.M. The Role of Neurotransmitters in Violence and Aggression. In The Wiley Handbook of Violence and Aggression; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–13. ISBN 978-1-119-05757-4. [Google Scholar]
- Takahashi, A.; Miczek, K.A. Neurogenetics of Aggressive Behavior—Studies in Rodents. Curr. Top. Behav. Neurosci. 2014, 17, 3–44. [Google Scholar] [CrossRef]
- Dorfman, H.M.; Meyer-Lindenberg, A.; Buckholtz, J.W. Neurobiological Mechanisms for Impulsive-Aggression: The Role of MAOA. In Neuroscience of Aggression; Miczek, K.A., Meyer-Lindenberg, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 297–313. ISBN 978-3-662-44281-4. [Google Scholar]
- Stowers, L.; Holy, T.E.; Meister, M.; Dulac, C.; Koentges, G. Loss of Sex Discrimination and Male-Male Aggression in Mice Deficient for TRP2. Science 2002, 295, 1493–1500. [Google Scholar] [CrossRef]
- Hashikawa, K.; Hashikawa, Y.; Lischinsky, J.; Lin, D. The Neural Mechanisms of Sexually Dimorphic Aggressive Behaviors. Trends Genet. 2018, 34, 755–776. [Google Scholar] [CrossRef] [PubMed]
- Dulac, C.; Torello, A.T. Molecular Detection of Pheromone Signals in Mammals: From Genes to Behaviour. Nat. Rev. Neurosci. 2003, 4, 551–562. [Google Scholar] [CrossRef]
- Mandiyan, V.S.; Coats, J.K.; Shah, N.M. Deficits in Sexual and Aggressive Behaviors in Cnga2 Mutant Mice. Nat. Neurosci. 2005, 8, 1660–1662. [Google Scholar] [CrossRef] [PubMed]
- Bard, P.; Macht, M.B. The Behaviour of Chronically Decerebrate Cats. In Ciba Foundation Symposium—Neurological Basis of Behaviour; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1958; pp. 55–75. ISBN 978-0-470-71909-1. [Google Scholar]
- Kruk, M.R.; Van Der Poel, A.M.; Meelis, W.; Hermans, J.; Mostert, P.G.; Mos, J.; Lohman, A.H.M. Discriminant Analysis of the Localization of Aggression-Inducing Electrode Placements in the Hypothalamus of Male Rats. Brain Res. 1983, 260, 61–79. [Google Scholar] [CrossRef]
- Lin, D.; Boyle, M.P.; Dollar, P.; Lee, H.; Lein, E.S.; Perona, P.; Anderson, D.J. Functional Identification of an Aggression Locus in the Mouse Hypothalamus. Nature 2011, 470, 221–226. [Google Scholar] [CrossRef]
- Guo, Z.; Yin, L.; Diaz, V.; Dai, B.; Osakada, T.; Lischinsky, J.E.; Chien, J.; Yamaguchi, T.; Urtecho, A.; Tong, X.; et al. Neural Dynamics in the Limbic System during Male Social Behaviors. Neuron 2023, 111, 3288–3306.e4. [Google Scholar] [CrossRef]
- Potegal, M.; Ferris, C.F.; Hebert, M.; Meyerhoff, J.; Skaredoff, L. Attack Priming in Female Syrian Golden Hamsters Is Associated with a C-Fos-Coupled Process within the Corticomedial Amygdala. Neuroscience 1996, 75, 869–880. [Google Scholar] [CrossRef]
- Falkner, A.L.; Dollar, P.; Perona, P.; Anderson, D.J.; Lin, D. Decoding Ventromedial Hypothalamic Neural Activity during Male Mouse Aggression. J. Neurosci. 2014, 34, 5971–5984. [Google Scholar] [CrossRef]
- Osakada, T.; Yan, R.; Jiang, Y.; Wei, D.; Tabuchi, R.; Dai, B.; Wang, X.; Zhao, G.; Wang, C.X.; Liu, J.-J.; et al. A Dedicated Hypothalamic Oxytocin Circuit Controls Aversive Social Learning. Nature 2024, 626, 347–356. [Google Scholar] [CrossRef]
- Berendzen, K.M.; Sharma, R.; Mandujano, M.A.; Wei, Y.; Rogers, F.D.; Simmons, T.C.; Seelke, A.M.H.; Bond, J.M.; Larios, R.; Goodwin, N.L.; et al. Oxytocin Receptor Is Not Required for Social Attachment in Prairie Voles. Neuron 2023, 111, 787–796.e4. [Google Scholar] [CrossRef]
- Lee, H.; Kim, D.-W.; Remedios, R.; Anthony, T.E.; Chang, A.; Madisen, L.; Zeng, H.; Anderson, D.J. Scalable Control of Mounting and Attack by Esr1+ Neurons in the Ventromedial Hypothalamus. Nature 2014, 509, 627–632. [Google Scholar] [CrossRef]
- Hashikawa, K.; Hashikawa, Y.; Tremblay, R.; Zhang, J.; Feng, J.E.; Sabol, A.; Piper, W.T.; Lee, H.; Rudy, B.; Lin, D. Esr1+ Cells in the Ventromedial Hypothalamus Control Female Aggression. Nat. Neurosci. 2017, 20, 1580–1590. [Google Scholar] [CrossRef]
- Nair, A.; Karigo, T.; Yang, B.; Ganguli, S.; Schnitzer, M.J.; Linderman, S.W.; Anderson, D.J.; Kennedy, A. An Approximate Line Attractor in the Hypothalamus Encodes an Aggressive State. Cell 2023, 186, 178–193.e15. [Google Scholar] [CrossRef]
- Wei, D.; Osakada, T.; Guo, Z.; Yamaguchi, T.; Varshneya, A.; Yan, R.; Jiang, Y.; Lin, D. A Hypothalamic Pathway That Suppresses Aggression toward Superior Opponents. Nat. Neurosci. 2023, 26, 774–787. [Google Scholar] [CrossRef]
- Yang, T.; Bayless, D.W.; Wei, Y.; Landayan, D.; Marcelo, I.M.; Wang, Y.; DeNardo, L.A.; Luo, L.; Druckmann, S.; Shah, N.M. Hypothalamic Neurons That Mirror Aggression. Cell 2023, 186, 1195–1211.e19. [Google Scholar] [CrossRef]
- Liu, M.; Kim, D.-W.; Zeng, H.; Anderson, D.J. Make War Not Love: The Neural Substrate Underlying a State-Dependent Switch in Female Social Behavior. Neuron 2022, 110, 841–856.e6. [Google Scholar] [CrossRef]
- Zhu, Z.; Miao, L.; Li, K.; Ma, Q.; Pan, L.; Shen, C.; Ge, Q.; Du, Y.; Yin, L.; Yang, H.; et al. A Hypothalamic-Amygdala Circuit Underlying Sexually Dimorphic Aggression. Neuron 2024, 112, 1–16. [Google Scholar] [CrossRef]
- Mei, L.; Osakada, T.; Lin, D. Hypothalamic Control of Innate Social Behaviors. Science 2023, 382, 399–404. [Google Scholar] [CrossRef]
- Remedios, R.; Kennedy, A.; Zelikowsky, M.; Grewe, B.F.; Schnitzer, M.J.; Anderson, D.J. Social Behaviour Shapes Hypothalamic Neural Ensemble Representations of Conspecific Sex. Nature 2017, 550, 388–392. [Google Scholar] [CrossRef]
- Stagkourakis, S.; Spigolon, G.; Liu, G.; Anderson, D.J. Experience-Dependent Plasticity in an Innate Social Behavior Is Mediated by Hypothalamic LTP. Proc. Natl. Acad. Sci. USA 2020, 117, 25789–25799. [Google Scholar] [CrossRef]
- Gobrogge, K.L.; Liu, Y.; Jia, X.; Wang, Z. Anterior Hypothalamic Neural Activation and Neurochemical Associations with Aggression in Pair-Bonded Male Prairie Voles. J. Comp. Neurol. 2007, 502, 1109–1122. [Google Scholar] [CrossRef]
- Pan, Y.; Zhu, Q.; Xu, T.; Zhang, Z.; Wang, Z. Aggressive Behavior and Brain Neuronal Activation in Sexually Naïve Male Mongolian Gerbils. Behav. Brain Res. 2020, 378, 112276. [Google Scholar] [CrossRef]
- Pan, Y.; Zhu, Q.; Wang, X.; Chen, J.; Wen, B.; Zhang, Z.; Wang, Z. Agonistic Behaviors and Neuronal Activation in Sexually Naïve Female Mongolian Gerbils. Behav. Brain Res. 2020, 395, 112860. [Google Scholar] [CrossRef]
- Stagkourakis, S.; Spigolon, G.; Marks, M.; Feyder, M.; Kim, J.; Perona, P.; Pachitariu, M.; Anderson, D.J. Anatomically Distributed Neural Representations of Instincts in the Hypothalamus. bioRxiv 2023. [Google Scholar] [CrossRef]
- Kim, D.-W.; Yao, Z.; Graybuck, L.T.; Kim, T.K.; Nguyen, T.N.; Smith, K.A.; Fong, O.; Yi, L.; Koulena, N.; Pierson, N.; et al. Multimodal Analysis of Cell Types in a Hypothalamic Node Controlling Social Behavior. Cell 2019, 179, 713–728.e17. [Google Scholar] [CrossRef] [PubMed]
- Falkner, A.L.; Lin, D. Recent Advances in Understanding the Role of the Hypothalamic Circuit during Aggression. Front. Syst. Neurosci. 2014, 8, 168. [Google Scholar] [CrossRef]
- Petrovich, G.D.; Canteras, N.S.; Swanson, L.W. Combinatorial Amygdalar Inputs to Hippocampal Domains and Hypothalamic Behavior Systems. Brain Res. Rev. 2001, 38, 247–289. [Google Scholar] [CrossRef]
- Canteras, N.S.; Simerly, R.B.; Swanson, L.W. Organization of Projections from the Medial Nucleus of the Amygdala: A PHAL Study in the Rat. J. Comp. Neurol. 1995, 360, 213–245. [Google Scholar] [CrossRef]
- Duncan, G.E.; Inada, K.; Farrington, J.S.; Koller, B.H.; Moy, S.S. Neural Activation Deficits in a Mouse Genetic Model of NMDA Receptor Hypofunction in Tests of Social Aggression and Swim Stress. Brain Res. 2009, 1265, 186–195. [Google Scholar] [CrossRef]
- Veening, J.G.; Coolen, L.M.; de Jong, T.R.; Joosten, H.W.; de Boer, S.F.; Koolhaas, J.M.; Olivier, B. Do Similar Neural Systems Subserve Aggressive and Sexual Behaviour in Male Rats? Insights from c-Fos and Pharmacological Studies. Eur. J. Pharmacol. 2005, 526, 226–239. [Google Scholar] [CrossRef]
- Wang, Z.; Hulihan, T.J.; Insel, T.R. Sexual and Social Experience Is Associated with Different Patterns of Behavior and Neural Activation in Male Prairie Voles. Brain Res. 1997, 767, 321–332. [Google Scholar] [CrossRef]
- Hong, W.; Kim, D.-W.; Anderson, D.J. Antagonistic Control of Social Behaviors by Inhibitory and Excitatory Neurons in the Medial Amygdala. Cell 2014, 158, 1348–1361. [Google Scholar] [CrossRef]
- Lischinsky, J.E.; Yin, L.; Shi, C.; Prakash, N.; Burke, J.; Shekaran, G.; Grba, M.; Corbin, J.G.; Lin, D. Transcriptionally Defined Amygdala Subpopulations Play Distinct Roles in Innate Social Behaviors. Nat. Neurosci. 2023, 26, 2131–2146. [Google Scholar] [CrossRef] [PubMed]
- He, Z.-X.; Yue, M.-H.; Liu, K.-J.; Wang, Y.; Qiao, J.-Y.; Lv, X.-Y.; Xi, K.; Zhang, Y.-X.; Fan, J.-N.; Yu, H.-L.; et al. Substance P in the Medial Amygdala Regulates Aggressive Behaviors in Male Mice. Neuropsychopharmacology 2024, 1–11. [Google Scholar] [CrossRef]
- Nordman, J.C.; Ma, X.; Gu, Q.; Potegal, M.; Li, H.; Kravitz, A.V.; Li, Z. Potentiation of Divergent Medial Amygdala Pathways Drives Experience-Dependent Aggression Escalation. J. Neurosci. 2020, 40, 4858–4880. [Google Scholar] [CrossRef]
- Joppa, M.A.; Meisel, R.L.; Garber, M.A. C-Fos Expression in Female Hamster Brain Following Sexual and Aggressive Behaviors. Neuroscience 1995, 68, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Stetzik, L.; Ganshevsky, D.; Lende, M.N.; Roache, L.E.; Musatov, S.; Cushing, B.S. Inhibiting ERα Expression in the Medial Amygdala Increases Prosocial Behavior in Male Meadow Voles (Microtus Pennsylvanicus). Behav. Brain Res. 2018, 351, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Hasen, N.S.; Gammie, S.C. Differential Fos Activation in Virgin and Lactating Mice in Response to an Intruder. Physiol. Behav. 2005, 84, 681–695. [Google Scholar] [CrossRef] [PubMed]
- Abellán-Álvaro, M.; Martínez-García, F.; Lanuza, E.; Agustín-Pavón, C. Inhibition of the Medial Amygdala Disrupts Escalated Aggression in Lactating Female Mice after Repeated Exposure to Male Intruders. Commun. Biol. 2022, 5, 980. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, J.C.; Bittencourt, J.C.; Elias, C.F. Distribution of the Neuronal Inputs to the Ventral Premammillary Nucleus of Male and Female Rats. Brain Res. 2014, 1582, 77–90. [Google Scholar] [CrossRef]
- Motta, S.C.; Guimarães, C.C.; Furigo, I.C.; Sukikara, M.H.; Baldo, M.V.C.; Lonstein, J.S.; Canteras, N.S. Ventral Premammillary Nucleus as a Critical Sensory Relay to the Maternal Aggression Network. Proc. Natl. Acad. Sci. USA 2013, 110, 14438–14443. [Google Scholar] [CrossRef]
- Soden, M.E.; Miller, S.M.; Burgeno, L.M.; Phillips, P.E.M.; Hnasko, T.S.; Zweifel, L.S. Genetic Isolation of Hypothalamic Neurons That Regulate Context-Specific Male Social Behavior. Cell Rep. 2016, 16, 304–313. [Google Scholar] [CrossRef]
- Stagkourakis, S.; Spigolon, G.; Williams, P.; Protzmann, J.; Fisone, G.; Broberger, C. A Neural Network for Intermale Aggression to Establish Social Hierarchy. Nat. Neurosci. 2018, 21, 834–842. [Google Scholar] [CrossRef]
- Bard, P. A Diencephalic Mechanism for the Expression of Rage with Special Reference to the Sympathetic Nervous System. Am. J. Physiol.-Leg. Content 1928, 84, 490–515. [Google Scholar] [CrossRef]
- Yang, C.F.; Chiang, M.C.; Gray, D.C.; Prabhakaran, M.; Alvarado, M.; Juntti, S.A.; Unger, E.K.; Wells, J.A.; Shah, N.M. Sexually Dimorphic Neurons in the Ventromedial Hypothalamus Govern Mating in Both Sexes and Aggression in Males. Cell 2013, 153, 896–909. [Google Scholar] [CrossRef]
- Vochteloo, J.D.; Koolhaas, J.M. Medial Amygdala Lesions in Male Rats Reduce Aggressive Behavior: Interference with Experience. Physiol. Behav. 1987, 41, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Kollack-Walker, S.; Watson, S.J.; Akil, H. Social Stress in Hamsters: Defeat Activates Specific Neurocircuits within the Brain. J. Neurosci. 1997, 17, 8842–8855. [Google Scholar] [CrossRef]
- Delville, Y.; De Vries, G.J.; Ferris, C.F. Neural Connections of the Anterior Hypothalamus and Agonistic Behavior in Golden Hamsters. Brain. Behav. Evol. 2000, 55, 53–76. [Google Scholar] [CrossRef]
- Pan, Y.; Xu, L.; Young, K.A.; Wang, Z.; Zhang, Z. Agonistic Encounters and Brain Activation in Dominant and Subordinate Male Greater Long-Tailed Hamsters. Horm. Behav. 2010, 58, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Potegal, M.; Hebert, M.; DeCoster, M.; Meyerhoff, J.L. Brief, High-Frequency Stimulation of the Corticomedial Amygdala Induces a Delayed and Prolonged Increase of Aggressiveness in Male Syrian Golden Hamsters. Behav. Neurosci. 1996, 110, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Kollack-Walker, S.; Newman, S.W. Mating and Agonistic Behavior Produce Different Patterns of Fos Immunolabeling in the Male Syrian Hamster Brain. Neuroscience 1995, 66, 721–736. [Google Scholar] [CrossRef]
- Gobrogge, K.L.; Liu, Y.; Young, L.J.; Wang, Z. Anterior Hypothalamic Vasopressin Regulates Pair-Bonding and Drug-Induced Aggression in a Monogamous Rodent. Proc. Natl. Acad. Sci. USA 2009, 106, 19144–19149. [Google Scholar] [CrossRef]
- Gobrogge, K.; Wang, Z. The Ties That Bond: Neurochemistry of Attachment in Voles. Curr. Opin. Neurobiol. 2016, 38, 80–88. [Google Scholar] [CrossRef]
- Haller, J.; Tóth, M.; Halasz, J.; De Boer, S.F. Patterns of Violent Aggression-Induced Brain c-Fos Expression in Male Mice Selected for Aggressiveness. Physiol. Behav. 2006, 88, 173–182. [Google Scholar] [CrossRef]
- Wall, V.L.; Fischer, E.K.; Bland, S.T. Isolation Rearing Attenuates Social Interaction-Induced Expression of Immediate Early Gene Protein Products in the Medial Prefrontal Cortex of Male and Female Rats. Physiol. Behav. 2012, 107, 440–450. [Google Scholar] [CrossRef]
- Biro, L.; Miskolczi, C.; Szebik, H.; Bruzsik, B.; Varga, Z.K.; Szente, L.; Toth, M.; Halasz, J.; Mikics, E. Post-Weaning Social Isolation in Male Mice Leads to Abnormal Aggression and Disrupted Network Organization in the Prefrontal Cortex: Contribution of Parvalbumin Interneurons with or without Perineuronal Nets. Neurobiol. Stress 2023, 25, 100546. [Google Scholar] [CrossRef]
- Borland, J.M.; Dempsey, D.A.; Peyla, A.C.; Hall, M.A.L.; Kohut-Jackson, A.L.; Mermelstein, P.G.; Meisel, R.L. Aggression Results in the Phosphorylation of ERK1/2 in the Nucleus Accumbens and the Dephosphorylation of mTOR in the Medial Prefrontal Cortex in Female Syrian Hamsters. Int. J. Mol. Sci. 2023, 24, 1379. [Google Scholar] [CrossRef]
- De Gregorio, D.; Popic, J.; Enns, J.P.; Inserra, A.; Skalecka, A.; Markopoulos, A.; Posa, L.; Lopez-Canul, M.; Qianzi, H.; Lafferty, C.K.; et al. Lysergic Acid Diethylamide (LSD) Promotes Social Behavior through mTORC1 in the Excitatory Neurotransmission. Proc. Natl. Acad. Sci. USA 2021, 118, e2020705118. [Google Scholar] [CrossRef]
- Takahashi, A.; Nagayasu, K.; Nishitani, N.; Kaneko, S.; Koide, T. Control of Intermale Aggression by Medial Prefrontal Cortex Activation in the Mouse. PLoS ONE 2014, 9, e94657. [Google Scholar] [CrossRef]
- Anderson, S.W.; Bechara, A.; Damasio, H.; Tranel, D.; Damasio, A.R. Impairment of Social and Moral Behavior Related to Early Damage in Human Prefrontal Cortex. Nat. Neurosci. 1999, 2, 1032–1037. [Google Scholar] [CrossRef]
- Damasio, H.; Grabowski, T.; Frank, R.; Galaburda, A.M.; Damasio, A.R. The Return of Phineas Gage: Clues About the Brain from the Skull of a Famous Patient. Science 1994, 264, 1102–1105. [Google Scholar] [CrossRef]
- Best, M.; Williams, J.M.; Coccaro, E.F. Evidence for a Dysfunctional Prefrontal Circuit in Patients with an Impulsive Aggressive Disorder. Proc. Natl. Acad. Sci. USA 2002, 99, 8448–8453. [Google Scholar] [CrossRef]
- Godoy, L.D.; Rossignoli, M.T.; Delfino-Pereira, P.; Garcia-Cairasco, N.; de Lima Umeoka, E.H. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front. Behav. Neurosci. 2018, 12, 127. [Google Scholar] [CrossRef]
- Choy, O.; Raine, A.; Hamilton, R.H. Stimulation of the Prefrontal Cortex Reduces Intentions to Commit Aggression: A Randomized, Double-Blind, Placebo-Controlled, Stratified, Parallel-Group Trial. J. Neurosci. 2018, 38, 6505–6512. [Google Scholar] [CrossRef]
- Siep, N.; Tonnaer, F.; van de Ven, V.; Arntz, A.; Raine, A.; Cima, M. Anger Provocation Increases Limbic and Decreases Medial Prefrontal Cortex Connectivity with the Left Amygdala in Reactive Aggressive Violent Offenders. Brain Imaging Behav. 2019, 13, 1311–1323. [Google Scholar] [CrossRef]
- Blair, R.J.R. The Neurobiology of Impulsive Aggression. J. Child Adolesc. Psychopharmacol. 2016, 26, 4–9. [Google Scholar] [CrossRef]
- Palavicino-Maggio, C.B.; Sengupta, S. The Neuromodulatory Basis of Aggression: Lessons From the Humble Fruit Fly. Front. Behav. Neurosci. 2022, 16, 836666. [Google Scholar] [CrossRef]
- Wang, Y.; He, Z.; Zhao, C.; Li, L. Medial Amygdala Lesions Modify Aggressive Behavior and Immediate Early Gene Expression in Oxytocin and Vasopressin Neurons during Intermale Exposure. Behav. Brain Res. 2013, 245, 42–49. [Google Scholar] [CrossRef]
- Guthman, E.M.; Falkner, A.L. Neural Mechanisms of Persistent Aggression. Curr. Opin. Neurobiol. 2022, 73, 102526. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.; Gobrogge, K. Aggression Unleashed: Neural Circuits from Scent to Brain. Brain Sci. 2024, 14, 794. https://doi.org/10.3390/brainsci14080794
Singh R, Gobrogge K. Aggression Unleashed: Neural Circuits from Scent to Brain. Brain Sciences. 2024; 14(8):794. https://doi.org/10.3390/brainsci14080794
Chicago/Turabian StyleSingh, Rhea, and Kyle Gobrogge. 2024. "Aggression Unleashed: Neural Circuits from Scent to Brain" Brain Sciences 14, no. 8: 794. https://doi.org/10.3390/brainsci14080794
APA StyleSingh, R., & Gobrogge, K. (2024). Aggression Unleashed: Neural Circuits from Scent to Brain. Brain Sciences, 14(8), 794. https://doi.org/10.3390/brainsci14080794