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Abstract: The distinct clinical and radiological characteristics of right temporal variant FTD have
only been recently recognized. Methods: Eight patients with right temporal variant FTD were
prospectively recruited and underwent a standardised neuropsychological assessment, clinical MRI,
and quantitative neuroimaging. Results: Our voxelwise grey analyses captured bilateral anterior and
mesial temporal grey matter atrophy with a clear right-sided predominance. Bilateral hippocampal
involvement was also observed, as well as disease burden in the right insular and opercula regions.
White matter integrity alterations were also bilateral in anterior temporal and sub-insular regions
with a clear right-hemispheric predominance. Extra-temporal white matter alterations have also
been observed in orbitofrontal and parietal regions. Significant bilateral but right-predominant
thalamus, putamen, hippocampus, and amygdala atrophy was identified based on subcortical
segmentation. The clinical profile of our patients was dominated by progressive indifference, decline
in motivation, loss of interest in previously cherished activities, incremental social withdrawal,
difficulty recognising people, progressive language deficits, increasingly rigid routines, and repetitive
behaviours. Conclusions: Right temporal variant FTD has an insidious onset and may be mistaken
for depression at symptom onset. It manifests in a combination of apathy, language, and behavioural
features. Quantitative MR imaging captures a characteristic bilateral but right-predominant temporal
imaging signature with extra-temporal frontal and parietal involvement.
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1. Introduction

Frontotemporal dementia (FTD) encompasses a wide spectrum of neurodegenerative
disorders that may be further stratified according to clinical phenotype, genotype, or the
underlying molecular pathology [1–6]. The striking clinical, radiological, genetic, and
molecular heterogeneity of FTD is well recognised and clinical subtypes are defined based
on unique clinical and radiological features [3,7]. On clinical grounds, language-variant
and behavioural-variant phenotypes are typically distinguished first before subcategorising
patients into specific categories based on detailed neuropsychological data. The overlap
with Amyotrophic Lateral Sclerosis is also well recognised with a number of shared radio-
logical and pathological features [8–13]. Individuals harbouring hexanucleotide GGGCC
repeat expansions in C9orf72, in particular, are at risk of developing either ALS, FTD, or
ALS-FTD [14,15]. ALS-FTD as a distinct entity has been recognised before the discovery of
C9orf72 repeat expansions and has been extensively studied through robust neuropsychol-
ogy, post mortem, and neuroimaging studies [16–18].

Semantic variant primary progressive aphasia (svPPA) is an FTD phenotype that clini-
cally manifests as anomia and impaired single-word comprehension [1,19], is radiologically
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defined by dominant-hemispheric anterior temporal lobe atrophy [1], and is pathologically
characterised by frontotemporal lobar degeneration transactive response DNA-binding pro-
tein 43 (FTLD-TDP-43) pathology type C in the majority of cases [20]. In recent times, it has
become apparent that non-dominant anterior temporal lobe atrophy presents with a distinct
clinical phenotype that initially does not meet the classification criteria for svPPA [1,21]. A
vast range of alternative terminology has been used to describe this entity: ‘right tempo-
ral variant FTD’, ‘right temporal semantic dementia’, ‘right temporal svPPA’, and ‘right
temporal behavioural variant FTD (bvFTD)’. Clinical algorithms have been proposed to
differentiate this presentation from other FTD phenotypes and other neurodegenerative
disorders [22]. A recent study outlined the longitudinal clinical characteristics of this cohort,
proposing dedicated classification criteria with streamlined nomenclature highlighting the
main symptomatology: ‘semantic behavioural variant FTD’ (sbvFTD) [23].

The proposed classification criteria for sbvFTD require at least two core criteria: loss
of empathy; difficulty identifying and naming people; rigid thought processes or complex
compulsions; and at least 2 supportive criteria: object-naming difficulties, spared visu-
ospatial functions, and spared motor speech and phonology [23]. It may be a particularly
difficult diagnosis early in the course of the disease and often mistaken for psychiatric
illnesses [23]. The behavioural and language manifestations later progress and overlap
with other FTD phenotypes, particularly svPPA and bvFTD [24–27]. It is radiologically
defined by non-dominant anterior temporal lobe atrophy with progressive bilateral or-
bitofrontal cortex, anterior cingulate, and contralateral anterior temporal lobe atrophy [24].
FTLD TDP-43 type C is the most commonly reported pathology [21,23,25]. While sbvFTD
is increasingly recognised as a distinct phenotype, relatively few case series have been
published, and it is a particularly challenging diagnosis to establish as atrophy patterns
can be challenging to appreciate on standard clinical imaging. Accordingly, our objective is
the detailed clinical and radiological profiling of a cohort of patients with sbvFTD using
standardised clinical instruments and a standardised quantitative neuroimaging protocol.

2. Materials and Methods

Ethics Approval

All aspects of this project were approved by the Ethics Committee of Beaumont
Hospital Dublin (REC reference: 08/90), and each participant gave informed consent prior
to study enrolment.

Participants

A total of 8 participants with right temporal variant FTD and 100 healthy controls
were included in this study. All patients first had standard clinical T1-weighted, FLAIR
and DWI MRI imaging, and 4 patients also underwent [18F] FDG PET-CT imaging. A total
of 7 patients and 100 healthy controls (Table 1) additionally underwent high-resolution
3D T1-weighted imaging to map patterns of grey matter atrophy and diffusion tensor
imaging for quantitative white matter analyses using the same scanner and a standard-
ised neuroimaging protocol described below. Seven patients had a standardised neu-
ropsychological evaluation with the Edinburgh Cognitive and Behavioural ALS Screen
(ECAS) [28]. Three patients had comorbid Amyotrophic Lateral Sclerosis, fulfilling the
El Escorial criteria [29]. Exclusion criteria for both patients and controls included prior
cerebrovascular events (strokes), prior neurosurgery, traumatic brain injury, malignancies,
demyelination, and paraneoplastic syndromes. None of the healthy controls had a family
history of dementia, psychiatric diagnoses, or motor neuron disease among their first- and
second-degree relatives.
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Table 1. The demographic profile of patients with semantic behavioural variant FTD (sbvFTD) and
healthy controls (HC) who underwent quantitative grey and white matter neuroimaging.

Semantic–Behavioural
Variant FTD (sbvFTD) n = 7

Healthy Controls
(n = 100) Group Comparisons

Age
(Years—M/SD) 67.29 (4.92) 65.23 (6.52) 0.416

Sex
(M/F) 4/3 56/44 0.953

Education
(Years—M/SD) 14.43 (3.99) 14.92 (3.34) 0.711

Handedness
(Rt/Lt) 6/1 88/12 0.858

Symptom duration
(Years—M/SD) 5.86 (2.41) n/a n/a

Notes. Group-differences in age and education were examined with one-way analysis of variance and differences
in sex and handedness distributions between patients with semantic–behavioural variant and healthy controls
were contrasted with chi-square test (χ2) tests. Abbreviations: HC—healthy controls, Lt—left, M—mean, Rt—right,
sbvFTD—semantic–behavioural variant FTD, SD—standard deviation.

Neuroimaging

Neuroimaging data were acquired with a standardised protocol on a 3 Tesla Philips
Achieva MR platform. The protocol included fluid-attenuated inversion recovery (FLAIR),
3D T1-weighted (T1w), and diffusion-tensor (DWI) pulse sequences. FLAIR images
were acquired axially with an Inversion Recovery Turbo Spin Echo (IR-TSE) sequence
with the following settings: repetition time (TR)/echo time (TE) = 11,000/125 ms, inver-
sion time (TI) = 2800 ms, field of view (FOV) = 230 × 183 × 150 mm, voxel resolution
(VR) = 0.65 × 0.87 × 4 mm. T1w images were acquired with a 3D Inversion Recovery
Prepared Spoiled Gradient Recalled Echo (IR-SPGR) sequence with the following parame-
ters: TR/TE = 8.5/3.9 ms, TI = 1060 ms, FOV of 256 × 256 × 160 mm, 160 sagittal slices
with no interslice gap, flip angle (FA) = 8◦, VR = 1 mm3, SENSE factor = 1.5. Diffusion-
weighted images (DWI) were obtained with a spin-echo echo planar imaging (SE-EPI)
pulse sequence to acquire DWI data with a 32-direction Stejskal–Tanner diffusion encoding
scheme: TR/TE = 7639/59 ms, FOV = 245 × 245 × 150 mm, 60 axial slices with no inter-
slice gaps, FA = 90◦, VR = 2.5 mm3, SENSE factor = 2.5, dynamic stabilisation and spectral
presaturation with inversion recovery (SPIR) fat suppression.

Morphometric analyses

Patterns of grey matter atrophy in the semantic behavioural variant frontotemporal
dementia cohort were evaluated by voxel-based morphometry (VBM) in contrast to the
cohort of the age- and sex-matched healthy controls. FMRIB’s FSL suite was utilised to
conduct the VBM analyses. [30–32] Standard pre-processing pipelines were implemented
with skull-removal (BET) [33], motion-correction, and tissue-type segmentation. Subse-
quently, grey matter partial volume images were aligned to the MNI152 standard space
using affine registration. A study-specific GM template was created thereafter to which
the grey matter images from each subject were non-linearly co-registered. Permutation-
based non-parametric inference [34] was used for group comparisons, controlling for total
intracranial volumes (TIV), sex, age, and education. TIV was calculated by linearly aligning
each participant’s brain image to the MNI152 standard, and the inverse of the determinant
of the affine registration matrix was calculated and multiplied by the size of the template.
The threshold-free cluster enhancement (TFCE) method [35] was implemented to correct
for multiple comparisons. Resulting statistical maps were visualised in FSLEYES and
thresholded at p < 0.01 to characterise focal grey matter vulnerability patterns.
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White matter analyses

Pre-processing of the raw diffusion data included eddy current corrections and skull
removal before a tensor model was fitted to the data to generate maps of axial diffusivity
(AD), fractional anisotropy (FA), radial diffusivity (RD), and mean diffusivity (MD). The
tract-based statistics (TBSS) stream [36]of FMRIB’s FSL image analysis suite was imple-
mented for non-linear registration and skeletonisation of each subject’s images. FA, AD,
MD, and RD images were merged into a single 4D image file, and a mean FA mask was cre-
ated. Permutation-based non-parametric inference was used for the voxelwise comparison
of diffusivity parameters between patients with semantic behavioural variant frontotempo-
ral dementia and healthy controls using design matrix-defined contrasts incorporating age,
sex, and education as covariates. The threshold-free cluster enhancement (TFCE) method
was implemented, and resulting statistical maps were thresholded at p < 0.0125 TFCE
family-wise error (FWE).

Subcortical segmentation

The standard anatomical segmentation pipeline of the FreeSurfer image analysis
suite [37] was first implemented with ‘recon-all’, which includes non-parametric non-
uniform intensity normalisation, affine registration to the MNI305 atlas, intensity nor-
malisation, skull stripping, automatic subcortical segmentation, linear volumetric reg-
istration, neck removal, tessellation of the grey matter–white matter boundary, surface
smoothing, inflation to minimise metric distortion, and automated topology correction [38].
The automated subcortical segmentation pipeline of FreeSurfer relies on a probabilistic
atlas [39]. Segmentation accuracy has been individually reviewed for all subjects. Esti-
mated total intracranial volumes (eTIV) were calculated in FreeSurfer using Buckner’s
approach [40] and subsequently used as a covariate in group comparisons in addition to
age, sex, and education.

Data availability

Clinical, genetic, or neuroimaging data from individual patients cannot be made
available due to departmental policies, but additional information on data-processing
pipelines can be requested from the corresponding author.

Statistics

Group differences in age and education were examined with one-way analysis of
variance, and differences in sex and handedness distributions between patients with
semantic–behavioural variants and healthy controls were contrasted with chi-square (χ2)
tests (Table 1). As described above, non-parametric permutation-based testing was utilised
for voxelwise grey and white matter analyses. The design matrices included age, sex, and
education as covariates and total intracranial volumes (eTIV) were included as additional
covariates as for voxel-based morphometry. The resulting statistical maps were corrected
for family-wise error. No statistical analyses were run on PET data.

To test the effect of group on subcortical volumes, a multivariate analysis of covariance
(MANCOVA) was conducted with the volumes of individual structures as dependent
variables, the study group (HC, sbvFTD) as independent factor and age, sex, education, and
eTIV as covariates. In case of a significant multivariate omnibus test, post hoc univariate
comparisons were considered significant at p < 0.05, following Bonferroni corrections
for multiple comparisons to reduce Type I error. These analyses were conducted using
IBM SPSS v. 29.

3. Results
3.1. Grey Matter Atrophy Patterns

The demographic profiles of those included in quantitative neuroimaging analyses are
summarised in Table 1. Voxel-based morphometry revealed bilateral anterior and mesial
temporal atrophy with right-sided predominance. Patterns of atrophy also affected the
bilateral hippocampi and the right insular and opercula region (Figure 1).
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Figure 1. Patterns of cortical grey matter signal reduction in sbvFTD based on voxel-based morphom-
etry outputs at p FWE TFCE < 0.01 corrected for age, sex, total intracranial volume, and education.
MNI coordinates (x, y, z)—top row: 36, −17, 5, bottom row: −32, −17, and −26.

3.2. White Matter Patterns

Tract-based spatial statistics captured increased axial diffusivity (AD) in the right ante-
rior temporal lobe in patients with semantic behavioural variant frontotemporal dementia
(Figure 2). Similar to the voxel-based morphometry results, fractional anisotropy (FA)
reductions were noted bilaterally in both anterior temporal and sub-insular regions with a
marked predominance to the right hemisphere (Figure 3). In addition to the temporal and
insular white matter integrity changes, right-predominant orbitofrontal and parietal FA
alterations were also noted at p < 0.0125 FEW-corrected. Increased radial diffusivity was
noted in the right temporal lobe with a clear anterior predominance (Figure 4), but also
some orbitofrontal and sub-insular involvement. Mean diffusivity increases were confined
to the right anterior temporal lobe and right insular regions (Figure 5).
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3.3. Concordance with PET

Four patients had additional PET imaging, which revealed a relative concordance
between focal PET hypometabolism and volume loss based on visual inspection (Figure 6).
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3.4. Subcortical Grey Matter Volume Alterations

There was a significant group effect on subcortical grey matter volumes (Pillai’s
Trace = 0.684, F (14,88) = 13.608, p < 0.001, η2p = 0.684). Significant differences were detected
in the volumes of most subcortical structures between patients with sbvFTD and controls
after Bonferroni corrections for multiple comparisons: left thalamus (p < 0.001), left caudate
(p = 0.014), left putamen (p < 0.001), left pallidum (p < 0.001), left hippocampus (p < 0.001),
left amygdala (p < 0.001), right thalamus (p < 0.001), right caudate (p < 0.001), right putamen
(p < 0.001), right hippocampus (p < 0.001), right amygdala (p < 0.001), and right accumbens
area (p < 0.001). Based on η2p values, larger effect sizes were identified for most right
hemispheric structures compared to the left ones. The volumetric profile of the two study
groups is summarised in Table 2, reporting estimated marginal means and standard error in
patients with sbvFTD and healthy controls, as well as univariate effect sizes and corrected
p-values (Table 2).

Table 2. Subcortical grey matter volumetric profiles in sbvFTD and healthy controls (HC).

Subcortical
Structure

Estimated Marginal Means ± S.E. Statistics

HC (n = 100) sbvFTD (n = 7) Univariate Effect Size p-Corrected

Thalamus L 7360.36 ± 81.57 5687.58 ± 314.29 η2p = 0.207 <0.001

Thalamus R 6916.73 ± 64.76 5180.82 ± 249.52 η2p = 0.309 <0.001

Caudate L 3426.86 ± 36.60 2945.77 ± 141.01 η2p = 0.097 0.014

Caudate R 3526.19 ± 36.89 2575.97 ± 142.12 η2p = 0.292 <0.001

Putamen L 4638.97 ± 48.63 3641.45 ± 187.39 η2p = 0.207 <0.001

Putamen R 4672.54 ± 49.51 2943.83 ± 190.77 η2p = 0.431 <0.001

Pallidum L 1940.44 ± 20.36 1599.42 ± 78.44 η2p = 0.148 <0.001

Pallidum R 1894.54 ± 25.57 1805.70 ± 98.50 η2p = 0.007 1.000

Hippocampus L 4064.14 ± 42.90 3334.91 ± 165.30 η2p = 0.152 <0.001

Hippocampus R 4199.83 ± 42.64 2650.79 ± 164.28 η2p = 0.451 <0.001

Amygdala L 1594.03 ± 20.70 1166.33 ± 79.77 η2p = 0.210 <0.001

Amygdala R 1833.13 ± 21.22 1047.12 ± 81.76 η2p = 0.460 <0.001

Accumbens area L 442.79 ± 9.33 338.15 ± 35.95 η2p = 0.072 0.084

Accumbens area R 528.35 ± 8.56 271.90 ± 32.96 η2p = 0.358 <0.001

Notes. Estimated marginal means ± S.E. for volumes of subcortical structures are adjusted for age, sex, education,
and TIV. Post hoc univariate comparisons between groups were performed following a significant multivariate
omnibus test: Pillai’s Trace = 0.684, F (14,88) = 13.608, p < 0.001, η2p = 0.684. Bold p-values are significant at
p < 0.05 following Bonferroni corrections for multiple comparisons. Partial η2 effect size is interpreted as small
(η2p = 0.01), medium (η2p = 0.06), or large (η2p = 0.14).

3.5. Clinical Profiles

Six patients had a detailed clinical assessment with neuropsychological screening. The
main findings are summarised in Table 3.
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Table 3. The clinical profile of eight representative cases with semantic behavioural-variant FTD
(sbvFTD).

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
Handedness Rt Rt Rt Rt Rt Lt Rt Rt
Age 73 65 71 67 73 64 61 64
Sex M M F M F M M F
Education (years) 17 17 10 15 20 9 13 15
Symptom Duration 2 years 8 years 3 years 10 years 8 years 7 years 6 years 7 years
Presenting symptoms
Prosopagnosia ✓ ✓ ✓ ✓ ✓ ✓ ✓ -
Rigid thought process ✓ - ✓ ✓ ✓ ✓ ✓ ✓
Executive deficits ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Obs. Rep. behaviours ✓ - ✓ ✓ ✓ - ✓ -
Verbal semantic loss - ✓ - ✓ ✓ ✓ ✓ ✓
Ep. Mem. impairment - ✓ ✓ ✓ ✓ ✓ - -
Disinhibition ✓ - - ✓ ✓ - ✓ ✓
Loss of empathy ✓ ✓ ✓ - - ✓ - -
Apathy ✓ - ✓ - - ✓ ✓ ✓
Dietary changes ✓ - - - - - - ✓
Alexithymia ✓ ✓ - ✓ - - ✓ -
Comorbid dx. - Hypertension ALS - - - ALS ALS
ACE-III 97/100 89/100 63/100 41/100 91/100 88/100 61/100 93/100
ECAS 120/136 95/136 85/136 109/136 92/136 81/136 112/136
BNT 25/30 24/30 21/30 - 14/30 21/30 17/30 19/30

Main domains
Affected on testing

Executive Executive Executive Executive Executive Executive Executive Executive
Language Language Language Language Language Language Language Language
Memory Memory Memory Memory Memory Memory Memory Memory

- Fluency - Fluency Fluency Fluency Fluency Fluency
Attention - - - - Attention - -

CSF Not AD-
compatible - - - Not AD-

compatible
Not AD-

compatible - -

AB42
(591–997 pg/mL) 835 - - - 959.6 722.2 - -

Total Tau
(135–345 pg/mL) 602.7 - - - 249 302 - -

P-Tau
(35.0–64.0 pg/mL) 116.5 - - - 46 67.3 - -

Neuroimaging
Clinical MRI
[18F] FDG PET-CT
Quantitative 3D MRI

✓
✓
✓

✓
-
✓

✓
-
✓

✓
✓
-

✓
✓
✓

✓
✓
✓

✓
-
✓

✓
-
✓

Notes: ACE—The Addenbrooke’s Cognitive Examination, BNT—The Boston Naming Test,
CSF—cerebrospinal fluid, Dx.—diagnosis, ECAS—Edinburgh Cognitive and Behavioural ALS Screen,
Ep. Mem. impairment—episodic memory impairment, FDG PET-CT—fluorodeoxyglucose positron emission
tomography, Lt—left, M—mean, Obs. Rep. behaviour—obsessive repetitive behaviours, Rt—right.

4. Discussion

This study highlights the core and radiological features of sbvFTD. The systematic
assessment of a cohort of patients with sbvFTD in a single-centre setting and the computa-
tional analyses of MRI data acquired with a standardised radiological protocol allow the
description of unifying anatomical features.

Clinical observations

Despite differences in symptom duration, our cohort exhibited relatively unifying
clinical features. All cases had initial insight into their deficits. All cases presented with
rigid thought processes, executive dysfunction, and varying degrees of prosopagnosia; the
majority had verbal semantic loss, obsessive repetitive behaviours, and episodic memory
impairment; and some also had a loss of empathy, apathy, disinhibition, alexithymia, and
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dietary changes. The main cognitive domains affected were executive, language, fluency,
and memory. Most cases had anomia with varying levels of impaired comprehension.
Surface dyslexia was also observed. All of the patients exhibited progressive indifference
and a decline in motivation. The initial indifference and lack of motivation in 3 out of 8
cases were initially mistaken for depression. A loss of interest in previously cherished
activities, such as reading, playing golf, and gardening, was a common theme. Incremental
social withdrawal was invariably reported, which is likely to be multifactorial in the
majority of cases due to loss of interest in friends and relatives, difficulty recognising
people, and language deficits. Many of our patients developed an increasingly rigid
routine, such as repetitively watching the same movie, going for long drives to the same
location, listening to the same music, and taking the train to a specific destination to
get an ice cream every day. In addition to the development of a regimented routine,
increasingly rigid and obsessive behaviours were exhibited by some, such as only charging
their mobile phone to exactly 100%. Difficulty recognising people, including familiar faces,
is a common complaint in this cohort, and one patient explained that she mostly identifies
people by their voices. Relentlessly evolving language deficits have particularly severe
quality of life ramifications, impacting employment, job fulfilment, and enjoyment of social
interactions. Increasing difficulty with both low- and high-frequency objects, variable levels
of semantic deficits, frequent circumlocution, and perseveration increasingly affect both
professional communication at work and informal communication in the community. Even
with relatively preserved verbal fluency, digression into tangential anecdotes was noted
in three patients. Family members of affected patients reported notable changes in the
character of their loved ones. Three patients developed a preference for sweet foods, a
symptom commonly observed in both FTD phenotypes and ALS [41]. One patient described
a marked change in musical taste at the onset of symptoms, which the family found unusual.
Inappropriate comments, reference to a passive death wish, and perseverative thoughts
ruminating on previous work issues have also been observed in our cohort. A relative
lack of empathy was noted in two patients when their partner became tearful during the
consultation. Increasing difficulty using everyday technology, such as mobile phones and
laptops, is also commonly reported. One patient became a victim of online fraud due to
impaired judgment.

Radiological considerations

Our voxelwise grey analyses captured bilateral anterior and mesial temporal grey
matter atrophy with a clear right-sided predominance. Bilateral hippocampal involvement
was also observed, as well as disease burden in the right insular and opercula region
(Figure 1). Similar to the bilateral grey matter patterns, bilateral white matter integrity
alterations were noted bilaterally in anterior temporal and sub-insular regions with a clear
right-hemispheric predominance. Interestingly, extra-temporal white matter alterations
have also been observed in orbitofrontal (FA and RD) and parietal (FA) regions. The sen-
sitivity profiles of the various diffusivity metrics to capture sbvFTD-associated changes
differed significantly. While both FA and RD detected bilateral temporal and extra-temporal
changes in orbitofrontal regions, parietal change was only detected by FA, and MD only
detected right anterior temporal lobe and right insular white matter changes. FA is the most
widely used diffusivity metric, which is generally considered sensitive to focal white matter
integrity alterations, albeit histopathologically relatively non-specific. Traditionally, axial
diffusivity is often conceptualised as an ‘axonal’ measure [42], whereas RD has been classi-
cally regarded as a myelin-related marker [43], although this interpretation of diffusivity
alteration is likely to be simplistic. Notwithstanding the differences between the statistical
maps generated based on the different diffusivity metrics, the integrative interpretation
of the voxel-based morphometry and tract-based statistics results is that sbvFTD affects
the bilateral temporal lobes, and extra-temporal frontal and parietal changes can also be
readily captured. In addition to the anatomical concordance of our grey and white matter
analyses, metabolic profiles on PET imaging have also been strikingly concurring (Figure 6),
highlighting bilateral but right-predominant hypometabolism with varying degrees of
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extra-temporal involvement. The review of individual PET images reveals a degree of
heterogeneity in the anatomical extent and symmetry of neurodegeneration. While some
patients in our cohort exhibit relatively focal right temporal-predominant degeneration,
others exhibit more widespread changes. Furthermore, while all patients had a standard
clinical MRI before enrolling in this imaging study, the visual review of their original
clinical T1-weighted clinical images did not permit the detection of extra-temporal atrophy.
The review of their initial clinical DWI/ADC and FLAIR images was unsuitable for the
detection of the underlying white matter degeneration. This highlights the importance
of acquiring high-resolution 3D T1w images in the clinical setting, as these permit quan-
titative post hoc analyses, as demonstrated in this study. We would also advocate the
inclusion of a short DTI protocol so that underlying white matter integrity changes can be
mapped computationally.

Academic considerations

The clinical and radiological profiles of our cohort are largely consistent with the
existing sbvFTD literature. The average age of symptom onset is typically in the early
60s [23]. It often affects highly educated individuals [23] and presents with predominantly
behavioural symptoms initially, such as loss of empathy, rigid thought processes, and
loss of person-specific knowledge [23,27]. It has been proposed that the terminology
‘loss of person-specific semantic knowledge’ better encapsulates the multi-modal loss
of person-specific concepts—face, voice, name, or biographical information—rather than
‘prosopagnosia’, which merely refers to difficulty recognising faces [21,23]. This deficit tends
to precede the loss of verbal semantic knowledge which corresponds with the anatomical
progression of the disease to the contralateral anterior temporal lobe. In addition to the
‘loss of person-specific semantic knowledge’ [22], there are some early clinical features that
help to distinguish sbvFTD from other FTD phenotypes, despite the considerable clinical
overlap that ensues later [22–24]. In contrast to svPPA [1], sbvFTD presents with early
behavioural rather than language impairment [25]. Compulsive behaviours tend to be
driven by verbal targets (e.g., fixation on charging a phone to 100%) rather than visual
targets (e.g., cleaning dishes) [25]. These behaviours include ritualistic preoccupations [22],
such as getting an ice cream at the same place every day. In contrast to bvFTD [6,44],
insight is initially preserved [27], episodic memory is often impaired [22,27], language
dysfunction is more marked [45], dietary changes are less frequent [22], and disinhibition
tends to be more subtle in sbvFTD [23]. The lateralisation of language may also influence
the clinical phenotype. Most people are left-hemispheric dominant, irrespective of their
handedness [46]. Indeed, in the largest case series of sbvFTD, 15% of cases were left-handed
or ambidextrous [23]. From a radiological perspective, sbvFTD is classically associated with
subdominant temporal lobe atrophy and hypometabolism [47]. There is progressive medial-
to-lateral gradient anterior temporal lobe [22,27,48] atrophy associated with ipsilateral
insular [22], hippocampal [27,48], amygdalar [25,27,48,49], and fusiform gyrus [22,48]
atrophy. Subdominant temporal lobe atrophy correlates with a loss of socioemotional non-
verbal semantic knowledge [23], e.g., recognising emotion [45,49–53], peoples’ faces [22,24],
and social cues [53,54]. Focal hypometabolism correlates with psychiatric symptoms, low
mood, and anxiety [55]. The disease later progresses to involve the contralateral anterior
temporal lobe [22,23,25,27,48], hippocampus [27,48], amygdala [27,48], fusiform gyrus [48],
bilateral anterior cingulate [24], and orbitofrontal regions [21,22,24,25,49] [22]. The degree
of atrophy inversely correlates with disease duration [25]. Similar to svPPA, FTLD-TDP43
type C is the most commonly reported pathology [21,56]; however, FTLD-tau and FTLD
TDP43 type A and B have also been described [56,57]. The different molecular pathologies
manifest in relatively different clinical phenotypes: FTLD-TDP43 type C leads to a temporal
predominant degeneration associated with prominent semantic impairment, whereas
FTLD-tau and FTLD-TDP43 types A and B lead to frontal-predominant degeneration with
prominent behavioural impairment [56,57].
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ALS-FTD

While sbvFTD is a well-recognised clinical entity, ALS-associated sbvFTD is not typi-
cally considered as a separate phenotype. ALS-FTD has an ever-growing literature [58,59].
After a series of early descriptions of ALS cases with marked behavioural impairment [60],
the identification of GGGGCC hexanucleotide repeat expansions in ALS has given con-
siderable impetus to ALS-FTD research [61]. Imaging studies in ALS have gradually
shifted their focus from primary motor regions to the evaluation of frontotemporal, cere-
bellar, and subcortical regions [18,59,62–68]. While initially, executive dysfunction, verbal
fluency deficits, pseudobulbar affect, and disinhibition were considered the hallmarks
of ALS-associated neuropsychological profile [12,16,60,69,70], the high incidence of co-
morbid language deficits, memory impairment, apathy, and deficits in social cognition
were also increasingly recognised in ALS [71–78]. The practical ramifications of cogni-
tive and behavioural impairment in ALS cannot be underestimated [79], as they impact
survival, compliance with assistive devices, participation in clinical trials, and caregiver
burden [80,81]. Language deficits in ALS have been previously linked to both grey and
white matter degeneration [73], apathy has been linked to nucleus accumbens atrophy [82],
memory impairment to hippocampal pathology [83], and amygdala [84,85] and thalamus
degeneration has been implicated in multi-domain deficits [86,87], but sbvFTD is not
universally recognised as a separate entity in ALS.

Subcortical involvement in ALS-FTD and FTD phenotypes

The physiology role of specific subcortical nuclei in relaying distinct cortico-cortical
and cortico-basal networks is well described [88,89], and these networks have been impli-
cated in disease propagation in ALS and ALS-FTD [90,91]. Thalamic degeneration is particu-
larly well characterised across the spectrum of ALS-FTD phenotypes [86,92–95]. Subcortical
involvement and frontotemporal dysfunction are also recognised in less common motor
neuron disease phenotypes, such as primary lateral sclerosis [96,97]. Presymptomatic thala-
mic changes have been described in GGGGCC hexanucleotide repeat expansion carriers by
several groups long before projected symptom onset [98–100]. However, hexanucleotide
repeat expansion status is not the sole determinant for subcortical degeneration in ALS;
considerable thalamic and subcortical grey matter degeneration can also be observed in
C9orf72 negative ALS cohorts [101,102]. Hippocampal degeneration also has considerable
literature in both FTD [103] and ALS [83,104], and more recent studies have examined
specific hippocampal subfields separately as they relay different networks and contribute to
the function of specific limb circuits including Papez circuit [105–107]. Accumbens nucleus
and amygdalar degeneration [84] are also well recognised along the ALS-FTD spectrum
and have been linked to specific neurocognitive manifestations [108], but differences in
left and right hemispheric pathology are seldom specifically evaluated. While the cortical
profile of sbvFTD is well characterised [47,56], subcortical involvement is less well studied.

Clinical implications

As demonstrated by the clinical profile of our cohort, right temporal variant ALS-
FTD/FTD may be initially mistaken for depression or psychiatric conditions, and there may
be a very significant interval between symptom onset and definite diagnosis. Misdiagnoses
and diagnostic delays not only cause frustration in affected families but also delay support-
ive interventions, genetic screening, timely resource allocation, capacity testing, etc. The
wider recognition of sbvFTD will eventually lead to an earlier diagnosis of these patients,
a better understanding of disease mechanisms [23], and, ultimately, the development of
robust research frameworks to accurately stratify FTD phenotypes [21]. Our report also
highlights the role of PET imaging in suspected cases and the limitations of visual inspection
of standard clinical MRI. While in advanced disease, visual inspection of structural images
may reveal ex vacuo ventricular dilation and widened sulci, these images are not suitable to
appraise cortical thickness and density reductions, and visual inspection also precludes the
assessment of deep subcortical grey matter volume reductions. Similarly, while FLAIR or
T2w imaging would capture microvascular disease burden, degenerative changes in specific
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white matter tracts can only be evaluated by 3D DTI-derived or more advanced (NODDI,
HARDI) white matter imaging techniques [109,110]. While until recently, quantitative
neuroimaging has primarily offered group-level imaging signatures in various ALS-FTD
phenotypes, with the advent of novel machine-learning [111–116] and robust z-score-based
approaches [117–120], single MRI data sets can now be meaningfully interpreted [121].

Study limitations

This study is not without limitations. Despite the relative clinical and radiological
homogeneity of our cohort, there were considerable differences in the symptom duration
profile of our patients. A key limitation of this study stems from its cross-sectional de-
sign. While we capture and describe a unifying radiological signature, the cross-sectional
analyses preclude the characterisation of the clinical and radiological evolution of disease
trajectories. Only a prospective, longitudinal, multi-time point study would elucidate
anatomical propagation patterns and confirm whether progressive contralateral temporal
lobe atrophy ensues eventually. Finally, we do not have accompanying neuropathology
data on this cohort to offer histological descriptions and TDP-43 subtyping. Owing to the
small sample size of our cohort, the imaging profile of the sbvFTD group has not been
systematically contrasted to other ALS-FTD phenotypes.

Future directions

Large longitudinal studies are needed with a comprehensive neuropsychological bat-
tery to assess the clinical and radiological trajectory of this entity with subsequent post
mortem examination and TDP-43 subtyping. In light of the heterogeneity of temporal
lobe pathology in other neurodegenerative disorders, the clinical correlates of right tem-
poral lobe pathology should also be studied in other motor neuron diseases (PLS, HSP,
and SBMA), Alzheimer’s disease, and movement disorders [122–130]. In the assessment
of patients with suspected neurodegenerative conditions, clinical MRI protocols should
routinely incorporate a 3D T1-weighted sequence and a DTI sequence to enable post hoc
quantitative grey and white matter analyses, which are useful for both diagnostic and
monitoring purposes.

5. Conclusions

Our data suggest a unifying imaging signature in sbvFTD encompassing right-predominant
but bilateral temporal lobe degeneration. In addition to the striking temporal disease bur-
den, we have also demonstrated considerable subcortical grey matter pathology, as well as
insular, frontal, and parietal involvement. Due to its distinguishing clinical features, the
associated diagnostic challenges and singular metabolic, diffusion, and structural signature,
sbvFTD should be considered a distinct clinical phenotype along the FTLD continuum.
The increasing recognition of this phenotype and increased research efforts dedicated to
sbvFTD may ultimately enhance the development of consensus management protocols.
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Glossary
AD: Axial Diffusivity, ALS: amyotrophic lateral sclerosis, ALSod: ALS online database, ANOVA:

analysis of variance (ANOVA), ASO: antisense oligonucleotide, BOLD: blood-oxygen-level-dependent
(BOLD) signal, C9+: ALS patients with GGGGCC hexanucleotide repeat expansion in C9orf72, C9-:
ALS patients without GGGGCC hexanucleotide repeat expansion in C9orf72, C9orf72: chromosome
9 open reading frame 72, CC: corpus callosum, CT: cortical thickness, CST: corticospinal tract, DTI:
diffusion tensor imaging, DWI: diffusion-weighted imaging, EPI: echo-planar imaging, FA: fractional
anisotropy, FC: functional connectivity, fMRI: functional MRI, FLAIR: fluid-attenuated inversion
recovery, FOV: field of view, FSL: FMRIB’s Software Library, FTD: frontotemporal dementia, FTLD:
frontotemporal lobar degeneration, FWE: familywise error, GM: grey matter, HARDI: High-Angular-
Resolution Diffusion Imaging, HC: healthy control, IR-SPGR: inversion recovery prepared spoiled
gradient recalled echo, LH: left hemisphere, Lt: Llft, LMN: lower motor neuron, M1: primary motor
cortex, MANCOVA: multivariate analysis of covariance, ML: machine learning, MND: motor neuron
disease, MNI: Montreal Neurological Institute, MNI152: Montreal Neurological Institute 152 standard
space, MRI: magnetic resonance imaging, MRS: MR spectroscopy, NISALS: Neuroimaging Society
in ALS, NIV: non-invasive ventilation, NODDI: neurite orientation dispersion and density imaging,
PBA: pseudobulbar affect, PCR: polymerase chain reaction, PD: Parkinson’s disease, PMC: primary
motor cortex, QC: quality control, RH: right hemisphere, Rt: right, RD: radial diffusivity, ROI: region
of interest, rs-fMRI: resting-state functional MRI, SC: structural connectivity, SD: standard deviation,
SE-EPI: spin echo planar imaging, SENSE: sensitivity encoding, SPIR: spectral presaturation with
inversion recovery, T: Tesla, T1w: T1-weighted imaging, TCV: total cerebellar volume, TDI: Track
Density Imaging, TE: echo time, TI: inversion time, TIV: total intracranial volume, TR: repetition time,
UMN: upper motor neuron, VR: voxel resolution, WM: white matter.
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