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Abstract: Calcium imaging, especially two-photon imaging, has become essential in neuroscience for
studying neuronal and astrocytic activity under in vivo and in vitro conditions. Current advances in
the development of calcium sensors as well as imaging hardware enable high-frequency measure-
ments of calcium signals in hundreds of cells simultaneously. The analysis of these large datasets
requires special tools and usually a certain level of programming experience. Despite advance-
ments in calcium imaging analysis software development, significant gaps remain, particularly for
data acquired at a high sampling rate that would allow for the spectral analysis of calcium signals.
The FluoAnalysis MATLAB toolbox addresses these gaps by offering a comprehensive solution
for analyzing simultaneously measured calcium imaging and electrophysiological data. It features
both GUI-based and command-line approaches, emphasizing frequency domain analysis to reveal
network-level oscillatory signals linked to single-cell activity. In addition, the toolbox puts special
emphasis on differentiating between astrocytes and neurons, revealing the interactions between the
network activity of the two major cell types of the brain. It facilitates a streamlined workflow for data
loading, ROI identification, cell classification, fluorescence intensity calculation, spectral analysis, and
report generation, supporting both manual and automated high-throughput analysis. This versatile
platform enables the comprehensive analysis of large imaging datasets. In conclusion, the FluoAnaly-
sis MATLAB toolbox provides a robust and versatile platform for the integrated analysis of calcium
imaging and electrophysiological data, supporting diverse neuroscience research applications.

Keywords: astrocytes; neurons; neural activity; software; two-photon; electrophysiology; oscillations;
spectral analysis

1. Introduction

Calcium imaging, especially two-photon imaging, has emerged as a pivotal tech-
nique in neuroscience for studying neuronal activity and dynamics under both in vivo
and in vitro conditions. This method allows for the visualization and quantification of
calcium signals in a large number of cells simultaneously, providing valuable insights
into neural communication, signal transduction, and the overall functional architecture
of neural circuits [1]. In addition to neurons, calcium imaging is particularly suitable to
study the activity of astrocytes, the major non-excitable cells of the brain that play indis-
pensable roles in a multitude of physiological and pathophysiological brain functions.
Despite significant advancements and the recent release of decent calcium imaging analysis
packages [2–7], there remain critical gaps in the software tools available for the analysis of
calcium signals [8], particularly in the context of astrocytes that are often neglected due to
the lack of specialized software for analyzing their activity.

Another critical limitation is the absence of software capable of performing a parallel
analysis of imaging and electrophysiological data. Integrating these two types of data is
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crucial for a comprehensive understanding of cellular and network activity, as calcium
imaging and electrophysiological data provide complementary insights into cellular func-
tion. Electrophysiological recordings offer a precise temporal resolution, while calcium
imaging provides the spatial context. However, most available software solutions do not
support a parallel analysis, forcing researchers to rely on separate, often incompatible tools
for each data type [9].

Furthermore, the available analysis tools primarily focus on detecting single events
(peaks) in calcium signals [10,11], paying much less attention to revealing the spectral
components of the oscillating calcium signals that may provide deeper insights into the
network dynamics of large-scale neuronal and astrocytic ensembles and decipher the
underlying biological processes. Notably, the spectral analysis of electrophysiological
signals has previously led to ground-breaking findings about neuronal oscillations and
their roles in various vital physiological processes [12]. Despite the success of the spectral
analysis of electrophysiological recordings, however, the current analysis tools lack robust
functionality for decomposing and analyzing different frequency components in imaging
data, which may be even more relevant when considering the high-frequency calcium
fluctuations in thin astrocytic processes [13]. This limitation hampers our ability to fully
interpret the complex dynamics of calcium signaling [14].

To address these gaps, we introduce a comprehensive analysis software for calcium
imaging data. The FluoAnalysis MATLAB toolbox provides both GUI-based and command-
line approaches for the simultaneous analysis of calcium imaging and electrophysiological
data. In addition, the toolbox puts special focus on investigating the frequency domain of
the imaging results for revealing network-level oscillatory signals that can be attributed to
single-cell activity in order to fully utilize the advantages of the imaging methodology.

2. Results

The FluoAnalysis MATLAB toolbox is controlled by well-organized MATLAB classes.
Most of the functions in these classes can be called from user-friendly GUIs as well. The
analysis workflow consists of the following modules: (1) loading of the imaging data
file, (2) loading of the corresponding electrophysiological recording, (3) identification of
regions of interests (ROIs), (4) classification of identified ROIs as neurons or astrocytes,
either automatically or manually, (5) calculation of the ∆F/F0 traces from the imaging
data, (6) spectral analysis of the imaging and electrophysiological signals, and (7) creating
detailed reports in a Word format. The workflow developed with the GUI can used for
automated analysis in the non-interacting mode.

2.1. Loading Calcium Imaging Data

The ‘loadImage’ function is the primary component of the FluoAnalysis toolbox. This
function is designed to import various image file formats, including multipage .TIFF files,
.MES and .MESC files of the MES software package for Femtonics two-photon microscopes,
as well as previously analyzed .MAT files in MATLAB format. For .TIFF files, the function
gathers metadata to ascertain image dimensions, frame count, and channel number, sub-
sequently loading the data into a multidimensional array. The .MES and .MESC files are
processed with particular attention to their unique metadata structures. Additionally, the
function can handle previously analyzed .MAT files, facilitating the integration of historical
datasets into current analyses. Either frame- or line-scan images can be loaded into the
software. Moreover, the ‘loadImage’ function can also load pre-defined ROI files created by
the toolbox during automatic image acquisition on Femtonics two-photon microscopes.

After the image file is loaded, it can be visualized and browsed by a slider to easily
assess the dynamics of the fluorescent signal (Figure 1). Two independent channels can be
displayed to explore signals from different fluorescent indicator dyes or proteins.
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Figure 1. Main GUI of the FluoAnalysis toolbox. A multi-tiff file, imported into the GUI with the 
identified ROIs marked by yellow contours (top left). Average projection of the 546 imported frame 
is visible at the top right, followed by a thresholded binary image and the ROIs in pseudo colors 
below. ROI detection and ΔF/F0 calculation parameters are located in the middle column. The cal-
culated ΔF/F0 traces for all identified ROIs during a control period and application of 1 mM ATP to 
a hippocampal brain slice expressing GCaMP2 calcium-sensitive fluorescent protein in neurons and 
astrocytes are visible in the bottom left. 
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The ‘loadEphys’ function is an integral part of our analysis software for synchroniz-

ing electrophysiological recordings with calcium imaging data. This function loads elec-
trophysiological data from .ABF files and aligns it with the imaging session using the 
metadata in the .ABF file. If the electrophysiological recording was continuous during 
multiple imaging sessions, the function can also identify the electrophysiological data seg-
ment corresponding to a specific imaging session, leveraging tagged markers within the 
.ABF file when available. The extracted segment is downsampled by a factor of 10 and 
stored within the object, ensuring precise temporal alignment between electrophysiologi-
cal and imaging data. This synchronization is crucial for the comprehensive analysis of 
neuronal activity, providing a robust framework for correlating electrophysiological and 
calcium signals. 

Figure 1. Main GUI of the FluoAnalysis toolbox. A multi-tiff file, imported into the GUI with the
identified ROIs marked by yellow contours (top left). Average projection of the 546 imported frame
is visible at the (top right), followed by a thresholded binary image and the ROIs in pseudo colors
below. ROI detection and ∆F/F0 calculation parameters are located in the middle column. The
calculated ∆F/F0 traces for all identified ROIs during a control period and application of 1 mM ATP
to a hippocampal brain slice expressing GCaMP2 calcium-sensitive fluorescent protein in neurons
and astrocytes are visible in the bottom left.

2.2. Loading Corresponding Electrophysiological Recording

The ‘loadEphys’ function is an integral part of our analysis software for synchronizing
electrophysiological recordings with calcium imaging data. This function loads electrophys-
iological data from .ABF files and aligns it with the imaging session using the metadata
in the .ABF file. If the electrophysiological recording was continuous during multiple
imaging sessions, the function can also identify the electrophysiological data segment
corresponding to a specific imaging session, leveraging tagged markers within the .ABF file
when available. The extracted segment is downsampled by a factor of 10 and stored within
the object, ensuring precise temporal alignment between electrophysiological and imaging
data. This synchronization is crucial for the comprehensive analysis of neuronal activity,
providing a robust framework for correlating electrophysiological and calcium signals.

2.3. Identifying Cells

The ‘findROIs’ function in the FluoAnalysis toolbox is designed to identify regions of
interest (ROIs) on a reference image. The reference image can be either made by external
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tools and loaded by a GUI command or created from a given set of the series of frames
applying the average, maximum, or standard deviation function to the selected frames.
After loading or creating the reference image, various parameters can be set to threshold it
and create a binary image from which objects are extracted and filtered based on specified
cell size criteria. For line-scan data, the function maps the ROIs to line-scan positions and
filters out objects with insufficient pixel representation. The identified ROIs are visualized
in pseudo color on the GUI. This comprehensive approach ensures the accurate supervised
detection and mapping of ROIs, crucial for analyzing cellular activity.

To facilitate the investigation of the same cells over multiple imaging sessions, the
ROIs can be imported from a previously analyzed .MAT file using the ‘File > Load objects
from another file’ GUI menu. To adjust for specimen or objective movements, the imported
ROIs can be moved in the x–y plane using the ‘Tools > Move ROIs’ menu option.

2.4. Classification of Identified Cells as Neurons or Astrocytes

The FluoAnalysis toolbox is tailored to analyze calcium imaging data measured si-
multaneously in neurons and astrocytes. Therefore, it is crucial to appropriately classify
cell types. The ‘autoClassifyCells’ function provides an automated classification method
based on the ratio of green channel (calcium-sensitive dye or protein, e.g., Oregon Green
BAPTA or GCaMP-6) and red channel (fluorescent astrocyte marker, e.g., SR-101) fluores-
cence. ROIs are first validated as cells if the ROI area is higher than a predefined threshold
(100 pixels), the eccentricity of the ROI is lower than 0.85 (assuming that mostly the cell
bodies are labelled), and the mean fluorescent intensity within the ROI is at least two times
higher than the mean fluorescent intensity in the close vicinity of the ROI. The identified
cells are further classified as astrocytes if they have sufficient area, appropriate eccentricity,
and specific intensity ratios indicating glial characteristics. Conversely, neurons are identi-
fied based on distinct intensity profiles and ratios indicative of neuronal properties. This
automated approach streamlines the identification and categorization of cellular elements
in imaging datasets, enhancing the efficiency and accuracy of data analysis.

The automatic classification can be replaced or overridden by manual cell identification
using a GUI (Figure 2). The ‘Tools > Cell validation’ menu provides a user interface that
displays the reference image, a high magnification view of the green and red channels of
the ROIs, as well as the calculated ∆F/F0 traces for each cell to allow the experimenter to
make an informative decision on the cell type.

Moreover, cells can be extracted as individual images by the ‘exportCells2DB’ func-
tion to be classified by external programs or used as a training set for machine learning
approaches. The classification results can be imported back to the original dataset by the
‘importCellAnnotation’ function.

2.5. Analysis of Calcium Activity

Following ROI identification, cell validation, and cell type classification, the ‘calculateF’
and ‘calculateDeltaFperF0’ functions compute fluorescence intensity (F) and relative fluo-
rescent intensity changes (∆F/F0) within ROIs across multiple frames and channels from
raw imaging data. Additionally, if a red channel is present, the green-to-red fluorescence
ratio change (∆G/R) is calculated as the fluorescent intensity change from the first frame
in the green channel, divided by the fluorescent intensity of the red channel to provide a
measure that can minimize potential movement artefacts. The user can choose between
automatic or manual background correction and can also override the control range across
which the F0 value is calculated. The GUI also provides a convenient way to smooth the
resulting ∆F/F0 traces (Figure 1).
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Figure 2. A GUI for classification and spectral analysis of Ca2+ imaging data of individual cells. High
Ca2+ imaging sampling rate (68 Hz) together with the unique spectral analysis capabilities of the
FluoAnalysis toolbox enables the identification of a high-frequency imaging signal that corresponds
to the firing rate of a cortical pyramidal cell as measured by patch clamp electrophysiology. All
imaged cells (listed on the right) can be individually investigated. Automatic classification of the
cells as neurons or astrocytes, based on the ratio of green and red channel intensities in the ROIs, can
be manually overridden. Wavelet analysis can be easily applied at different frequency bands.

2.6. Wavelet Analysis

The FluoAnalysis toolbox puts special focus on the analysis of calcium imaging data
acquired at a high sampling rate, which enables the identification of periodic activity
in the physiologically relevant frequency ranges identified for neurons, like the delta
(0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), or beta (13–30 Hz) frequency bands [12,15]
that are correlated with distinct physiological and pathological functions. The ‘calculate-
Wavelet’ function is designed to perform a wavelet analysis on both calcium imaging
and electrophysiological data, providing insights into the dynamics of different frequency
components of these signals. The function utilizes the continuous wavelet transform (CWT)
with a complex Morlet wavelet to analyze the time series data. The normalized wavelet
coefficients are stored as a function of both time and frequency, facilitating the subsequent
analysis of temporal dynamics and frequency content. This dual approach allows for the
simultaneous analysis of both calcium imaging and electrophysiological data within a
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unified framework and enables researchers to investigate and compare the temporal and
frequency domain characteristics of neuronal and astrocytic activity (Figure 2).

2.7. Analysis of Network Synchronization

Since the FluoAnalysis toolbox is specifically tailored for the analysis of calcium
activity simultaneously measured in large numbers of astrocytes or neurons, it provides
different parameters that can be used to characterize network synchronization.

The ’calculatePhaselock’ function is designed to assess the phase synchrony between
all cell pairs in the field of view. It computes the phase-locking value (PLV), a measure of the
consistency in phase relationships between pairs of cells, which is crucial for understanding
neural network dynamics. A specific frequency range can be set for the function in order to
calculate phase synchronization in different frequency bands. The function also manages
data edge effects by zeroing out the first and last segments of the phase data, thereby
ensuring the accuracy of the PLV calculations. The results are stored in a symmetric
matrix format, allowing for the straightforward interpretation and further analysis of
cell-pair synchrony.

The ‘calculateCrossCorrelation’ function provides another measure of network syn-
chrony. It computes the cross-correlation between ∆F/F0 traces of all cell pairs. Alterna-
tively, it can calculate the auto-correlation of the ∆F/F0 trace of a single cell. It automatically
handles differences in signal length and adjusts parameters such as step size and window
size based on the sampling interval, ensuring consistency across different datasets. The
function also offers flexibility in defining the time shift range within which the signal corre-
lation is determined. This function calculates cross-correlation across sliding windows of
the data, providing a time-resolved analysis of signal synchronization. The results include
the maximum correlation values and the corresponding time lags that are stored within the
class to facilitate further analysis.

2.8. Report Generation

When analyzing a large dataset, it is crucial to have the ability to summarize the results
in an easily comprehensible manner. The ‘reportCellData’ function generates a compre-
hensive report of the main results, formatted as a Word document. The report contains
detailed information on imaging settings, cell types, and electrophysiological recordings,
supplemented with graphical representations of the wavelet transforms and ∆F/F0 traces.
In addition, it provides segmented imaging data, distinguishes between astrocytes, neu-
rons, and non-cellular regions, with images and analyses for individual cells. Examples of
automatically generated reports are shown in Figures 3 and 4 for an in vivo Ca2+ imaging
measurement of visual cortex neurons and astrocytes under ketamine/xylazine anesthesia,
which is known to induce permanent slow wave activity [16,17], and it is demonstrated by
simultaneously obtained Ca2+ imaging and electrophysiological data (Figure 4).

2.9. Working with Multiple Datasets

To facilitate the analysis of multiple measurements, the ImagingDataSet class provides
the ability for handling a large number of results calculated using the ImagingData class.
The ‘loadDataFromFolder’ function imports .MAT files containing previously analyzed
results. Subsequently, the ImagingDataSet class provides various ways for applying the
same function to each result set for monitoring activity changes on a longer timescale or to
compare the calcium activity under different conditions.
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Figure 3. Automatic report created for individual cells. (A) Location of a given cell is marked by a white
rectangle on the whole field of view (left). A higher magnification image of the cell together with ROI
boundary and separate images of the green and red channel fluorescence intensity are also provided
(right). (B) ∆F/F0 trace of the given ROI (top) and wavelet analysis of this trace in different frequency
bands. The automatically generated report contains all the information for all the identified ROIs.
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Figure 4. Automatic report created for network activity. (top) Spectral analysis of all cells within an
imaging session. Each line shows the wavelet coefficients summed at different frequencies for a given
cell. Astrocytes are shown in red, neurons in green and regions not identified as cells are shown in
blue. Scale of the x-axis is the same as in (bottom). (bottom) Power distribution of the simultaneously
measured field potential signal shows high correlation with the imaging frequency components.
The report, automatically generated by the ImagingDataSet class, contains this information for all
frequency bands for a large number of corresponding imaging sessions.

3. Discussion

The FluoAnalysis MATLAB toolbox offers a sophisticated and user-friendly solution
for the comprehensive analysis of calcium imaging data integrated with electrophysiologi-
cal recordings. By organizing its functionalities into well-structured MATLAB classes with
accessible GUIs, the toolbox facilitates a streamlined and efficient workflow. This workflow
encompasses essential steps such as data loading, ROI identification, cell classification,
fluorescence intensity calculation, spectral analysis, and report generation, all of which can
be executed manually through the GUI or automated for a high-throughput analysis.

Researchers can use the toolbox for investigating the dynamics of neuronal and as-
trocytic activity on both cellular and network levels to explore the cellular mechanisms
underlying physiological and pathophysiological functions. It can also be used to assess
the effects of drugs on neuronal and astrocytic activity, understand drug mechanisms, and
identify potential therapeutic targets. The analysis of even large imaging datasets may
enable the high-throughput screening of compounds.
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Current calcium imaging analysis tools all offer basic functionalities, like cell segmen-
tation and spike detection, which make them suitable to extract the essential features of
neuronal calcium signaling. However, state-of-art software, like CaImAn [3], EZcalcium [2],
and Suite2p [4] usually put special focus on a feature that make them extremely useful
in achieving specific goals (Table 1). In terms of automation, CaImAn and Suite2p both
offer fully automated workflows, making them ideal for handling large-scale datasets
with minimal user intervention. However, a certain level of programming experience in
either MATLAB or Python is required to use them efficiently, posing a barrier for those less
familiar with coding. In contrast, Ezcalcium and FluoAnalysis provide a user-friendly GUI,
making it more accessible to researchers without extensive programming skills. CaImAn is
particularly strong in providing advanced algorithms for non-rigid motion correction and
automated cell segmentation, while Suite2p excels in speed, leveraging GPU acceleration
to quickly process data from thousands of neurons. FluoAnalysis is distinguished in three
areas, which makes it unique in relation to other calcium imaging analysis software pro-
grams. It can integrate electrophysiological data and process these data simultaneously
with imaging results. Furthermore, FluoAnalysis focuses on the differentiation between
neurons and astrocytes, enabling the parallel analysis of calcium signaling of both cell types.
Most importantly, FluoAnalysis pays attention to analyzing oscillatory signals in the fre-
quency domain rather than detecting individual peaks. These features make FluoAnalysis
particularly useful in investigating network activity.

Table 1. Comparison of features of the FluoAnalysis toolbox with other calcium imaging analy-
sis tools.

Feature CaImAn Ezcalcium Suite2p FluoAnalysis

Graphical
User interface − + − +

Automation Level Fully automated Semi-automated Fully automated Fully automated

Motion Correction + + + Limited; basic motion
correction capabilities

Cell Segmentation +(sophisticated,
automatic)

+(automatic
and manual)

+(sophisticated,
automatic)

+(automatic
and manual)

Handling multiple
cell types − − − Differentiate between

neurons and astrocytes

Integration with electro-
physiological data − − − +

Spike detection + + + +

Spectral analysis − − − +

4. Conclusions

In conclusion, the FluoAnalysis MATLAB toolbox provides a powerful and versatile
platform for the comprehensive analysis of calcium imaging and electrophysiological
data, supporting a wide range of research applications in neuroscience. The toolbox is
especially focused on the analysis of oscillatory activity, occurring at the network level,
simultaneously measured in large number of cells. The analysis pipeline offered by the
FluoAnalysis toolbox can be fully automated but can also be used by researchers with no
previous programming skills, through a user-friendly graphical user interface.

5. Materials and Methods
5.1. Software Setup

The FluoAnalysis toolbox is freely available to download from GitHub and the Matlab
File Exchange website, along with sample data that demonstrate the capability of the soft-
ware. It can be installed by simply adding the downloaded files to the MATLAB path. After
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typing ‘FluoAnalysis’, a GUI will load which can run all the individual modules described
here. The different functions can also be applied by the <instance name>.<function name>
command. Programming skills are not required to use the FluoAnalysis toolbox. However,
a basic understanding of the Matlab programming language may help with fine-tuning
various parameters, hardcoded in the scripts (e.g., to change the wavelet type used in the
wavelet analysis).

FluoAnalysis was tested on MATLAB versions from R2020a to R2024a. The following
MATLAB toolboxes are required to be installed to use FluoAnalysis: Control System,
Signal Processing, Image Processing, Statistics and Machine Learning, Wavelet, Database,
Bioinformatics, and Computer Vision.

5.2. In Vitro Ca2+ Imaging

Ca2+ imaging was performed using a Femto2D two-photon microscope (Femtonics,
Budapest, Hungary) equipped with a 10× water immersion objective (N.A. 0.30). Acute
hippocampal/cortical slices were incubated right after slicing by changing the normal
ACSF solution in the interface type chamber to an ACSF containing 1 µM of the astrocyte-
specific marker SR101 for 20 min at 37 ◦C [18,19]. Brain slices were either prepared from
rats stably expressing the Ca2+-sensitive fluorescent protein GCaMP2, or were incubated
with 10 µM of the calcium-sensitive fluorescent dye OGB-1 AM in ACSF at 37 ◦C for 1 h
in the dark under a continuously oxygenated atmosphere for another one hour after the
initial one hour of incubation in the interface-type chamber [20]. Slices were transferred
into a submerge-type recording chamber mounted on the stage of the microscope and
were superfused with oxygenated ACSF (3 mL/min, ~30 ◦C). Images were taken at the
traditional sampling frequency of 1 Hz (Figure 1) or at a much higher rate of 68 Hz (Figure 2)
for identifying high-frequency components in neuronal and astrocytic Ca2+ signals. All
fluorescent compounds were excited at 900 nm by a MaiTai laser source (Spectra-Physics,
Milpitas, CA, USA) or at 920 nm by a FemtoFiber ultra 920 laser source (Toptica Photonics
AG, Graefelfing, Germany). Emitted fluorescence was monitored at 475–575 nm (OGB-1)
and 600–700 nm (SR101).

5.3. In Vivo Ca2+ Imaging

Wistar rats (>300 g), prepared with a cranial window, were injected with 160 µM
OGB-1 and 140 µM SR-101, suspended in 10 µL ACSF, through an implanted epidural
cannula, 150 min before the imaging sessions. All measurements were performed under
ketamine–xylazine anesthesia (Figures 3 and 4). Head fixation was achieved using an
implanted aluminum plate or a stereotaxic frame. With the head fixed, the rest of the
body was rotated so the animal was laying on its left side. This helped to minimize any
movement artifacts resulting from breathing during imaging. Imaging data were recorded
from a 100–300 µm depth, corresponding to layer 2 of the V1 primary visual cortex, using
a Femto2D two-photon microscope (Femtonics, Budapest, Hungary), equipped with a
10× water immersion objective. Cells were excited by a 920 nm laser (FemtoFiber ultra
920, Toptica Photonics AG, Graefelfing, Germany). OGB-1 fluorescence was detected at
475–575 nm, and SR-101 at 600–700 nm. A total of 85 cells were imaged simultaneously
in 60 s long line-scan sessions at a sampling frequency of 125 Hz. Changes in OGB-1
fluorescence were detected in the line-scanning mode to achieve a high sampling frequency.
The scanning path was determined automatically based on the position of identified cells.
Importantly, two crossing line paths were applied to each cell to minimize the divergence
of the scan head movements from the set path due to its inertia. The scanning order of the
identified cells was optimized using the travelling salesman method.

Author Contributions: M.P. and L.H.: code development, writing original draft, writing final text,
editing, and visualization. M.P.: experimental data acquisition. L.H.: project administration and
funding. All authors have read and agreed to the published version of the manuscript.
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