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Abstract: Epilepsy seizure prediction is vital for enhancing the quality of life for individuals with
epilepsy. In this study, we introduce a novel hybrid deep learning architecture, merging DenseNet
and Vision Transformer (ViT) with an attention fusion layer for seizure prediction. DenseNet captures
hierarchical features and ensures efficient parameter usage, while ViT offers self-attention mechanisms
and global feature representation. The attention fusion layer effectively amalgamates features from
both networks, guaranteeing the most relevant information is harnessed for seizure prediction. The
raw EEG signals were preprocessed using the short-time Fourier transform (STFT) to implement
time–frequency analysis and convert EEG signals into time–frequency matrices. Then, they were fed
into the proposed hybrid DenseNet–ViT network model to achieve end-to-end seizure prediction.
The CHB-MIT dataset, including data from 24 patients, was used for evaluation and the leave-
one-out cross-validation method was utilized to evaluate the performance of the proposed model.
Our results demonstrate superior performance in seizure prediction, exhibiting high accuracy and
low redundancy, which suggests that combining DenseNet, ViT, and the attention mechanism can
significantly enhance prediction capabilities and facilitate more precise therapeutic interventions.

Keywords: seizure prediction; STFT; hybrid model; DenseNet; vision transformer

1. Introduction

Epilepsy, a prevalent neurological condition marked by repeated and unforeseeable
seizures, impacts more than 50 million individuals globally [1]. Epilepsy attacks are ex-
tremely uncertain and sudden, which seriously affects the physical and mental health of
patients [2]. The accurate prediction of epileptic seizures is crucial for developing appro-
priate patient care strategies, optimizing treatment plans, and potentially even providing
warnings prior to the onset of seizures. Nonetheless, forecasting the onset of seizures
continues to be a considerable challenge owing to the intricate and diverse characteristics
of epilepsy. An electroencephalogram (EEG) is an effective tool to measure non-stationary
signals of brain electrical activity. A large amount of evidence shows that the use of EEGs
to diagnose and predict seizures has been widely studied [3,4].

In the early years of seizure prediction research, various machine learning algorithms
were employed to analyze EEG data and identify seizure-related patterns. Techniques
such as support vector machines (SVM) [5], decision trees [6], k-nearest neighbors (k-
NN) [7], and naive Bayes [8] were used in conjunction with handcrafted features, typically
derived from signal processing techniques extracted from the EEG signals. These features
often included time–domain, frequency–domain, and time–frequency representations,
such as mean, variance [9], spectral power [10], wavelet coefficients [11], power spectrum
density [12], and entropy [13]. While these approaches demonstrated some success, their
performance was often limited by the choice of features and the inherent variability of
EEG data.
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In the past few years, substantial progress has been made in epileptic seizure prediction
through the application of deep learning methods. Various architectures, including con-
volutional neural networks (CNNs) [14], long short-term memory (LSTM) networks [15],
and transformers [16], have been employed to address the challenges associated with
seizure prediction, particularly the inherent temporal dependencies in EEG data. Truong
et al. proposed a method using STFT preprocessing and classification using CNN to verify
the feasibility of the method in several datasets [17]. Moreover, LSTM has demonstrated
proficiency in capturing dependencies across sequences, making it particularly suitable
for time series data, including EEG signals. Tsiouris et al. provided a new approach to
introduce LSTM for the first time in seizure prediction studies, taking advantage of deep
learning techniques in processing time series data to improve prediction accuracy and
utility [18].

CNNs are frequently utilized in seizure prediction tasks because of their capacity to
recognize spatial–temporal patterns within EEG information. They can autonomously
extract hierarchical characteristics from unprocessed data, overcoming the limitations of
handcrafted feature extraction in traditional machine learning methods [19]. As a specific
type of CNN architecture, DenseNet has gained popularity in this domain due to its
unique densely connected layers that enable efficient feature reuse and reduce the risk of
overfitting [20]. Due to its unique ability to reuse features at multiple levels, it has shown
improved performance compared to other CNN architectures in various tasks. Jana et al.
converted EEG signals into images for feature extraction and classification of inter-ictal
and pre-ictal states using DenseNet [21]. Jibon et al. proposed a hybrid deep learning
model called LGCN-DenseNet for automatic seizure detection, which demonstrated the
effectiveness of the DenseNet network in EEG signal analysis by reducing the vanishing
gradient problem and enhancing feature propagation [22].

Transformers, a popular deep learning architecture, was originally developed for
natural language processing tasks, and then the Vision Transformer (ViT) was proposed as
an adaptation of transformers for image classification problems, where the input image is
treated as a sequence of fixed-size patches [23]. ViT has shown top tier results in numerous
computer vision tasks and has been utilized in seizure prediction research to identify
long-range dependencies and global context within EEG data based on self-attention
mechanism in recent years. Bhattacharya et al. employed the STFT for extracting time–
frequency characteristics and leveraged transformer networks for classification, signifying
the inaugural use of transformers in seizure prediction investigations [24]. Zhang et al.
introduced an approach in which the raw EEG signal was first filtered to extract pre-
episode and inter-episode markers, and the processed data were classified using the ViT
model [25]. Hussein et al. proposed the Multi-channel Vision Transformer (MViT) model
for the automated and simultaneous learning of spatio–temporal–spectral EEG features [26].
Deng et al. introduced a novel hybrid visual transformer (HViT) architecture with data
uncertainty learning for seizure prediction [27].

In addition, transfer learning has emerged as a powerful technique for seizure pre-
diction, leveraging pre-trained models to overcome the challenges of limited labeled data
in the epilepsy domain [28]. By fine-tuning models pre-trained on large-scale images or
time series datasets, researchers can take advantage of the learned features and adapt them
to the specific task of seizure prediction. Transfer learning has been successfully applied
to various deep learning architectures, including CNNs, LSTMs, and transformers, to
improve performance and reduce training time [29]. By leveraging the knowledge acquired
from pre-training, transfer learning can lead to better feature extraction and more accurate
seizure prediction models.

By combining the strengths of DenseNet and ViT, our study aims to develop an ad-
vanced deep learning model for seizure prediction, targeting improved prediction accuracy
and decreased false alarm rates. The primary motivation of this study is to improve seizure
prediction outcomes by leveraging the complementary feature extraction capabilities of
DenseNet and ViT. DenseNet excels at capturing local spatial–temporal features from EEG
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signals, while ViT is adept at identifying long-range dependencies and global patterns [30].
Our proposed method fuses the features extracted by these two architectures using an
attention mechanism, enabling the model to dynamically balance the significance of both
feature groups. In this investigation, a unique DenseNet–ViT hybrid method is presented
for seizure prediction. The main contribution of this study can be outlined in the following:

• Multi-model architecture with DenseNet and ViT: A hybrid model is proposed, com-
bining the strengths of DenseNet and ViT architectures. Local features are captured
by the DenseNet component, while global patterns are focused on by the ViT compo-
nent. This combination allows for effective learning from the input data, resulting in
improved seizure prediction performance;

• Attention-based feature fusion layer: An innovative attention-based feature fusion
layer is included, dynamically weighing features extracted from DenseNet and ViT
based on their relevance to the prediction task, resulting in a more robust and effective
representation of seizure prediction;

• Pre-trained model transfer and optimized training strategy: The pre-trained DenseNet
and ViT models are transferred to patient-specific models, which could enhance
initial performance by utilizing their learned representations. Optimized training
strategies include hyperparameter optimization with Optuna and early stopping.
These techniques work together to improve the performance of the network.

The rest of the paper is structured as follows: Section 2 introduces the used EEG
dataset and describes the proposed model in detail with preprocessing, hybrid model
classification, and post-processing. The experimental results are summarized in Section 3
and the discussion is described in Section 4. Section 5 is the conclusion of this work.

2. Materials and Methodology
2.1. EEG Dataset

In this study, the CHB-MIT scalp EEG dataset was utilized for our seizure prediction
task, which includes the continuous scalp EEG recordings from pediatric patients. This
dataset includes 24 cases from 23 patients, with cases 01 and 21 derived from the same
individual; case 24 has no specific information. The dataset adheres to the international
10–20 system for electrode placement, which ensures a standardized spatial arrangement
for EEG recordings [31]. Compared with intracranial EEG, this dataset records scalp EEG
with more noise, which makes seizure prediction more difficult.

The scalp EEG signals within the dataset were recorded at a 256 Hz sampling rate and
a 16-bit resolution. Annotation files of the dataset reveal that channel configurations often
differ among various recordings. To preserve consistency in the analysis, 18 fixed channels
were chosen: FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4, F4-C4,
C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ, and CZ-PZ. The main objective of
identifying and predicting epileptic seizures simultaneously is to enable early intervention,
so seizures occurring within a 30 min interval between two consecutive events are regarded
as a single seizure. The details of the CHB-MIT dataset are shown in Table 1.

Table 1. Details of the CHB-MIT dataset used in this study.

Case Gender Age Record Time (h) Duration of
Seizures (s)

Number of Seizures
(No Merge)

Number of Seizures #

(Merge)

CHB01 Female 11 40.6 442 7 7
CHB02 Male 11 35.3 172 3 3
CHB03 Female 14 38.0 402 7 7
CHB04 Male 22 155.9 382 4 4
CHB05 Female 7 39.0 558 5 5
CHB06 Female 1.5 66.7 147 10 10
CHB07 Female 14.5 67.0 328 3 3
CHB08 Male 3.5 20.0 919 5 5
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Table 1. Cont.

Case Gender Age Record Time (h) Duration of
Seizures (s)

Number of Seizures
(No Merge)

Number of Seizures #

(Merge)

CHB09 Female 10 67.8 276 4 4
CHB10 Male 3 50.0 454 7 7
CHB11 Female 12 34.8 806 3 2
CHB12 Female 2 20.6 1487 40 21
CHB13 Female 3 33.0 547 12 10
CHB14 Female 9 26.0 169 8 8
CHB15 Male 16 40.0 1992 20 17
CHB16 Female 7 19.0 84 10 9
CHB17 Female 12 21.0 293 3 3
CHB18 Female 18 35.6 317 6 6
CHB19 Female 19 30.0 236 3 3
CHB20 Female 6 27.5 294 8 8
CHB21 Female 13 33.0 199 4 4
CHB22 Female 9 31.0 204 3 3
CHB23 Female 6 26.5 424 7 7
CHB24 - - 21.3 511 16 14
Total - - 979.6 11,646 198 170

# When two seizures are separated by less than 30 min, they are combined into one seizure.

2.2. Algorithm Framework

The proposed hybrid deep learning model for epileptic seizure prediction is shown
in Figure 1. The raw EEG signal was firstly preprocessed using a 30 s short-time Fourier
transform (STFT) to convert into a time–frequency matrix. This transformation could
remove some EEG noise and allow the EEG data to be presented in a format that is
more easily processed by following deep learning models. Subsequently, two pre-trained
models, DenseNet and ViT, were employed to independently extract EEG features and were
optimized to enhance their suitability for the seizure prediction task. Then, to effectively
merge the strengths of DenseNet and ViT, an attention mechanism-based fusion layer was
developed, which calculated the attention weights of the features extracted by each model,
facilitating the joint consideration of local and global patterns of EEG data. Finally, after
integrating the features of the two models, the original classification head of the ViT model
was used to classify the merged features to obtain the final outputs and prediction results.

2.3. Preprocessing

The preprocessing was conducted on the raw EEG signals to facilitate analysis and en-
hance the model’s performance. Compared with other time–frequency analysis techniques,
the STFT has the advantages of simple implementation and low computational complexity
in EEG signal analysis. Hence, a STFT with a window length of 30 s was employed to
transform the EEG signals into two-dimensional matrices, allowing for the extraction of
crucial information in both time and frequency domains. For an EEG signal x(t), the STFT
of it can be defined as

STFT{x(t)}( f , τ) =
∫ +∞

−∞
x(t) · ω(t − τ) · e−j2π f tdt (1)

where ω(t − τ) is the window function and f denotes frequency components.
In addition, the noise was addressed by eliminating power line noise in the 57–63 Hz

and 117–123 Hz bands, as well as the DC component at 0 Hz. These measures were
essential in reducing environmental interference and improving the quality of the input
data. Furthermore, since the pre-ictal EEG data was less than the inter-ictal EEG data, this
study used oversampling technology to increase the inter-ictal EEG data and solve the class
imbalance problem, which could improve model performance.
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Figure 1. Overview of the proposed hybrid Densenet–ViT network model.

2.4. Hybrid Model

In this study, an inventive hybrid model is proposed that capitalizes on the advantages
of DenseNet and ViT for seizure prediction. The model aims to effectively capture both
local and global features of the input EEG data by employing the strengths of DenseNet in
handling spatial information and ViT in detecting long-range dependencies. The overall
architecture comprised separate branches for DenseNet and ViT, followed by an attention-
based fusion layer that intelligently combined the features extracted from both models. The
resulting fused features were then inputted into the output layer for seizure prediction. As
shown in Figure 2, the proposed hybrid DenseNet–ViT approach is presented.
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2.4.1. DenseNet

The DenseNet component of our hybrid model was designed to efficiently capture
spatial patterns in the EEG data. DenseNet is a deep convolutional neural network archi-
tecture renowned for its resource efficiency and improved gradient flow [32,33]. Compared
with traditional CNN, DenseNet can alleviate the gradient vanishing problem that occurs
as the number of CNN layers increases. The input of each layer of the DenseNet network
contains the output of the previous layers, which improves the feature transfer efficiency
and network performance from the perspective of feature reuse. It is more suitable for
training efficient feature information from a limited amount of EEG data. In addition,
the connection of feature maps from the previous layer enables DenseNet to learn both
low-level and high-level features, which helps to identify complex spatial patterns in
EEG data.

Our implementation of DenseNet was derived from the DenseNet121 variant [34],
encompassing 121 layers that included convolutional, batch normalization, and activation
layers, all organized into dense blocks and transition layers. The dense blocks, the heart
of the DenseNet architecture, contained multiple convolutional layers densely connected,
facilitating feature reuse. For the output of the ith layer Xi,

Xi = Hi([X0, X1, . . . , Xi−1]) (2)

where [•] represents the connection from layer 0 to layer i − 1 and H represents nonlinear
transformation. The ith layer receives the feature maps of all previous layers.

In contrast, transition layers help manage the spatial dimensions and channel depth of
the feature maps as they propagate through the network. The original classification layer
was removed and the output feature maps were used as the input to the attention-based
fusion layer. This modified DenseNet architecture enables the extraction of meaningful
spatial features from the EEG data, which is crucial for accurate seizure prediction.

2.4.2. Vision Transformer

The ViT component of our hybrid model captured the long-range dependencies and
global information in the EEG data. ViT employs the transformer technique and considers
the input image as a series of fixed-size segments, transforming the two-dimensional image
into a one-dimensional sequence of flattened patch embeddings [35]. Although RNN
structures, such as LSTM networks, can also obtain the contextual information of EEG
signals, the multi-head self-attention mechanism of ViT enables the model to establish
long-range dependencies between different positions, thereby capturing global information,
which is crucial for EEG signal analysis with a temporal nature and seizure prediction.

In this model, a pre-trained ViT-base-patch16-224 architecture was employed, which
divided the input image into non-overlapping 16 × 16 patches and projected them into a
768-dimensional embedding space. The model also incorporated positional encoding to
maintain spatial information. The inputs were then processed by a series of multi-head
self-attention and feed-forward layers, forming the transformer blocks. The multi-head
self-attention mechanism calculation can be expressed as

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (3)

headi = Attention(QWQ
i , KWK

i , VWV
i ) (4)

where Attention(Q, K, V) is the self-attention function and WQ
i , WK

i , WV
i are weight ma-

trixes corresponding to query, keys, and values of each head.
The ViT component effectively captured the temporal relationships within the EEG

data. When combined with the spatial features extracted by the DenseNet component, an
effective seizure prediction model can be obtained.
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2.4.3. Feature Fusion Layer

In the proposed hybrid DenseNet–ViT model, a key innovation was the attention
mechanism-based feature fusion layer. Its purpose was to effectively combine the fine-
grained spatial feature extraction capabilities of DenseNet with the global contextual
capturing advantages of ViT. This achieved a fusion of DenseNet’s local receptive fields
and ViT’s global receptive fields, more comprehensively capturing the features of im-
ages. Consequently, this enhanced the accuracy of epilepsy seizure predictions using EEG
data. The feature fusion layer ingeniously leveraged the attention mechanism, integrating
the most representative features across spatial and temporal dimensions to construct a
comprehensive and robust feature representation.

The feature fusion module based on the attention mechanism is shown in Figure 3.
Firstly, the feature outputs of DenseNet and the sequence embeddings of ViT were input
to the fusion layer in parallel. These inputs were merged along the channel dimension
to form a unified and comprehensive feature representation. Then, the attention scores
were calculated using the input features (as values) and associated queries and keys. These
scores were normalized by a softmax layer to ensure their sum equaled one, indicating
the relative importance of each feature. After that, these attention scores were used to
weight the corresponding features, thereby amplifying those features more influential for
the prediction task while diminishing the impact of less important features. Finally, the
weighted features were fed into the classifier for the final prediction.
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2.5. Postprocessing

During the inter-ictal phase, sporadic false positives might lead to unwarranted alerts.
To tackle this problem, a post-processing stage was incorporated, utilizing the k-of-n
strategy [17]. This approach minimized the false alarm rate by necessitating a specific
amount of successive positive predictions prior to activating an alert. In the experiment,
the values of n and k were set to 10 and 8, respectively, signifying that a minimum of 8
out of 10 continuous EEG signal segments must be classified as positive before activating
the alert.

3. Experimental Section
3.1. Experimental Details

The experiment was conducted on a high-performance workstation equipped with
an i7-12700K CPU of Intel and 128 GB of RAM of Kingston, operating under Windows
10 OS. During the model training process, a GeForce RTX 3080Ti GPU of NVIDIA was
utilized, with acceleration enabled by CUDA technology. The development environment
was established using Python 3.7 and PyTorch 1.10.

In this experiment, the Optuna hyperparameter optimization framework was applied,
which used an advanced algorithm based on Bayesian optimization, and could find the
optimal parameters faster than a traditional grid search or random search. Moreover,
the Adam optimizer was combined with the cosine annealing strategy to help the model
dynamically adjust the learning rate and avoid falling into the local minimum, which could
improve the generalization ability of the model and better convergence.



Brain Sci. 2024, 14, 839 8 of 15

3.2. Evaluation Approach and Results

This study adheres to the standards proposed by Maiwald et al. [36], setting a 30
min seizure occurrence period (SOP) and a 3 min seizure prediction horizon (SPH), as
illustrated in Figure 4. The SOP refers to a critical period during which epilepsy patients are
at potential risk of experiencing a seizure, while the SPH describes the time span from when
the system issues an imminent warning of entering the SOP to the actual occurrence of a
seizure. If the model successfully predicted a seizure during the SOP, such a prediction was
considered a true positive, indicating the model’s accuracy. Conversely, if the prediction
system indicated an impending seizure during the SOP, but no seizure actually occurred,
this was considered a false alarm.
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A rigorous evaluation method was used to assess the performance of the proposed
seizure prediction model by introducing a confusion matrix as an evaluation tool. These
metrics included accuracy, sensitivity, FPR, F1 score, and AUC. The formulas are calculated
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Sensitivity =
TP

TP + FN
(6)

F1 − score =
2TP

2TP + FP + FN
(7)

Here, TP is true positive, TN is true negative, FP is false positive, and FN is false
negative. FPR denotes the number of events per hour that the continuous period of the
inter-ictal period was misjudged as the pre-ictal period.

Cross-validation is a commonly used technique for evaluating the effectiveness of
statistical methods by examining their applicability to independent datasets [37]. Our exper-
iments were conducted using a patient-specific setting and leave-one-out cross-validation
(LOOCV) methods. Specifically, assuming a patient had N seizures, the pre-ictal EEG
signals were divided into N parts in sequence; the (N − 1) parts were used for training
models while the remaining one was selected for testing verification. The same processing
was performed on the inter-ictal EEG data. N iterations were performed and the average
metric results for each patient were reported.

Table 2 presents the performance data for all patients. The classification accuracy
was assessed in 24 instances, leading to a mean accuracy of 93.65%. Apart from CHB13,
CHB16, and CHB22, the remaining instances exhibited a classification accuracy exceeding
90%. Twelve patients had a false positive rate below 0.1/h, and only one patient had a
false positive rate above 0.2/h. Figure 5 illustrates the accuracy curve for the CHB01 case
during training. The accuracy of the training set increases rapidly in the first 20 epochs,
then gradually levels off, achieving a stable state between 30 and 40 epochs.
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Table 2. The method performance metrics (SOP = 30 min, SPH = 3 min).

Case Accuracy (%) Sensitivity (%) FPR (/h) AUC F1-Score

CHB01 99.51 99.67 0.002 0.99 0.99
CHB02 92.88 91.96 0.119 0.92 0.91
CHB03 90.13 90.98 0.151 0.92 0.92
CHB04 91.27 89.42 0.132 0.93 0.92
CHB05 95.20 95.51 0.073 0.96 0.95
CHB06 93.62 90.77 0.041 0.95 0.92
CHB07 96.17 95.66 0.031 0.96 0.94
CHB08 93.32 89.61 0.062 0.93 0.92
CHB09 90.67 91.39 0.139 0.91 0.91
CHB10 91.18 93.65 0.143 0.90 0.92
CHB11 97.31 98.61 0.011 0.96 0.95
CHB12 92.17 92.56 0.130 0.91 0.93
CHB13 87.88 85.71 0.147 0.90 0.89
CHB14 91.62 95.50 0.138 0.93 0.95
CHB15 90.97 89.64 0.152 0.92 0.90
CHB16 85.11 87.81 0.201 0.89 0.88
CHB17 98.90 98.31 0.006 0.97 0.98
CHB18 95.16 97.52 0.017 0.95 0.97
CHB19 99.28 98.66 0.003 0.99 0.99
CHB20 99.33 99.56 0.003 0.99 0.99
CHB21 94.66 93.18 0.108 0.94 0.93
CHB22 88.56 87.69 0.120 0.89 0.88
CHB23 99.13 98.92 0.012 0.99 0.97
CHB24 93.58 93.16 0.047 0.92 0.92

Average 93.65 93.56 0.084 0.938 0.934
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3.3. Ablation Experiment

To illustrate the effectiveness of our proposed DenseNet–ViT hybrid model and the
individual contributions of each component, we carried out ablation experiments, which
serve as benchmarks to gauge the performance of our hybrid model.

The ablation experiments were as follows:

(1) Standalone DenseNet model: A standalone DenseNet model was trained and eval-
uated on the preprocessed EEG dataset. This experiment enabled us to assess
DenseNet’s effectiveness in extracting spatial features and its contribution to the
hybrid model.

(2) Standalone ViT model: Similarly, we evaluated an independent ViT model on the same
dataset. This experiment determined the effectiveness of ViT in capturing long-range
dependencies and global contextual information.
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Figure 6 demonstrates the comparison of accuracy and sensitivity results for each
patient between the proposed method and the control group. The standalone DenseNet
model achieved an average accuracy of 87.52%, sensitivity of 86.98%, F1 score of 0.867,
AUC of 0.877, and FPR of 0.124/h. These outcomes emphasize the ability of DenseNet to
effectively manage spatial features in the data and accomplish a satisfactory performance.
In contrast, the ViT model scored an average accuracy of 88.1%, a sensitivity of 87.68%, an
F1 score of 0.88, an AUC of 0.888, and a lower FPR of 0.105/h. These results suggest that
ViT is capable of handling long-range and global contextual information. By combining the
strengths of both architectures, our proposed DenseNet–ViT hybrid model can potentially
achieve superior performance.
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4. Discussion

In this study, a novel method for predicting seizures is proposed by integrating
DenseNet and ViT models, which marks the first exploration into seizure prediction
methods using this combination. Enhanced performance is attributed to the effective
integration of spatial and temporal features extracted from the EEG data, which allowed
the model to capture more comprehensive and discriminative information. Moreover, the
attention-based fusion layer played a crucial role in weighing and combining the feature
representations from the two individual models.
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To investigate the role of the attention-based fusion layer in our DenseNet–ViT hybrid
model, we also conducted a study using alternative fusion strategy. In this experiment,
we replaced the attention-based fusion layer with a simple concatenation approach. That
is, we directly concatenated the output feature maps from both the DenseNet and ViT
components and fed them into the original classification head of the ViT model to generate
the final prediction. Figure 7 shows the comparison results of the hybrid DenseNet–ViT
model with attention fusion and the simple concatenation without attention fusion.
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In the study where the attention-based fusion layer was replaced with simple concate-
nation, the model attained an average accuracy of 91.46%, sensitivity of 90.56%, F1 score of
0.904, AUC of 0.912, and FPR of 0.093/h. These results substantiate that even without the
attention mechanism, the model can maintain commendable performance, showcasing the
inherent strength of the DenseNet and ViT components in seizure prediction. However, the
performance metrics were lower than those achieved with the attention-based fusion layer.
This difference in performance illuminates the crucial role that the attention mechanism
plays in the hybrid model. The attention-based fusion layer is designed to carefully weigh
and fuse the features extracted by DenseNet and ViT, leveraging the interdependencies and
saliency of each feature to optimize their contribution to the seizure prediction task. In con-
trast, simple concatenation, although effective, treats all features uniformly, disregarding
the relevance and importance of individual features for the prediction task.

In addition, the overfitting problem in deep learning network models cannot be
ignored. In this study, the Adam optimization algorithm was combined with the cosine
annealing strategy to effectively prevent the overfitting of training data and enhance
the generalization ability of models for unknown data by reducing the oscillation of the
learning rate and periodic restart. The improved algorithm used an adaptive learning rate
mechanism to effectively handle the complex features of EEG data, especially in hybrid
models. In our model, the cross-entropy loss function was used, the core concept of which is
to “penalize” the model for incorrect predictions of actual events. As illustrated in Figure 8
for the CHB01 case, both the training loss and the validation loss significantly decrease with
each epoch at the early stage, indicating continuous improvement in the model during the
learning process. As training continues, both curves tend to flatten and gradually converge,
indicating that the model is converging.
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Furthermore, the early stopping technique, a technique particularly suitable for train-
ing deep learning networks, was applied in this experiment. Its core principle is to terminate
training prematurely once the model’s performance on the validation set no longer shows
significant improvement or begins to decline, thereby preventing overfitting. This strat-
egy not only quickly identifies optimal model parameters, but also serves as an effective
regularization technique to simplify model complexity. After multiple trials, we set the
patience value of early stopping to six, meaning training would be prematurely terminated
if there were no improvements in the performance on the validation set over six consecu-
tive training epochs. This approach avoids premature stopping before the model has fully
converged and saves unnecessary computational resources and time.

The application of CNN as a classifier for seizure prediction constitutes a classic ap-
proach, achieving notable success. Khan et al. achieved a sensitivity of 87.8% through the
utilization of wavelet transform preprocessing, subsequently using CNN for categoriza-
tion [38]. Zhang et al. presented a distinctive approach for anticipating epileptic seizures,
which merges common spatial patterns (CSP) and CNN. This method attained a sensitivity
of 92.2% and a false prediction rate of 0.12 per hour [39]. Ozcan et al. utilized spectral band
power, statistical moments, and Hjorth parameters as feature inputs for 3D CNN classi-
fication, reaching a sensitivity of 85.7% [40]. However, the pure CNN approach exhibits
certain limitations. CNNs primarily focus on spatial information for feature extraction
and modeling, potentially neglecting long-term dependencies and dynamic information
in time series data. Consequently, integrating CNNs with other types of neural networks,
such as RNNs (e.g., LSTM or GRU) or transformer networks, may be considered. These
hybrid approaches could be more adept at capturing temporal information and channel
correlations in EEG signals, thus enhancing epilepsy prediction performance.

The success of ViT in the field of computer vision has inspired researchers to extend
its application to EEG data processing. Although the application of VIT in this domain is
still in its early stages of research, it has demonstrated promising potential. Zhang et al.
filtered the original EEG signals of patients, preprocessed the filtered signals using the
STFT, and finally classified them with the VIT model, obtaining an accuracy of 81.19%
and sensitivity of 75.58% [25]. Godoy et al. developed a transformer-based model, a
temporal multi-channel vision transformer (TMC-ViT), for multi-channel temporal signals
and validated it on the CHB-MIT dataset, obtaining an accuracy of 82% [41]. Recently, Deng
et al. suggested an innovative hybrid visual transformer (HViT) structure, which employed
CNN to enhance the capacity of transformers for handling local features. They achieved the
top sensitivity of 87.9%, a FPR of 0.056/h, and an AUC of 0.937 [27]. Compared with their
method, the hybrid DenseNet–ViT model proposed in this study has a higher sensitivity
with similar AUC values and a slightly higher FPR, which indicates that our model has
better recognition performance for pre-ictal EEG data. In addition, we used all patient data
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in the dataset, while they used part of the EEG dataset. Table 3 displays a comparison of
our method’s performance with that of other suggested techniques.

Table 3. Performance comparison on the CHB-MIT dataset for different methods.

Authors Year Case of
Patients Method Acc (%) Sen (%) FPR (/h) AUC F1-Score

Khan et al. 2017 13 CWT + CNN - 87.8 0.147 - -
Truong et al. 2018 13 STFT + CNN - 81.2 0.16 - -
Tsiouris et al. 2018 24 LSTM - 99.2 0.11 - -
Zhang et al. 2019 23 wavelet packet + CNN 90.0 92.0 0.12 0.90 0.91
Ozcan et al. 2019 16 3D CNN - 85.71 0.096 - -

Bhattacharya et al. 2021 21 STFT + Transformer - 98.46 0.124 - -
Zhang et al. 2022 14 STFT + ViT 81.19 75.58 - 0.85 -
Godoy et al. 2022 22 TMC-ViT 82.0 80.0 - 0.89 -
Deng et al. 2023 18 HViT-DUL - 87.9 0.056 0.937 -
This work 2024 24 STFT + DenseNet–ViT 93.65 93.56 0.083 0.938 0.934

The results of this study reveal how to effectively utilize DenseNet and ViT networks
to perform feature learning on multi-channel EEG data simultaneously. The DenseNet
module effectively extracts spatial information in EEG data, while the ViT module enhances
the capture of long-term dependencies and global information. The feature fusion layer
based on the attention mechanism effectively combines the advantages of both. The results
showed that the prediction accuracy of models for seizures was improved, demonstrating
its potential clinical application value as an EEG-based epileptic seizure early warning
system. The hybrid method proposed in this article can accurately and quickly predict
future epileptic seizures, provide patients with the opportunity to take quick-acting drugs
and safety measures during epilepsy-prone periods, and establish a closed-loop epilepsy
intervention system to abort impending epileptic seizures. In addition, the model adopts
a patient-specific training method, there is no overlap in EEG data between different
patients, and the privacy of data can be guaranteed to a certain extent when used in
clinical applications.

However, this research still has certain limitations. Firstly, this study was only con-
ducted and evaluated on the CHB-MIT scalp EEG dataset. Although from the results
obtained, the method proposed in this study improves the performance of predicting
seizures to some extent, we would attempt to test it on other EEG datasets to obtain more
general comparative results to verify its robustness. At the same time, we should also
further explore other neural network architectures and investigate more techniques, such
as the domain adaptation technique, to probe the model’s interpretability and robustness
in subsequent work.

Secondly, given the complexity of the hybrid depth model, there are still some chal-
lenges in making it applicable in clinical settings, so we would further attempt to improve
and streamline the network architecture to better apply it to clinical seizure prediction. In
this study, the proposed model was conducted in patient-specific scenarios, and we will
also focus on the execution of cross-patient experiments, which could better explore the
model performance in different patient groups. In addition, combining EEG signals with
additional data modalities, such as fMRI or MEG, to explore epileptic seizure prediction is
also a meaningful future direction.

5. Conclusions

In this research, a unique deep learning-based hybrid model for epileptic seizure
prediction was developed by merging DenseNet and ViT architectures. The suggested
model effectively integrated spatial and temporal features derived from EEG data, enabling
it to attain superior predictive performance compared to standalone DenseNet and ViT
models, as well as other individual models and benchmark algorithms. The attention-based
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fusion layer played a pivotal role in the model’s effectiveness, showcasing the potential
of combining the strengths of different deep learning models in the epilepsy research
domain. Future research should focus on refining the proposed model, exploring more
sophisticated fusion strategies, and incorporating additional patient-related information to
enhance predictive capabilities.
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