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Abstract: In humans, epilepsy is diagnosed through electroencephalography (EEG) signals. Epileptic
seizures (ESs) arise due to anxiety. The detection of anxiety-based seizures is challenging for radiolo-
gists, and there is a limited availability of anxiety-based EEG signals. Data augmentation methods are
required to increase the number of novel samples. An epileptic seizure arises due to anxiety, which
manifests as variations in EEG signal patterns consisting of changes in the size and shape of the
signal. In this study, anxiety EEG signals were synthesized by applying data augmentation methods
such as random data augmentation (RDA) to existing epileptic seizure signals from the Bonn EEG
dataset. The data-augmented anxiety seizure signals were processed using three algorithms—(i) fuzzy
C-means–particle swarm optimization–long short-term memory (FCM-PS-LSTM), (ii) particle swarm
optimization–long short-term memory (PS-LSTM), and (iii) parrot optimization LSTM (PO-LSTM)—
for the detection of anxiety ESs via EEG signals. The predicted accuracies of detecting ESs through
EEG signals using the proposed algorithms—namely, (i) FCM-PS-LSTM, (ii) PS-LSTM, and (iii) PO-
LSTM—were about 98%, 98.5%, and 96%, respectively.

Keywords: EEG epileptic seizure signals; data augmentation; fuzzy feature extraction; parrot opti-
mization; LSTM classifier

1. Introduction

Epileptic seizures are recurrent [1] and can occur at any age. These seizures are
analysed based on non-stationary patterns in EEG signals. Seizure prediction is a difficult
task for radiologists. Signal characteristics are used for the detection of epilepsy via EEG
signals. In humans, an irregular electrical signal arises due to disturbances in the brain,
which cause seizures. A seizure signal’s size and amplitude vary based on the region of
the brain that is affected. Epilepsy is generally classified as generalized or focal epilepsy.
Genetic predispositions or brain anomalies can cause epilepsy. An epileptic person can be
treated via anti-seizure drugs, lifestyle changes, and surgery. For the detection of an ES
caused by anxiety, an EEG signal needs to be data-augmented.

Data augmentation [1–3] is used to expand a training set using generated data. Data
augmentation is performed by transforming or modifying pre-existing data and thus creat-
ing new samples. With regard to EEG signals, data augmentation is used for anxiety-based
EEG data creation. Random noise in an EEG signal is background noise. The channel
dropout process for EEG channels is performed based on the removal of a channel. Artifi-
cial electrode artifacts are present in EEG signals, occurring in the form of abrupt spikes.
For particular time intervals, seizure activity is reflected in EEG signals that are in shorter
segments. These shorter segments are used for the identification of seizures within con-
strained temporal ranges. An EEG dataset needs to be augmented to obtain the seizure
EEG data relating to anxiety disorders. Anxiety changes EEG frequency patterns. The EEG
frequencies are beta, gamma, alpha, theta, and delta [4]. These frequencies change based
on stress, and the types of change depend on the types of stress. Anxiety, depression, and
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a low mood are linked with alpha and beta signals [4]. Signs of stress can be seen in beta
wave frequency changes [5]. The beta frequency range is between 12.5 and 30 Hz. Anxiety
disorders increase EEG signals’ delta and theta frequencies [6]. Reductions in alpha and
beta frequency levels are linked to anxiety disorders [4,6]. Anxiety is measured using the
theta/beta ratio [7]. Fear, panic, anxiety, insecurity, and phobia are linked to high beta
waves. Amplitude (A), width (time in seconds), mixture amplitude, and width fluctuations
in EEG signals are indicative of anxiety-based seizures. The extreme learning machine
wavelet auto encoder (ELM-W-AE) approach was developed by the authors of [1]. Using
wavelet activation functions in conjunction with the ResNet18 classifier, it recognized and
classified emotions based on EEG augmentation signals. The ELM-W-AE technique has
a high classification accuracy when using wavelet functions such as the Mexican, Morlet,
and Gaussian wavelets. The authors of [2] compared 13 augmented EEG sleep signals.
EEG signal augmentation was performed based on the spatial domain, frequency, and
time. Quantitative methods were applied for the performance evaluation of the data aug-
mentation signals. EEG-based emotion recognition signals were obtained through data
augmentation. There were a greater number of samples in the dataset, and these were fed
to the Conditional Wasserstein Generative Adversarial Network (CWGAN) [3]. Epilepsy
detection using DW-based filtering, feature extraction, and classification was performed
using moth–flame optimization and an extreme learning machine with a multiquadric
activation function. The above method had accuracies of about 92%, 95%, and 96% for three
different datasets [8]. EEG signal analysis using a Maximal Overlap Discrete Wavelet Trans-
form (MODWT), and a Multiresolution Convolutional Neural Network (CNN) yielded an
82% sensitivity and an FPR of 0.058 for the CHB-MIT dataset and an 85% sensitivity and
an FPR of 0.19 for the Kaggle dataset [9]. A revised Tunable Q-Factor Wavelet Transform
was applied for an EEG signal analysis in which TQWT parameters such as redundancy
and Q-factor were optimized. A decision tree classifier achieved a maximum accuracy of
about 99.8% when applied to the Bonn EEG dataset [10]. Xuewen Pang classified epileptic
EEG signals using DWT frequency components. A support vector machine was used
for EEG signal classification, achieving an accuracy of about 96.59% [11]. A fourth-order
Butterworth BPF was applied to EEG signals. Filtered EEG signals were decomposed
with the "db4" wavelet and denoised with a selected threshold. Feature selection was
conducted using the random forest algorithm, and classification was performed using a
convolutional neural network (CNN), achieving an accuracy of about 99.9% for the Bonn
EEG database and about 100% for the interictal and ictal New Delhi database, respec-
tively [12]. In [13], the data augmentation of EEG signals was used for age prediction
and to increase the training dataset. The BNNSMOTE (Borderline Nearest Neighbour
Synthetic Minority Oversampling Technique) [14] uses imbalanced seizure dataset signals,
which consist of data augmented for convulsions and non-convulsion EEG signals, and
it effectively classifies seizures. RDB-DCGAN was applied to data-augmented [15] EEG
sleep signals; it improved the accuracy of sleep signal detection. Data-augmented signals
improve EEG signal classification accuracy. Moreover, data augmentation solves the dataset
balance problem [16]. Authors have suggested methods for classifying EEG seizure signals
using neural networks and the distance between centres of gravity. The feature extraction
process was performed using Daubechies’ D4 wavelet transforms. This feature selection
process relies on DBCG, consisting of a fuzzy membership-weighted summation. The
above technique can classify epileptic seizures in EEG signals with elevated rates of high
sensitivity, accuracy, and specificity [17]. The TQWT-based decomposition of EEG signals
was used for feature extraction. An autoencoder-based classification was performed using
an adaptive neuro-fuzzy inference system (ANFIS) with PSO and ANFIS-BS (breeding
swarm) optimization [18]. An EEG signal recognition system was created using DWT-based
extracted features and the classification of normal and pathological seizures. PSO and
BPNN were used for optimization and classification [19].

In [20], the authors used multilevel spectral and Multiview features in EEG seizure
detection using PSO and SVM. In [21], the authors applied the tuneable-Q wavelet tech-
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nique to identify and categorize EEG epileptic seizure signals. PSO and ANN were applied
for the acquisition of non-linear characteristics. The accuracy was about 88.8% for TUH
and 100% for the KITs database. Decision tree, random forest, and AdaBoost classifiers
were used, and a hybrid optimization–control ensemble classifier was used for EEG-based
seizure prediction. A hybrid optimization technique-based EEG signal feature selection
had an accuracy of about 96.61% for the CHB-MIT dataset and 95.30% for the Siena scalp
dataset [22]. EEG seizure signal spectral parameters were obtained through IMF and EMD.
Whale Optimization Algorithm feature selection yielded an accuracy of about 97.76% using
a random forest classifier [23]. Atom Search Optimization uses inertia weight and Levy
Flight mechanisms during optimization. A LSSVM (least-squares support vector machine)
was applied for the classification of epileptic seizures via EEG signals [24]. Seizures were
categorized based on EEG signals via wavelet packet transformation, the fuzzy K-nearest
neighbour fusion approach, and Hilbert transform-based modified wolf optimization. For
the Bonn dataset, the accuracy was around 100%, whereas it was 99.48 ± 0.61 for the
CHB-MIT dataset [25]. EEG detection using the moth–flame optimization algorithm op-
timized 1D convolutional neural networks (1D-CNN) for the data augmentation of EEG
signals and hyperparameters tuned with MFO [26]. An EEG-based modified gorilla-troops-
optimization-with-deep-learning method was used for ES prediction (MGTODL-ESP). The
best feature was selected by the MGTODL-ESP model via a feature selection technique
based on modified gorilla troops optimization (MGTO). A gated recurrent unit (GRU)
model based on MGTO was used for the prediction of different types of ESs. The grey wolf
optimizer (GWO) algorithm was used to tune the MGTODL model’s parameters [27]. A
1D CNN-LSTM approach was developed and used to identify epileptic seizures through
the preprocessing and normalization of EEG signals [28]. A deep bidirectional LSTM was
developed for seizure detection. Non-stationary EEG signals’ means and feature extraction
were used in this method, which obtained a G-mean of about 92.66% [29]. In another study,
a Hilbert vibration decomposition technique was used to extract the features from EEG
epileptic seizure signals. The classification of EEG epileptic seizure signals using LSTM
produced an accuracy of about 96% [30]. The authors used spectral data taken from multi-
channel EEG recordings and created a two-layer LSTM for ES prediction. The 2L-LSTM
model’s accuracy was about 98.14%, which is higher than that of the 1L-LSTM model [31].
The authors used a correlation-based approach for attribute selection and discrete wavelet
for acquiring attributes. Applying LSTM, TUH scalp EEG data was categorized with
success rates of approximately 95.08% for absence seizures and 95.92% for complex partial
seizures [32]. The authors developed a time-aware CNN and recurrent neural network (TA-
CNN-RNN) model for inter-ictal and ictal seizure EEG signal classification, and the LSTM
attained accuracies of about 89%, 88.6%, and 88.7% for the CHB-MIT-EEG, Bonn-iEEG,
and VIRGO-EEG datasets [33]. The authors used BPF and three types of feature methods,
namely, Fourier transform, entropy, and approximate entropy, for the classification of
epileptic and non-epileptic seizures using SVM, DT, K-NN, and NB, achieving accuracies
of about 96%, 76%, 92%, and 67%, respectively [34]. In [35], the author used an RNN for the
identification of epileptic seizures. The above method outperformed standard classification
methods such as SVM and ANN. On the CHB-MIT and BONN datasets, the RNN-based
model obtained accuracies of about 93.27% and 99.84%, respectively.

Seizures arise due to stress and anxiety, which are detected through frequency changes
in EEG signals. Mid-range beta waves (15–20 Hz) are known as “beta two” waves, which
are associated with increases in energy, anxiety, and performance. High beta waves (18–
40 Hz) are known as “beta three” waves, which are associated with significant stress,
anxiety, and high arousal [36]. An increase in the amplitude of beta wave activity is linked
to anxiety and stress responses. Specifically, heightened beta activity, particularly in the
right hemisphere signal regions, is correlated with anxiety disorders [36,37]. However, in-
creased beta activity is a common finding for anxiety, and it is a potential diagnostic marker
wherein higher amplitudes of beta waves correlate with greater anxiety symptoms [37,38].
Individuals with GAD (generalized anxiety disorder) often exhibit heightened beta wave
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activity (particularly in the beta2 signal range from 20 to 30 Hz) in the frontal and temporal
regions. When augmenting EEG data, it is crucial to replicate the amplitude characteristics
of real anxiety-based signals. Random data augmentation is used for synthetic data gen-
eration and maintains a realistic amplitude distribution [36]. This method minimizes the
divergence between the real and generated data, ensuring the augmented signals reflect
the amplitude patterns observed in authentic EEG recordings. In this paper, BONN EEG
dataset signals were random data-augmented (RDA) to obtain epileptic seizure signals.
Until now, researchers have not addressed the detection of seizures due to anxiety. In this
study, the data augmentation of epileptic EEG signals was performed using random shifts
in the signal, which mimic temporal fluctuations or misalignment in seizures due to anxiety.
The random scaling of an EEG signal’s amplitude adds variances to the signal strength,
suitable for varying anxiety-based seizure intensities.

The contributions of the proposed work are as follows:

1. We augmented EEG signals to obtain anxiety-based ES signals and non-epileptic sig-
nals using EEG signals from the BONN dataset. High beta waves (typically 20–30 Hz)
are closely associated with anxiety, panic attacks, and heightened stress responses. In-
creased beta activity is often observed in individuals with anxiety disorders, indicating
a state of hyperarousal and agitation [39].

2. We extracted features from data-augmented anxiety-based EEG signals using FCM
and optimization algorithms, namely, (i) particle swarm optimization (PSO) and
(ii) parrot optimization (PO), which were used to tune the hyperparameters of the
LSTM layer and detect anxiety-related epileptic seizure signals.

3. We classified EEG ES signals and non-ES signals derived from a random augmented
EEG signal dataset.

This paper is organized as follows: The EEG BONN database and techniques are
discussed in Section 2, the simulation results and advantages are provided in Section 3, and
a summary and conclusions are given in Section 4.

2. Materials and Methods
2.1. Dataset

In this paper, signals from the BONN EEG database [17,23,30] were data-augmented,
and anxiety-related EEG seizure signals were obtained. The dataset includes 500 signals of
epileptic seizures with 23.6-second durations, and all the EEG signals are classified. The
BONN EEG database contains five classes of EEG signals, namely, A, B, C, D, and E, which
were recorded at University Hospital Bonn (UKB), Germany. The sampling frequency of the
EEG signals is about 173.61 Hz. The age and gender details of the epileptic patients are not
provided in the Bonn EEG dataset. In future work, patients’ age and gender details, which
are included in EEG datasets like CHB-MIT, will be considered. Table 1 depicts the BONN
dataset. Figure 1 depicts both epileptic and non-epileptic EEG signals. A methodological
diagram is shown in Figure 2. In the BONN dataset, data augmentation was performed on
the signals in datasets E and D for anxiety-based ESs. In the proposed analysis, 70% of the
EEG data were used for training, and 30% of the EEG data were used for testing.

In this study, ES and non-ES signals were filtered using a BPF (band-pass filter) and
MF (median filter). RADWT was applied for the analysis of the signals. The random
data augmentation technique was used to obtain anxiety-based epileptic seizure signals
through arguments based on signal parameters such as amplitude (A), frequency (f), and
the combination of both parameters. A fuzzy method was utilized to extract features from
the augmented EEG signals. The classification was performed through the PSO-based
hyperparameter tuning of LSTM for anxiety-related seizure signals. The hyperparameter
tuning of LSTM classifies signals more accurately. The section below provides a detailed
explanation of the methods used for the classification of anxiety-related seizure signals.
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Table 1. The description of the BONN EEG Epileptic Seizure dataset.

Sets

Subjects

Patient Phase Electrode
Kind/Location No. of Study Number of Data Length of Sections

Set-A Eye open Surface (subject skin) 5 100 4097
Set-B Eye close Surface (subject skin) 5 100 4097

Set-C Seizure free
(Non-Epileptic) Intracranial (skull) 5 100 4097

Set-D Seizure Free Intracranial (skull) 5 100 4097

Set-E Seizure Activity
(Epileptic) Intracranial (skull) 5 100 4097
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FCM−PS−LSTM methods.

2.2. Pre-Processing

EEG signals are pre-processed for the removal of artifacts due to blinking. Artifacts
arise in frontal EEG signals due to the blinking of the eye. A band-pass filter [13,34] is
used for analyses of selected frequency bands and attenuating unwanted frequencies, and
abnormal frequency components in the EEG signal are filtered. This filter enhances the
frequency components of EEG seizure signal activity. Signals in the passband region have
a low distortion, whereas frequencies beyond the desired range are attenuated by the band-
pass filter. This approach improves the accuracy of predicting EEG signals corresponding
to seizures caused by anxiety. A median filter is applied using the sequence’s mean value.
At a sampling frequency of 1000 Hz, artifacts are eliminated using a band-pass filter, and
steepness is adjusted using an infinite impulse response. In this study, a median filter with a
100 Hz sampling frequency was applied. An RADWT (rational-dilation wavelet transform)
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was used to obtain the rational dilation factors from EEG signals at different scales with
greater flexibility and accuracy. In contrast with conventional wavelet transformation,
integer dilation factors are used in rational scaling. An RADWT is represented as a fraction
(p/q). p and q represent integers that enhance the EEG signal. The filtered EEG signal
enhances anxiety-induced seizure regions. Figure 3A depicts the filtered signals of EEG
ES and non-ES signals. Band-pass and median filters were applied in the preprocessing
stage. In Figure 3B (continued), RADWTs (rational-dilation wavelet transforms) are used to
represent test signal frequency responses, execute wavelet representation, determine the
distribution of signal energy, and reconstruct signals from individual side bands.
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2.3. Data Augmentation of the BONN EEG Signals

Data augmentation [1–3,40] is used in machine and deep learning to increase the
number of data samples. The increased quantity of signals in the database, derived through
improved, synthetized versions of the EEG seizure signals, increases prediction accuracy.
Random data augmentation was applied to BONN EEG epileptic seizure signals, resulting
in new samples with the original label categorization. Augmentation strategies solve the
problem of requiring a large quantity of data for training purposes. In [1], an extreme
learning machine wavelet auto encoder method was used alongside augmented data and a
wavelet activation function to enhance the sample variety through data augmentation. In
this study, the random data augmentation of EEG signals allowed the mimicry of anxiety-
induced seizure signals. Here, the ES signals are varied in terms of width, amplitude (A),
and the combination of width and amplitude.

Random Data Augmentation

In this study, random data augmentation was used to increase the diversity and
size of the seizure signals in the EEG dataset. Data variation was achieved through
random modifications. The diversity of the dataset was brought about by random data
augmentation, which is a more effective technique in this regard. RDA creates EEG signals
with varying angles, viewpoints, noise levels, and anxiety signals, mimicking anxiety-
induced epileptic seizure signals through random changes. Figure 4 shows RDA-based
(anxiety-induced seizure) EEG ES and non-ES signals. RDA alters or reduces the amplitude
of the epileptic signals. The signals are iterated, and the amplitude of the epileptic signals
is reduced. The amplitude of the EEG signals is reduced through RDA, a strategic method
that enhances model performance, improves generalization, and maintains the signal
characteristics for accurate anxiety detection. RDA creates a variety of EEG signals and
improves the model accuracy through increasing the variety of features in the augmented
signals. This diversity solves class imbalance problems in datasets and enhances model
performance. The model learns from the balanced dataset, and overfitting is reduced
through data augmentation, such as position and random data augmentation.
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3. Results

The analysis was performed on an operating system with an Intel Core i3-1005G1, a
CPU operating @ 1.20GHz, and 8 gigabytes (GBs) of RAM (Dell, China). MATLAB R2021a
was utilized. The effectiveness of the classifier was determined.

3.1. Feature Extraction via Fuzzy Classification

Fuzzy classifiers are used to extract features from RDA-augmented EEG signals. Fuzzy
logic is used for feature extraction and extracts the pertinent features in EEG signals. A
fuzzy classifier uses fuzzy logic principles, extracting features and selecting the pertinent
features based on the features belonging to a class. Fuzzy logic enhances classification
performance through the efficient management of imprecision and uncertainty in data.
Fuzzy logic can be used to manipulate imprecise or uncertain data. Fuzzy classifiers
are based on membership degrees, where a fuzzy set represents the uncertainty. The
inference rule in fuzzy logic deals with ambiguous information. Fuzzy logic includes a set
of mathematical operations. Fuzzy classifiers handle ambiguous and complex data and can
be used to extract features. Fuzzy features are based on the characteristics of each class,
and they are used to assess the relevant features. Higher-membership-degree features are
selected for classification. The "if–then" rule is used for decision-making in fuzzy systems.
For classification, each rule combines a number of attributes and membership functions.
Fuzzy logic solves problems with inherent ambiguity and deals with imprecise or uncertain
facts. Figure 5 depicts RDA signals processed with FCM for EEG ES and non-ES signal
feature extraction. In Figure 5, the features were determined using FCM. For the EEG
and random data-augmented signals (in which there is a reduction in the amplitude of
the original epileptic EEG signal), the fuzzy cluster, fuzzy centre, and objective function
are shown.
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3.2. PSO-LSTM for Classification of EEG Signal

RDA increases efficacy, efficiency, and EEG signal quality. Particle swarm optimization
is used for optimizing data or tasks involving data. PSO simulates the action of a swarm and
obtains the best answer inside a certain issue domain. PSO is used in data optimization for
feature selection, parameter tweaking, data clustering, and preprocessing. PSO optimizes
data. In this approach, every outcome is called a particle (bird) [41] and described as
a vector. The population (swarm), in this case, is made up of an arbitrary number of
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initial solutions. Every particle has a starting location and a velocity as it moves across
the solution space and ultimately generates an optimal result. The initial steps of PSO
are the determination of the initial position and velocity of each particle, followed by the
upgrading of the variables for a predetermined number of generations, resulting in the best
possible answer.

Particle
→
dx is in ‘n’-dimensional space and represented as in Equation (1).

→
dx = {dx1, dx2, dx3, . . . , dxn} (1)

x = 1, 2, 3, . . ., j, j represents particles number. Each particle are at different speed and
represented as in Equation (2).

→
sx = {sx1, sx2, sx3, . . . , sxn} (2)

Optimal solution is the ‘gbest’ and every particle is with unique best position, denoted
as ‘Pbest’ Particles move towards the best solution during iteration after changing their
position and velocity in Equations (3) and (4).

→
sx(t + 1) = λ ∗ →

sx(t) + c1 ∗ r1 ∗
(→

px(t)− dx(t)
)
+ c2 ∗ r2 ∗

(
→
gx(t)−

→
dx(t)

)
(3)

→
dx(t + 1) =

→
dx(t) +

→
vx(t + 1) (4)

Here,
→
sx(t + 1) is the xth-velocity particle during iteration ‘t + 1’. λ stands for weight

inertia, and
→
sx is the xth-velocity particle at iteration ‘t’.

→
px(t) and

→
gx(t) represent the particle

best and swarm global best, respectively, which are based on iteration ‘t’.
→
dx(t) and

→
dx(t + 1)

represent the past and present solutions. The cognition and social coefficient are represented
by two positive real constants: c1 and c2. Random numbers between 0 and 1 are created for
r1 and r2. A recurrent neural network, LSTM [30,31], solves the vanishing gradient problem,
making it possible for the network to identify and monitor the long-term dependencies
in a collection of data. RNNs are less complex in structure than LSTM networks and
require unique memory cells, which hold information for long periods of time. The
memory cells are connected through a gate system, which regulates the flow of information.
The three main gates of an LSTM are input, forget, and output. These gates control the
information that enters and leaves memory cells, as well as whether data are retained
or deleted from those cells. An input gate is added to the memory cells and refreshes
their values. It considers both the input at a given moment and that in previous hidden
states. The forget gate selects data from the memory cell to discard. It outputs a forget
factor for every memory cell by considering both the past concealed state and the current
input. The quantity of data taken from memory cells is controlled through output gates.
The considerations here include the current input, historical biases concealed in the state
information, and outputs in a hidden state at the current time step. To update and store
information in memory cells, LSTM combines multiplicative and additive interactions and
allows for the long-term retention or forgetting of specific knowledge. The technique used
to train LSTM is backpropagation, which updates a network’s weights and biases.

3.3. Hyperparameter Tuning Using PSO in LSTM

Hyperparameter tuning was performed using an optimization algorithm. Tuning
techniques improve performance, accelerate the process, and determine the ideal hyper-
parameter values. There are numerous hyperparameter optimization techniques, such as
particle swarm optimization, grid search, and Bayesian optimization. The selection of the
ideal value for a layer, such as the learning rate, neurons, activation functions, dropout rate,
or batch size optimizer, is called hyperparameter tuning. The framework for PSO tuning in
LSTM and parrot optimization is depicted in Table 2.
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Table 2. Framework for PSO tuning in LSTM and Parrot Optimization.

Description Values Used Reference

Particle Swarm Optimization (PSO)

Size of swarm 9 - -
Maximum value of repetitions 100 - -

C1 (Cognition Coefficient), C2 (Social
Coefficient) C1 = C2 = 2 1.4962 [21] 0.9 [41]

LSTM

Gradient Threshold 0.01 - -
Learning rate 0.0001 0.001 [29] 0.005 [30]

No. of hidden units 100 64 [29] -
Input layer Sequence layer - -

Activation function tanh(state), Sigmoid(gate) SoftMax [29] -
Output layer Regression layer - -

Drop out 0.5 - -

Parrot Optimization

Maximum Iteration 1000

[42]
Lower Bound (lb) −100
Upper Bound (ub) 100

Number of search agents 30
Dimension of search space 30

3.4. Proposed Methods
3.4.1. FCM-PS-LSTM

The FCM classifier was used to extract the statistical properties of epileptic and non-
epileptic EEG signals. A PSO hyperparameter-tuned LSTM classifier process with fuzzy
logic was used to extract the features and classify the epileptic and non−epileptic EEG
signals. This technique solves the problem of overlapping clusters, as PSO finds optimal
solutions in large search spaces. PSO performs better than other algorithms in this regard
due to its adaptability and convergence properties, enabling it to find the optimal solutions
through dynamically adjusting the search parameters. LSTM is a sequential data processing
technique and maintains long-term dependencies in data sequences, making it appropriate
for EEG signals. LSTM predicts values in PSO algorithms, reduces the fitness value, and
increases optimization efficiency. In this study, 70% of the data were used for training, and
30% of the data were used for testing. Here, 10-fold cross validation was used for analysing
the data. The performance of FCM−PS−LSTM is shown in Figure 6.
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3.4.2. PS−LSTM

The LSTM classifier classified non-epileptic and epileptic EEG signals using PSO
hyperparameter tuning. The performance of the proposed (PS−LSTM) method for ES and
non−ES signals is depicted in Figure 7.Brain Sci. 2024, 14, x FOR PEER REVIEW 13 of 21 
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3.4.3. Parrot Optimization-LSTM

The observed behaviour of a trained parrot, Pyrrhura Molinae, served as the model
for the parrot optimizer (PO) optimization technique [42]. This technique addresses the
optimization issues present in a variety of domains. POs are used in deep learning and to
optimize neural network hyperparameters. The parrot optimizer was used to optimize
the LSTM hyperparameters. The dataset was split into five folds for this process, and the
network was iteratively retrained and validated using cross-validation and its performance
was estimated. The cumulative cross-validation data provided by parrot optimization
yielded the optimal hyperparameters, and these were used to train the network and
subsequently evaluate the test data. The performance of the proposed PO−LSTM method
for ES and non−ES EEG signals is depicted in Figure 8.
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Mathematical Model of PO

Initialization of population

Y0
i = lb + rand(0, 1) ∗ (ub − lb)

Here, lb denotes the lower band and ub denotes the upper band, rand(0,1) denotes a random
number in the range [0, 1], and Xi denotes the position of the ith Pyrrhura Molinae in the
initial phase.
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3.5. Performance Metrics

Evaluation metrics were used to determine the proposed method’s efficacy in classi-
fying anxiety-based EEG ES signals. Table 3 depicts the results for the classifier accuracy
analysis for the proposed method. Increased perturbations lead to decreased accuracy in
RDA-generated anxiety-related effect sizes, but employing exact data-preprocessing, fea-
ture selection, and validation algorithms mitigates the effects of these issues and enhances
the reliability of the results. The various classifiers’ performance metrics for the signals
before data augmentation (BDA) and after random data augmentation (ARDA) in regard
to EEG epileptic signals are compared in Table 4. In this paper, the results of the proposed
methods, (i) FCM-PS-LSTM, (ii) PS-LSTM, and (iii) PO-LSTM, are compared using metrics
such as accuracy, specificity, sensitivity, F1-Score, MCC (Matthew’s correlation coefficient),
CSI, kappa, precision, and FM index. A comparison of the classification accuracy of the
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existing methods with that of the proposed methods is shown in Figure 9. Table 5 depicts a
comparison of the classification accuracy between the existing and proposed approaches
for EEG epileptic seizure signals.

Table 3. Analysis of classifier accuracy for stated methods.

Methods
FCM-PS-LSTM PS-LSTM PO-LSTM

Accuracy (%)

Before Data Augmentation (BDA) 94.45 95 94
After Random Data Augmentation (ARDA) 98 98.5 96

Table 4. Comparison of the classifier’s outcomes for anxiety-based ES using ARDA and BDA.

Methods BDA ARDA

Classification
Effectiveness LR GNB MLR FCM-PS-

LSTM
PS-

LSTM
PO-

LSTM LR GNB MLR FCM-PS-
LSTM

PS-
LSTM

PO-
LSTM

Accuracy 93.33 68.3 91.66 94.45 95 94 96 85.5 97.5 98 98.5 96
Sensitivity 93.7 82.35 90.9 94.94 94.11 95 97 84.84 97 97 98 97
Specificity 92.8 62.79 92.59 94 95.91 93 95 86.13 97.97 98.9 98 95
Precision 93.75 46.66 93.75 94 96 93.13 95.09 85.7 98 98.9 98 95.09
F1-Score 93.75 59.57 92.3 94.47 95.04 94.05 96.03 85.27 97.51 98 98.4 96.03

MCC 86.6 40.6 83.2 89.0 90.0 88.01 66.4 54.0 68.3 68.9 69.1 92.01
Kappa 86.6 36.6 83.2 89 90 88 92.1 72 95.03 96 97 92

CSI 88.2 42.4 85.7 89.5 90.5 88.7 92.3 74.3 95.1 96.1 97 92.3
FM Index 93.72 61.98 92.3 94.46 95.04 94.06 96.04 85.26 97.49 98.44 98 96.04

LR—logistic regression; GNB—Gaussian naïve Bayes; MLP—multiple linear regression; Proposed Methods:
(i) FCM-PS-LSTM, (ii) PS-LSTM, and (iii) PO-LSTM; BDA—before data augmentation. ARDA—after random
data augmentation.
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Table 5. Comparison of classifier accuracy with latest methods for EEG Epileptic seizures signal.

Title Purpose Database
Strategy

Evaluation Metrics
PP Features Classifier

EEG Feature Extraction and Data
Augmentation in Emotion

Recognition [3]

Detection of Arousal and
valence DEAP dataset (Emotional) CWGAN for data

augmentation

Average PSD, Zero
Crossing rate, Mean,

variance for traits
SVM, DNN Accuracy 71.9%

Staging Study of Single-Channel
Sleep EEG signals Based on Data

Augmentation [15]

Detection of sleep period
(wake,N1,N2,N3,REM)

SC subset of Sleep-EDF
Database

RDB-DCGAN data
augmentation model.

Wavelet time frequency
transform

CNN Accuracy 76%

Classification of Epileptic EEG
Signals Using PSO-Based Artificial
Neural Network and Tunable-Q

Wavelet Transform [21]

Categorization of Epileptic
EEG signals (Nor-

mal/Focal/Generalized)

KIT
TUH TQWT

Non-linear attributes such
as log energy entropy,
Shannon entropy and
Stein’s unbiased risk

estimate entropy.
PSO

ANN Accuracy: (i) normal–focal (95.1%), (ii) normal–generalised (97.4%), (iii) normal–focal + generalized (96.2%), and (iv) normal–focal
generalized (88.8%) for TUH

Epileptic Seizure Prediction Based
on Hybrid Seek Optimization

Tuned Ensemble Classifier Using
EEG signals [22]

Prediction of
Epileptic seizure

Siena database
CHB-MIT

BPF Statistical, Wavelet and
Entropy-based attributes

DT, RF & AdaBoost
classifier

Siena CHB-MIT

Accuracy 95.3%
Sensitivity 93.17%
Specificity90.06%

Accuracy 96.6%
Sensitiivty 94.67%
Specificity 91.36%

Prediction of Seizure in the EEG
Signal with Time Aware Recurrent

Neural Network [33]

Prediction of EEG seizure
(Inter-ictal)

CHB-MIT
BONN

VIRGO EEG

Time Aware CNN and Recurrent Neural Network
(TA-CNN-RNN) Model

LSTM

CHB-MIT BONN VIRGO EEG

Accuracy 89%
Precision 88.3%

Recall 91.3%
F-measure 89.8%

Accuracy 88.6%
Precision 87.7%

Recall 90.9%
F-measure 89.2%

Accuracy 88.7%
Precision89.4%

Recall 92.4%
F-measure 90.7%

Training Datasets for Epilepsy
Analysis: Preprocessing and

Feature Extraction from
Electroencephalography Time

Series [43]

Seizure Prediction Freiburg Databas. Sliding window Techniques and multiple features are
extracted TrBtool used NA NA

Detection Method of Epileptic
Seizures Using a Neural Network

Model Based on Multimodal
Dual-Stream Networks [44]

Seizure detection Bonn EEG dataset
New Delhi Dataset

Short time Fourier
transform

signal differential attributes,
frequency domain

amplitude spectrum and
phase spectrum methods

Multimodal dual stream
networks 99.69%Accuracy, 99.44%Precision, 1%Recall, 99.72%F1-score for Bonn EEG dataset

Proposed Methods EEG Epileptic seizure
(anxiety based) BONN EEG dataset BPF, Median and RADWT Statistical

LSTM

(i) PFCM-PS-LSTM
(ii) PS-LSTM

(iii) PO-LSTM

ARDA(%)

Accuracy Sensitivity Speficity Precision F1-
score MCC Kappa CSI FM

Index

98 97 98.9 98.9 98 68.9 96 96.1 98.44

98.5 98 98 98 98.4 69.1 97 97 98

96 97 95 95.09 96.03 92.01 92 92.3 96.04
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4. Discussion

Epilepsy is a condition which arises when aberrant signals are transmitted by a
number of nerve cells, resulting in seizures. Brain electrical activity is measured using
electroencephalograms (EEGs). Epileptic seizures caused by anxiety are reflected in EEG
signals through changes in a signal’s size and form. The intent of this EEG-based research
is to investigate more precise and effective classification techniques. We propose techniques
to identify anxiety-based EEG signals corresponding to epileptic seizures and non-epileptic
seizures. For analysis, data augmentation has been applied to emotional EEG signals [1,3]
and sleep-related EEG signals [15]. Epileptic seizure signals from the Bonn dataset were
data-augmented for anxiety-based EEG signals. Statistical attributes [22] such as Hjorth
activity, Kurtosis, mean, standard deviation, Shannon entropy, skewness, and variance
were extracted through a fuzzy classifier. The data-augmented anxiety seizure signals were
processed with three proposed algorithms: (i) fuzzy C-means particle swarm optimization–
long short-term memory, (ii) particle swarm optimization–long short-term memory, and
(iii) parrot optimization–LSTM. In [19], PSO for optimization and BPNN were used for the
classification of seizures. In [43], the author conducted an evaluation of the preprocessing
and feature extraction of seizure predictions using EEG time series data. The authors of [44]
employed an NN model based on MDSN for seizure detection and achieved an accuracy of
99.69%. In this study, hyperparameter-tuned PSO and PO were used for an LSTM classifier.
Among the above-stated proposed methods, PS-LSTM achieved 98.5% for ARDA and 95%
for BDA. The classifier performance was compared with that of LR, GNB, and MLR. In the
future, EEG epileptic seizure classifications for tonic–clonic, myoclonic, febrile, and atonic
seizures need to be obtained through the data augmentation of signals, and an analysis
of the effect of gender peculiarities on classification efficacy using the proposed approach
must be conducted.

5. Conclusions

In this study, we used RDA, fuzzy-based feature extraction, and the hyperparameter
tuning of PSO. PO-tuned LSTM was used for the diagnosis of anxiety-based EEG ES and
non-ES signals. Statistics from fuzzy bases such as Hjorth activity, Kurtosis, mean, standard
deviation, Shannon entropy, skewness, and variance were extracted and analysed. In this
paper, we propose the following classification methods: (i) FCM-PS-LSTM, (ii) PS-LSTM,
and (iii) PO-LSTM. These methods achieved accuracies of about (i) 98%, (ii) 98.5, and (iii)
96%, respectively.
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