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Abstract: Exposure to physical and psychological stress modulates pain transmission in a dual
manner. Stress-induced analgesia (SIA) refers to the reduction in pain sensitivity that can occur in
response to acute stress. On the contrary, chronic stress exposure may lead to a phenomenon named
stress-induced hyperalgesia (SIH). SIH is a clinically relevant phenomenon since it has been well
documented that physical and psychological stress exacerbates pain in patients with several chronic
pain syndromes, including migraine. The availability of animal models of SIA and SIH is of high
importance for understanding the biological mechanisms leading to these phenomena and for the
identification of pharmacological targets useful to alleviate the burden of stress-exacerbated chronic
pain. Among these targets, the nociceptin/orphanin FQ (N/OFQ)–N/OFQ peptide (NOP) receptor
system has been identified as a key modulator of both pain transmission and stress susceptibility.
This review describes first the experimental approaches to induce SIA and SIH in rodents. The second
part of the manuscript summarizes the scientific evidence that suggests the N/OFQ–NOP receptor
system as a player in the stress–pain interaction and candidates NOP antagonists as useful drugs to
mitigate the detrimental effects of stress exposure on pain perception.
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1. Introduction

Exposure to physical and psychological stress modulates pain transmission in a dual
manner. Stress-induced analgesia (SIA) refers to the reduction in pain sensitivity that can
occur in response to acute stress. This adaptive response allows an organism to maintain
functionality and respond to threats despite potential injury or pain. SIA is mainly due to
the release of endogenous opioids and endocannabinoids during acute stress experience [1].
On the contrary, stress-induced hyperalgesia (SIH) is an increased sensitivity to pain in
response to chronic stress [2]. SIH is a clinically relevant phenomenon since it has been
well documented that physical and psychological stress exacerbates pain in patients with
chronic pain syndromes, i.e., fibromyalgia [3–6], inflammatory bowel diseases [7], complex
regional pain syndrome [8,9], and shoulder/neck pain syndrome [10,11]. Stress may
also represent a migraine trigger since it reduces the threshold of a migraine attack in
susceptible patients [12,13]. The clinical relevance of SIH underlines the importance of
stress management in pain pathologies. The mechanisms by which stress worsens pain are
complex and only partially understood; they involve, at least in part, the activation of the
hypothalamic-pituitary-adrenal (HPA) axis with increased cortisol levels, the dysregulation
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of monoaminergic systems, as well as central sensitization and neuroinflammation [2]. The
identification of those biological systems that play a role in the interplay between stress and
nociception and their pharmacological modulation is crucial for the development of novel
strategies to alleviate the burden of chronic pain. To this end, the availability of SIA and
SIH animal models is of paramount importance. The present narrative review describes
the experimental approaches to induce SIA and SIH in rodents. The second part of the
manuscript summarizes the scientific evidence that suggests the nociceptin/orphanin FQ
(N/OFQ)–N/OFQ peptide (NOP) receptor system as a player in the stress–pain interaction
and proposes NOP antagonists as drugs that may be useful to mitigate the detrimental
effects of stress exposure on pain perception.

2. Animal Models of Stress-Induced Analgesia

Acute stressors have been strongly validated as analgesia inductors. In the scientific
literature, there are numerous examples of animal models aimed at mimicking SIA, includ-
ing unconditioned SIA and conditioned SIA (also known as fear-conditioned analgesia).
Unconditioned SIA arises with an unconditioned aversive stimulus or environment that is
capable of inducing analgesia, whereas conditioned SIA happens due to the re-exposure to
a context that has been previously associated with a noxious or aversive stimulus [1]. Of
note, the study of the biological mechanisms involved in SIA led to a better understanding
of those endogenous systems able to suppress pain, which is useful to individuate new
therapeutic targets for the treatment of pain-related disorders. In rodents, the effect of acute
stress on pain perception has been investigated both using classical nociceptive assays (i.e.,
tail flick and withdrawal [14–16], hot plate [17–19], and tail pinch [20,21]) and assays mim-
icking inflammatory/chronic pain (i.e., formalin test [22–24]). Many environmental stimuli
have been demonstrated to produce analgesia. Importantly, the use of different stimuli
and different experimental conditions may lead to different results due to the activation of
different biological substrates evoking analgesia. Most studies performed footshock, forced
swimming, or restraint stress, among others.

2.1. Footshock Stress

Footshock stress has been used to induce SIA mostly in rats, but some studies have
been performed on mice as well, and the resulting analgesia has been defined as footshock-
induced analgesia (FSIA). The electric foot shock paradigm includes acute exposures of
shocks of varying intensity and duration (3–30 min) on an electrified grid floor. Three min
of footshock induced analgesia in an intensity-dependent manner, with robust SIA levels
reaching from 0.6 mA [25]. Some studies have hypothesized that the duration of acute foot-
shock stress influences the nature of resulting analgesia, with brief and continuous shocks
(3 min) leading to analgesia resistant to the opioid antagonist naloxone and prolonged and
intermittent shocks (30 min) leading to naloxone-reverted analgesia in rats [26–28]. Other
studies stated that the nature of SIA induced by footshock depends on the body region
shocked. In particular, front paw shocks produce a naloxone-reversible analgesia, and
hind paw shocks produce an analgesia that fails to be attenuated by the opioid receptor
antagonist in rats [29,30]. In general, in opioid-dependent SIA, opioid receptors have been
reported to be involved both at spinal and supra-spinal levels. Otherwise, the endogenous
cannabinoid system has also been identified as an endogenous system activated by electric
footshock and important for SIA [25,31,32].

2.2. Forced Swim Stress

The forced swim stress (3–6 min) is another widely used method to induce SIA both in
rats and mice. It has been reported that SIA induced by a few min of swimming appeared
immediately after stress, lasted less than one hour, and was subjected to tolerance [33].
Swim stress-induced analgesia (SSIA) has been classically measured using acute nocicep-
tive assays (i.e., hot plate, tail flick, and tail withdrawal assays), but acute swim is also able
to reduce the nociceptive effects of formalin, both in the first and second phases [34–37].
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One of the experimental conditions that can influence the nature of SSIA is water tem-
perature. Specifically, cold water (20–15 ◦C) swimming produces non-opioid SSIA in rats
and mice [38–40], whereas warm water (32 ◦C) swimming has been reported to produce
SSIA blocked by the short-acting opioid antagonist naloxone or by the long-acting opioid
antagonist naltrexone [41–44], thus an opioid-dependent SSIA. Focusing on the endoge-
nous opioids involved in SSIA, a 2011 study found that antinociception induced by forced
swimming (32 ◦C) was attenuated in beta-endorphin-deficient mice but not in mice lacking
enkephalins or dynorphins, suggesting that beta-endorphin is the primary neural substrate
mediating this form of SIA [45]. Sex-specific differences in the neurochemical mediation
of SSIA have been reported [46]. In this study, non-opioid SSIA after 15 ◦C swim was
attenuated by the N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine in male
but not female mice. Moreover, ovariectomized female mice were sensitive to dizocilpine
antagonism of non-opioid SSIA. This finding suggests the existence of an estrogen-mediated
mechanism of SSIA. Interestingly, SSIA has been the model used to determine the role
played by the orexin system in SIA. It has been reported that orexin receptor 1 and orexin
receptor 2 are both important in non-opioid SIA [34,47]. More in detail, the brain areas in
which the activation of orexin receptors 1 and 2 seems important for SIA are the nucleus
accumbens [24,48] and the dentate gyrus of the hippocampus [49,50].

2.3. Restraint Stress

Restraint stress consists in placing the animal (mouse or rat) in a well-ventilated tube
or small cage to severely restrict its movements for a period from 30 min to 3 h. Usually, a
single exposure to this stressor is sufficient to induce SIA [15,51–55], while, as described
below, repeated sessions are used to induce SIH. Similar to forced swim stress, restraint SIA
can be measured using both an acute nociceptive test [56–58] and the formalin test [59–61].
The exact mechanisms by which restraint evokes pain suppression are not known, although
an involvement of opioid mechanisms has been demonstrated since restraint-induced
analgesia was prevented by naltrexone [42]. More recent studies have also revealed orexin
involvement [58,60–64] and orexins—N/OFQ interaction [56].

3. Animal Models of Stress-Induced Hyperalgesia

Starting in the ‘90s, several pre-clinical studies have been performed to develop SIH
animal models. Different stressors have been used as well as different ways to assess
hyperalgesia. Similar to SIA, the use of stressful procedures different for their nature,
intensity, and duration may lead to different results since different biological pathways
may be activated under different experimental conditions. In general, to obtain SIH, a
long-lasting or repeated stressful stimulus should be applied. The most commonly used
stressors are forced swimming, restraint, and repeated cold stress. More rarely, in some
studies, chronic mild stress, early-life stress, water avoidance, as well as other kinds of
stress have been used [2].

3.1. Forced Swim Stress

Forced swimming to induce SIH has been used primarily in rats, where a 3-day proto-
col (one swim session/day, 10–20 min, 24–26 ◦C) is sufficient to induce per se thermal and
mechanical hyperalgesia, starting one day after the last stress section and lasting up to one
week [65–69]. The same procedure was able to increase the nociceptive effect of formalin,
especially during the second inflammatory phase [66,70–72], of the Complete Freund’s
adjuvant (CFA) [73–77], and of carrageenan [65], suggesting that forced swimming stress
may worsen inflammatory pain. Of note, some research groups reported that 3 days of
forced swimming failed to induce SIH in rats [78] and longer protocols (from 7 to 14 days)
must be eventually adopted [78–80]. Little is known regarding the biological mechanisms
leading to SIH after swim stress; however, increased inflammation [68,69] and reactive oxy-
gen species (ROS) levels [73], together with an unbalance of the GABAergic/glutamatergic
transmission [71,72] in the spinal cord, have been reported. The treatment with clas-
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sical antidepressants [66,80], valproate [67], and nonsteroidal anti-inflammatory drugs
(NSAIDs) [68] was able to prevent/treat the SIH induced by forced swimming.

3.2. Restraint Stress

Restraint stress has been largely used to induce SIH both in mice and in rats. In
rodents, the effects of a single session of restraint, lasting from one to three hours, elicited
variable effects in different laboratories, ranging from analgesia [51,81,82], no effect [83–85],
and hyperalgesia [85]. On the contrary, the use of multiple restraint sessions to produce
SIH elicited consistent results among different laboratories. Commonly, mice or rats are
placed in the restrainer once a day for a period of 1 to 6 h, for 7 to 40 days. Similar protocols
are used for mice and rats. The chronic restraint stress leads to mechanical [84,86–97] and
thermal [84,90,92,94,97] allodynia and to thermal hyperalgesia [51,84,86,87,95–100], that
can be measured using the von Frey filaments, the hot plate and tail flick/withdrawal
assays, and the paw withdrawal to cold. Mechanical allodynia applies not only to the
paw but also to the masseter muscle [101–103], indicating an effect also in the trigeminal
area. The increased nociceptive behavior is already evident after few restraint sessions (i.e.,
3–7 days) and, after 28 or 40 days of stress, almost 30 days without stress are required to
restore the basal conditions [88,90,93]. Thus, chronic restraint stress precipitates a long-
lasting increased pain perception. Similar to swim stress, restraint stress was also able to
increase the nociceptive response of mice and rats to formalin [83,86,90,104], prostaglandin
E2 (PGE2) [105], and bee venom [106], to worsen the neuropathic pain induced by in-
fraorbital nerve chronic constriction injury [107] and the pain induced by nerve growth
factor injection into the low back muscles of mice [108]. Interestingly enough, in a mouse
endometriosis model, chronic restraint stress increased nociception and exacerbated the
course of the disease [109]. Collectively, the large number of studies performed using
chronic restraint stress as a model of stress demonstrated that this procedure triggers SIH in
a robust manner, leading to similar effects in mice and rats, with reproducible data among
different laboratories. As forced swim, restraint stress is associated with increased cortisol
levels [83,88,110], as well as inflammation markers in the spinal cord [88,93,95,105] and in
the trigeminal nucleus caudalis and ganglion [101–103]. The blockage of the glucocorticoid
receptor as well as of some inflammatory pathways (i.e., interleukin-1 (IL-1) receptor, toll-
like receptor 4 (TLR4), and high mobility group box 1 (HMGB1) protein; cyclooxygenase-2
(COX2), and E-type prostanoid receptor 4 (EP4)) counteracts SIH [93,94,105,110]. Addi-
tionally, SIH evoked by restraint is counteracted by the classical antidepressant acting as
a selective serotonin reuptake inhibitor (SSRI), fluoxetine [96]. Chronic restraint stress
has been used in different studies to investigate the role played by the opioid system in
SIH. These studies revealed that prolonged stress exposure leads to plastic changes of the
opioid system, mainly regarding the mu receptor. Specifically, a reduction in the density
of opioid receptors, evaluated by binding experiments, has been detected in the spinal
cord, cortex, and hippocampus of rats subjected to chronic restraint stress [111], as well as
a reduction of morphine sensitivity [83,90,104]. Both findings have been confirmed using
different stress models [112–115]. Thus, chronic stress may cause a down-regulation of
endogenous opioidergic pathways, and this phenomenon may, at least in part, contribute
to the development of SIH. For a review on the role of the opioid system in SIA and SIH,
see [116].

3.3. Repeated Cold Stress

Repeated cold stress consists in placing mice or rats in a cold room (usually 4 ◦C) for
several hours/day for different days. Typically, after being kept overnight at 4 ◦C, animals
are alternately exposed to room temperature and cold temperature at 30 min intervals from
10:00 AM to 5:30 PM, followed by another overnight period at 4 ◦C. This is repeated for
3 to 5 days. Repeated cold stress induces mechanical and thermal hyperalgesia [117–126],
and, because of the induction of persistent muscle pain measured with the Randall–Selitto
test, it has been proposed by some authors as a fibromyalgia model [127].
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From a pharmacological point of view, it is worth noting that drugs able to in-
crease the synaptic levels of serotonin and norepinephrine (i.e., fluoxetine, clomipramine,
5-hydroxytryptophan, and milnacipran) are able to reverse SIH induced with different pro-
cedures [66,70,80,83,128]. This suggests that monoamine dysfunction may be involved in
SIH and that their potentiation may represent a therapeutic approach. This is not surprising
considering the role played by monoamines in descending pain pathways and the efficacy
of antidepressant drugs for the management of neuropathic pain [129].

4. Animal Models of Stress-Induced Migraine

Migraine is a multifactorial and common disorder that affects millions of people
worldwide. Although recognizing a migraine trigger can be difficult, several patients
reported stress as the primary trigger for migraine attacks [130]. Over the years, several
pre-clinical migraine models have been set up and validated. These models helped to
better understand the biological bases of the disease and are useful for the identification
of new therapeutic opportunities. To mimic migraine in mice and rats, several stimuli
have been used, ranging from the electrical stimulation of the trigeminal nerve or ganglion
to the local or systemic injection of chemical stimuli. The administration of nitroglycerin
(GTN), calcitonin gene-related peptide (CGRP), and transient receptor potential cation
channel subfamily A member 1 (TRPA1) agonist is the most widely used approach to
induce migraine-like pain in rodents, commonly measured as mechanical allodynia in the
peri-orbital area or in the paw [131,132]. To elucidate the complex interplay between stress
and migraine, recent studies have employed a paradigm where stress is induced prior
to exposure to a known migraine trigger. Among these investigations, it is important to
distinguish between those where stress precedes a fully effective stimulus, capable per
se of inducing migraine, and those where stress precedes a stimulus that is not active
per se (i.e., a subthreshold dose of a migraine stimulus). In the first case, chronic stress
(restraint [133], chronic unpredictable, and social defeat [134] stress) did not change the
pro-allodynic effects of an active dose (10 mg/kg) of GTN. Similarly, chronic variable stress
did not affect cortical spreading depolarization in a genetic mouse model of migraine
(mice with the familial hemiplegic migraine type 1 mutation, FHM1) [135]. Of note, quite
a different result has been reported by Raoof et al. demonstrating that the exposition of
rats to chronic unpredictable stress or to maternal separation exacerbates the effects of
GTN 5 mg/kg, only in female animals [136]. It can be hypothesized that, in those studies
using a fully effective trigger, a ceiling effect that prevents to appreciate the worsening effect
of stress on migraine-like pain may occur. In fact, when chronic stress is applied before
a sub-threshold migraine inducer, a clear effect of stress has been reported by different
research groups. Avona et al. demonstrated that 2 h of restraint stress for 3 consecutive
days induce periorbital mechanical allodynia that disappears 14 days after stress. More
interestingly, after returning to baseline, a subthreshold dose of the nitric oxide donor
sodium nitroprusside (0.1 mg/kg) was effective in stressed but not naïve mice [137]. The
authors described this condition as “latent sensitization”, wherein initial stress increases the
animal sensitivity to the migraine trigger. A similar pattern of effects has been replicated
using the TRPA1 agonist umbellulone [138] and the pituitary adenylate cyclase-activating
polypeptide-38 (PACAP38) [139] as chemical inducers. Of note, repeated unpredictable
sound stress has also been reported to induce per se migraine-like signs; however, its
ability to prime a subthreshold migraine trigger has not been investigated [140]. Of interest,
in this last model, female animals were more sensitive than male animals. As far as the
effectiveness of standard antimigraine drugs in this model, different results are reported.
The study by Avona et al. described the inactivity of sumatriptan in reverting sodium
nitroprusside effects, while a CGRP antibody was fully active [137]. Another study reported
that the beta blocker propranolol and the CGRP receptor antagonist olcegepant are able
to prevent allodynia and priming when given before stress exposure, while sumatriptan
reverted the effects of umbellulone [138]. These findings are in line with the clinical
use of these drugs; in fact, beta-blockers and CGRP drugs are approved for migraine
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prophylaxis, while sumatriptan is for migraine attack abortion. The pathophysiological
aspects of the stress–migraine correlation are still poorly understood. Studies suggest that
stress exposure leads to the release of PACAP38 [139] and, in females, of prolactin [141]
and that these peptides are both important for the priming effect of stress on migraine-
trigger susceptibility. Additionally, the mitogen-activated protein kinase interacting protein
kinases (MNK) pathway has also been reported to be important in a stress-induced migraine
model [142]. Interestingly, the kappa opioid receptor antagonist norbinaltorphimine (nor-
BNI) given before stress exposure prevented the deleterious effect of stress on migraine
susceptibility, suggesting the kappa receptor as a pharmacological target for the prevention
of migraine triggered by stress [138].

Table 1 summarizes the effects of the most commonly used stress procedures on pain
perception. The table highlights the species used in the studies (rat vs. mouse) as well as
the sex of the animals. Any sex-related differences are noted in the comments.
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Table 1. Summary of the effects produced by the most commonly used stress procedures on pain perception.

Specie Sex Experimental Conditions Outcomes Comments References

Footshock

Stress induced analgesia

Rat Male 90 s–3 min, 1.6 mA Thermal analgesia [27,32]
20 min, 1.6 mA, intermittent Thermal analgesia [27,28]

Mouse Male 3–30 min, 0.6 mA Thermal analgesia [20,25]

Forced swim

Stress induced analgesia

Rat Male 3–6 min, 25 ◦C Thermal analgesia [14,47,48,50]
Reduced nociceptive behaviors in the
formalin test [22–24,34–37,49]

3.5 min, 2 ◦C Thermal analgesia [38]
Mouse Male 2–3 min, 32 ◦C Thermal analgesia [18,33,40,44]

2–3 min, 15 ◦C Thermal analgesia [18,44]
2 min, 2 ◦C Thermal analgesia [40]

Male and female 3 min, 32 ◦C Thermal analgesia Higher SIA in female mice; naloxone completely blocked
SIA in male mice but only partially in female mice [42]

3 min, 15 ◦C Thermal analgesia Different sensitivity between male and female mice to
NMDA receptor antagonists [46]

Female 3 min, 32 ◦C Thermal analgesia

Stress induced hyperalgesia

Rat Male (10–20 min) × 3 days, 24–26 ◦C Thermal and mechanical hyperalgesia [65,66,68,69]
Increased nociceptive behaviors in the
formalin test [66,70–72]

Increased CFA-induced mechanical and
thermal hyperalgesia [73,74,76,77]

(10–20 min) × 10 days,
24–26 ◦C

Increased nociceptive behaviors in the
formalin test

SIH obtained in Sprague-Dawley but not in Wistar
Kyoto rats [78]

Female (10–20 min) × 3 days, 24–26 ◦C Thermal and mechanical hyperalgesia [67]
Increased CFA-induced mechanical and
thermal hyperalgesia [75]

Restraint

Stress induced analgesia

Rat Male 30 min–3 h Thermal analgesia [15,53,56,58,64]
Reduced nociceptive behaviors in the
formalin test [54,55,59–61,63]

Male and female 1 h Thermal analgesia No major differences between male and female [51]
Mouse Male 30 min–3 h Thermal analgesia [17,19,62]
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Table 1. Cont.

Specie Sex Experimental Conditions Outcomes Comments References

Stress induced hyperalgesia

Rat Male (30 min) × 3 days Increased PGE2-induced mechanical
hyperalgesia [105]

(1 h) × 35–70 days Thermal and mechanical hyperalgesia No effects in the Randal and Selitto test and in the tail
withdrawal test at different temperature [88] [86,87,90,111]

Increased nociceptive behaviors in the
formalin test [83,104]

(2 h) × 14–28 days Increased bee venom-induced nociceptive
behaviors [106]

(6 h) × 14–21 days Mechanical hyperalgesia [89,91,98,101–103]

Male and female (1 h) × 40 days Increased nociceptive behaviors in the
formalin test SIH only in male rats [51]

(2 h) × 14–28 days Thermal and mechanical hyperalgesia

No major differences between male and female in SIH;
when stress was applied with infraorbital nerve chronic
constriction injury, females displayed higher
hyperalgesia [107]

[88,93,106,107]

Mouse Male (3 h) × 10 days Thermal and mechanical hyperalgesia [96]
(4 h) × 10 days Thermal and chemical corneal hyperalgesia [110]
(6 h) × 7–28 days Thermal and mechanical hyperalgesia [84,95,97,100]

Increased low-back pain signs induced by
NGF Vertical restraint [108]

Male and female (2 h) × 28 days Mechanical hyperalgesia No major differences between male and female [93]
(6 h) × 28 days Thermal and mechanical hyperalgesia No major differences between male and female [92,94]

Female (2 h) × 28 days Increased nociceptive behaviors in an
endometriosis model [109]

Stress induced migraine

Mouse Male (1 h) × 3 days
Periorbital mechanical allodynia that
disappeared after 14 days, sensitization to a
subthreshold dose of migraine-inducing drug

Male and female (2 h) × 3 days
Periorbital mechanical allodynia that
disappeared after 14 days, sensitization to a
subthreshold dose of migraine-inducing drug

No major differences between male and female [137,138]
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Table 1. Cont.

Specie Sex Experimental Conditions Outcomes Comments References

Repeated cold

Stress induced hyperalgesia

Rat Male
(night: 4 ◦C; day: 24 ◦C and
4 ◦C switched every 30 min) ×
5 days

Thermal and mechanical hyperalgesia,
hyperalgesia in the Randal and Selitto test [120–123,125]

Mouse Male
(night: 4 ◦C; day: 24 ◦C and
4 ◦C switched every 30 min) ×
3–7 days

Thermal and mechanical hyperalgesia [117–119,124]

CFA, complete Freund’s adjuvant; NGF, nerve growth factor; NMDA, N-methyl-D-aspartate; PGE2, prostaglandin E2; SIA, stress-induced analgesia; SIH, stress-induced hyperalgesia.
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5. The N/OFQ–NOP Receptor System

Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand of a G-protein-coupled
receptor now named NOP receptor [143]. The N/OFQ–NOP system is the first successful
example of reverse pharmacology [144,145]. A G-protein-coupled receptor structurally
similar to opioid receptors was cloned and named opioid receptor-like 1 (ORL-1) [146].
One year later, two distinct research groups identified an endogenous 17-aminoacid neu-
ropeptide that binds with high affinity to the ORL-1 [147,148]. This peptide was named by
the Meunier’s group nociceptin due to its ability to elicit nociceptive effects after intrac-
erebroventricular (i.c.v.) administration in mice [147]. Reinscheid and colleagues named
the newly discovered peptide orphanin FQ to indicate a ligand of an orphan receptor with
phenylalanine (F) and glutamine (Q) at the N- and C-terminals, respectively [148]. Despite
structural homology with classical opioid systems, neither the endogenous opioids display
affinity for the NOP receptor nor does N/OFQ bind opioid receptors [149]. The NOP recep-
tor, when activated, inhibits the formation of cyclic adenosine monophosphate (cAMP),
closes voltage-gated Ca2+ channels, and opens inwardly rectifying K+ channels [150–153].
Thus, NOP receptor activation reduces neuronal excitability and neurotransmitter release.
NOP receptor activation has been shown to reduce the release of several neurotransmit-
ters, including norepinephrine, dopamine, serotonin, acetylcholine, and glutamate. The
reduction of neurotransmitter release is the mechanism by which the N/OFQ–NOP re-
ceptor system modulates many biological functions [154]. Since its discovery, numerous
studies have investigated the role of the N/OFQ–NOP system in nociception, revealing a
complex picture. In rodents, the effects of NOP agonists on pain transmission range from
pro-nociceptive to analgesic effects, depending on the site of action (supraspinal, spinal,
peripheral) and on the animal model used [155–157]. N/OFQ and NOP agonists produce
pro-nociceptive effects when given supraspinally (i.c.v.) in mice and rats in models of acute
pain [147,149,158,159]. This action is likely due to the presence of NOP receptors on the OFF
cells in the rostral ventromedial medulla. These neurons evoke a “descending inhibition”
of the afferent neurons from the spinal cord. NOP activation directly inhibits OFF cell
firing, thus producing hyperalgesia [154,156]. Differently, when NOP agonists are injected
intrathecally, a robust analgesic effect has been recorded in acute pain tests [160–164] and
in chronic pain models [165–169]. In the spinal cord, NOP agonism produces analgesia by
inhibiting excitatory glutamatergic nociceptive transmission both at the pre- and postsynap-
tic levels. Activation of presynaptic NOP receptors inhibits voltage-gated Ca2+ channels,
leading to a reduction of glutamate release from primary afferent fibers. Additionally,
activation of postsynaptic NOP receptors, opening K+ channels, hyperpolarizes and hence
inhibits electrical activity of secondary afferent neurons [154,156,170]. Interestingly enough,
N/OFQ spinally administered was more effective as analgesic in chronic than in acute
pain models, but the neurobiological mechanisms to explain this phenomenon are still
not understood [157]. Finally, non-peptide NOP agonists given systemically resulted inac-
tive in acute nociception [171,172] but efficacious in reducing chronic and inflammatory
pain [173–177]. Interestingly, the ability of a systemic NOP agonist to counteract pain in a
mouse model of migraine induced by GTN has been recently described [178]. In addition
to the numerous studies that have linked the NOP receptor to pain, a large amount of
scientific literature also demonstrated the involvement of this receptor in the modulation
of mood and responses to stress exposure [179–183]. Several pre-clinical studies reported
the effectiveness of the NOP blockage in producing anti-depressant-like effects under
different experimental conditions [184–192]. Among these, a repeated administration of
NOP antagonists was able to counteract the depressive-like behaviors induced by exposure
to chronic stress [185,191]. The neurobiological mechanisms underlying the antidepressant
effects of NOP antagonists are not fully understood. However, they can be at least in
part attributed to the ability of N/OFQ to inhibit the release of monoamines in various
brain regions. NOP antagonists, by counteracting this inhibitory effect, may lead to an
increase in synaptic levels of serotonin and norepinephrine, which could explain their
antidepressant action [182]. Additionally, as reviewed in [180], different stress models
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upregulate the N/OFQ system, and the NOP inhibition during stress exposure is able to
reduce the deleterious effects of stress on mood [182,193,194], anxiety levels [195], and
memory [196], while the administration of NOP agonists during stress exposure worsens
the effects of stress [194,197,198]. Thus, the N/OFQ–NOP system seems to be activated
during stress exposure, and its activation likely contributes to the deleterious effects of
stress and to maladaptive behaviors possibly leading to psychopathologies. Of note, the
release of N/OFQ in the ventral tegmental area of freely moving mice during stress (tail
suspension) has been recently demonstrated using the NOPLight sensor [199]. On the
other hand, NOP blockage confers resilience to stress exposure, and NOP antagonists may
be useful in vulnerable subjects for preventing depressive episodes and stress-triggered
diseases. This hypothesis is corroborated by some evidence in humans, showing that NOP
receptor is up-regulated in healthy humans after an acute stressful challenge [200] and in
women that developed post-traumatic stress disorder (PTSD) after sexual violence [201].
Considering the involvement of the N/OFQ–NOP pathway both in pain transmission and
stress response, the involvement of this system in stress-induced pain modulation has been
hypothesized. Here we report and discuss the results of the studies that addressed this
question, both referring to SIA and to SIH.

6. Role of the N/OFQ–NOP Receptor System at the Interplay between Stress and Pain
6.1. The N/OFQ–NOP Receptor System and SIA

Pain was the first field of research in which the activity of the N/OFQ–NOP receptor
system has been investigated. In the frame of these studies, attention has been paid to SIA,
especially considering the role played by classical opioid receptors in this phenomenon
and the link between those receptors and the NOP receptor. Different papers reported that
N/OFQ injected into the brain counteracts SIA in rodents under different experimental
conditions. In a first paper, Suaudeau et al. [202] demonstrated that the i.c.v. injection
used to administer N/OFQ into the brain is per se a stressful practice able to induce SIA.
Thus, they hypothesized that the pro-nociceptive effect induced by supraspinal N/OFQ
may be due at least in part to SIA inhibition. In line with this, N/OFQ (1 nmol, i.c.v.) was
able to counteract SIA evoked by 3 min of forced swimming, both in water at 15 ◦C and
at 32 ◦C [44]. Of note, while SIA elicited by low-severity swim stress (32 ◦C) is blocked
by naloxone, SIA induced by higher-severity swim stress (15 ◦C) is naloxone-insensitive,
suggesting the involvement of endogenous systems different from opioids. The evidence
that N/OFQ counteracts both opioid-dependent and opioid-independent SIA suggests that
it acts not only modulating the opioidergic transmission but also interfering with other
neurotransmitters having a role in SIA. Orexins are reported to be necessary to obtain SIA
after 30 min of restraint [203,204]. Interestingly, direct interactions between N/OFQergic
and orexinergic neurons in the lateral hypothalamus of mice and rats have been described,
and N/OFQ in the hypothalamus inhibited orexinergic transmission [56,205,206]. The
administration of orexin-A restored SIA abolished by N/OFQ [204]. Moreover, when
microinjection experiments have been performed on rats, the brain area important for
N/OFQ effects on SIA resulted in the perifornical area of the lateral hypothalamus, where
the orexin neurons are located [56]. This evidence suggests that N/OFQ may inhibit SIA by
not only counteracting the activity of the opioid system but also modulating orexin release
and effects.

As far as the activation of the endogenous N/OFQ–NOP system during SIA is con-
cerned, this has been investigated using the NOP antagonist [Nphe1]N/OFQ(1-13)NH2 [44]
and mice knockout for the preproN/OFQ gene [207]. In these studies, SIA has been evoked
by forced swimming, and both studies demonstrated increased SIA in mice in which the
N/OFQ–NOP system has been blocked. In particular, [Nphe1]N/OFQ(1-13)NH2 increased
the opioid-dependent component of SIA, while mice lacking the N/OFQ peptide displayed
enhanced SIA, especially after repeated stress exposure, when SIA is almost extinguished
in wild-type mice. These results suggest that the endogenous N/OFQ is released during
stress exposure and counteracts those mechanisms leading to SIA.
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6.2. The N/OFQ–NOP Receptor System and SIH

The role of the NOP receptor in stress-induced hyperalgesia has been studied mainly
by Zhang and colleagues using a post-traumatic stress disorder model named single-
prolonged stress (SPS). This experimental procedure consists of exposing rats to 2 h of
complete restraint, followed by 20 min of a forced swim test, anesthesia induction with
diethyl ether, and 7 days of isolation. The protocol leads to the development of paw me-
chanical and thermal allodynia lasting for 28 days post-SPS. SPS significantly increased
the N/OFQ levels in cerebrospinal fluid (CSF) and serum [208–210], as well as in periaque-
ductal gray (PAG) [210,211]. The treatment with the NOP antagonist JTC-801 reverted the
hyperalgesia induced by SPS, suggesting that the increased endogenous N/OFQ has a
role in the maintenance of the hyperalgesia and allodynia produced by stress [211]. This
hypothesis has been confirmed by genetic studies that demonstrated that rats knockout
for the NOP receptor gene (NOP(−/−)) failed to develop allodynia and hyperalgesia after
SPS [212]. Thus, the endogenous N/OFQ increases stress vulnerability not only in terms of
psychopathological development (i.e., depression and anxiety) but also in terms of pain
sensitivity. The mentioned studies support the investigation of NOP antagonists as preven-
tive agents for those situations in which stress precipitates pain. Anyway, it is worth noting
that the studies now available on NOP and SIH suffer from some limitations, i.e., the use of
a single stress model, the use of a single NOP antagonist, and the use of a single species.
Thus, to firmly propose NOP antagonists as prophylactic treatments for stress-driven
pain pathologies, further research is needed using models of stress different from SPS,
different NOP antagonists, i.e., SB-612111 [213,214] and the clinically viable BTRX-246040
(also known as LY2040094) [215,216], and NOP(−/−) animals. Interestingly, while male
NOP(−/−) rats were protected from SIH, no differences were recorded between female
wild-type and NOP(−/−) rats in their liability to SPS-induced SIH [211]. This suggests
that a sexual dimorphism may exist in the role played by the N/OFQ–NOP system in stress
reactions. Right now, the majority of this research addressing the NOP receptor in relation
to stress and/or depressive-like behavior has been performed in male animals, and this
is at least in part due to the difficulty in reproducing some of the experimental model in
female rodents [184]. However, if the NOP activation during stress exposure produces
different actions in male and female mice is a question that deserves attention and needs to
be further investigated.

Restraint stress is commonly used to induce visceral pain and mimic irritable bowel
syndrome in rodents [217,218]. Under these experimental conditions, the ability of the
N/OFQ to revert the colon hypersensitivity has been assessed [219]. It was demonstrated
that N/OFQ reduces visceral pain induced by stress only when given in the periphery
but not into the brain. This study is in line with several other investigations reporting the
analgesic effects of NOP agonists. Anyway, the authors did not test if the NOP blockage
during restraint may alter the rat’s liability to develop visceral pain. Thus, to the best of
our knowledge, no data are now available to foresee the effectiveness of NOP antagonists
in preventing abdominal pain in irritable bowel syndrome patients.

The mechanisms by which NOP activation worsens the effects of stress, thus facilitat-
ing SIH, have not been investigated yet. It is well known that N/OFQ reduces monoamine
release in different brain areas and that this is important for the antidepressant effects of
NOP antagonists (for a review, see [182]). As stated before, monoamines seem to play
a role in SIH, and the potentiation of synaptic levels of serotonin and norepinephrine is
associated with SIH reduction [66,70,80,83,128]. Thus, we can speculate that the activa-
tion of the N/OFQergic system during stress exposure may foster SIH by counteracting
monoaminergic transmission and the analgesic effects of endogenous monoamines. This
N/OFQ action is blocked by the administration of NOP antagonists. On the other hand,
interactions between the HPA axis and the N/OFQ–NOP system have also been reported
(for a review see [180]), and our research group recently demonstrated that the blockade
of corticotropin-releasing hormone receptor 1 (CRFR1) and glucocorticoid receptor (GR)
counteracts the detrimental effects of a NOP agonist given during stress exposure on
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depressive-like behaviors [197]. Thus, it can be hypothesized that NOP activation facil-
itates SIH and NOP blockage protects from SIH through the interaction both with the
monoaminergic and the HPA systems. This is, however, a mere speculation that needs to be
experimentally tested in future studies. Figure 1 illustrates the interactions between stress
and pain perception, highlighting our hypothesis that these interactions are modulated by
the N/OFQ–NOP system.
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7. Conclusions and Future Perspectives

SIA and SIH represent two opposite responses to stress, reflecting the complex rela-
tionship between stress and pain. SIA is generally considered an advantageous adaptive
response to stress. On the contrary, SIH is a deleterious condition that arises when the body
fails to adapt to a prolonged stressful environment. To date, rodent models of SIA, SIH,
and stress-induced migraine represent the main tools to study these complex phenomena.
Despite several authors pointing out that a translational gap exists between rodent models
and humans, the utility of the information obtained from rodents is widely recognized.
On the other side, the use of animals in research presents ethical concerns that strongly
prompt the development of alternative methods (e.g., organoids and three-dimensional
culture systems, organ-on-a-chip systems) or the use of species less complex than rodents
(e.g., zebrafish, xenopus, drosophila). In the field of pain, to reduce the number of rodents
used, invertebrate and lower vertebrate have already been employed [220]. Similarly, the
use of zebrafish in stress and psychiatric research has been reported [221]. Thus, there are
promising foundations for the development of SIA and SIH models using animals with
a simpler nervous system than rodents. This represents an open challenge that should
be pursued in the near future to achieve at least a partial replacement. Of note, the com-
plete replacement should still remain the ultimate goal, but scientific limitations make
this goal difficult to obtain for this research area at present. A large body of evidence
suggests that the N/OFQ-NOP system is active during stress exposure. N/OFQ from one
side counteracts SIA; from the other side, it promotes SIH, thus facilitating a maladaptive
response to stressful situations. NOP antagonists may promote an active coping strategy
to stress and protect vulnerable subjects from stress-driven pain diseases. This intriguing
hypothesis is based on limited pre-clinical findings, and further research in the field is
clearly needed. Interestingly, some analogies between the NOP and the kappa opioid
receptor, as well as the effects of NOP antagonists on stress resilience, suggest the utility
of this class of compounds for the prophylaxis of migraine induced by stress. As stated
above, animal models of this pathology have been developed and are useful tools to test the
therapeutic potential of new candidate drugs. NOP antagonists as well as the phenotype of
NOP(−/−) mice or rats are worthy to be investigated using these experimental models.
Moreover, women predominately suffer from chronic pain conditions, including those pain
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conditions sensitive to stress exposure (i.e., migraine, fibromyalgia, and irritable bowel
syndrome) [222–225]. The high female prevalence of several pain diseases suggests that
differences may exist across sexes in the biological mechanisms underlining these patholo-
gies and that these differences may apply also to the effects of stress on these conditions.
Thus, future studies aimed at investigating the interplay between NOP and SIH should be
performed considering sex as an experimental variable. Finally, from a translational point
of view, it is worth noting that a NOP antagonist reaching clinical trials is already available
(BTRX-246040 [214,215]). In small proof-of-concept clinical studies, BTRX-246040 was safe
and well tolerated and showed efficacy in depressed [226] and alcohol dependent [227] pa-
tients. Thus, BTRX-246040 may represent a critical tool to confirm or refute our hypothesis,
assessing the real effectiveness of NOP antagonists to protect vulnerable individuals from
stress-exacerbated pain.

8. Limitation of the Review

This is a narrative review providing an overall summary of the main approaches used
to induce SIA, SIH, and stress-induced migraine and the evidence linking the N/OFQ–NOP
system to SIA and SIH. Consequently, some experimental protocols capable of induced SIA
or SIH, but not commonly used, have been omitted, as well as some references that might
be missing.
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