
Academic Editor: Samet Kose

Received: 1 December 2024

Revised: 5 January 2025

Accepted: 7 January 2025

Published: 11 January 2025

Citation: Iqbal, Z.; Rahman, M.M.;

Mahmood, U.; Zia, Q.; Fu, Z.; Calhoun,

V.D.; Plis, S. Explainable Self-

Supervised Dynamic Neuroimaging

Using Time Reversal. Brain Sci. 2025,

15, 60. https://doi.org/10.3390/

brainsci15010060

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Explainable Self-Supervised Dynamic Neuroimaging Using
Time Reversal
Zafar Iqbal 1,2 , Md. Mahfuzur Rahman 1, Usman Mahmood 2 , Qasim Zia 1 , Zening Fu 1,2, Vince D. Calhoun 1,2

and Sergey Plis 1,2,*

1 Department of Computer Science, Georgia State University, Atlanta, GA 30302, USA;
ziqbal5@student.gsu.edu (Z.I.); mahfuz.gsu@gmail.com (M.M.R.); qzia1@student.gsu.edu (Q.Z.);
zfu@gsu.com (Z.F.); vcalhoun@gsu.edu (V.D.C.)

2 Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA 30303, USA;
usman.mahmood134@gmail.com

* Correspondence: s.m.plis@gmail.com

Abstract: Objective: Functional magnetic resonance imaging data pose significant chal-
lenges due to their inherently noisy and complex nature, making traditional statistical
models less effective in capturing predictive features. While deep learning models offer
superior performance through their non-linear capabilities, they often lack transparency,
reducing trust in their predictions. This study introduces the Time Reversal (TR) pre-
training method to address these challenges. TR aims to learn temporal dependencies in
data, leveraging large datasets for pretraining and applying this knowledge to improve
schizophrenia classification on smaller datasets. Methods: We pretrained an LSTM-based
model with attention using the TR approach, focusing on learning the direction of time in
fMRI data, achieving over 98 % accuracy on HCP and UK Biobank datasets. For down-
stream schizophrenia classification, TR-pretrained weights were transferred to models
evaluated on FBIRN, COBRE, and B-SNIP datasets. Saliency maps were generated us-
ing Integrated Gradients (IG) to provide post hoc explanations for pretraining, while
Earth Mover’s Distance (EMD) quantified the temporal dynamics of salient features in
the downstream tasks. Results: TR pretraining significantly improved schizophrenia clas-
sification performance across all datasets: median AUC scores increased from 0.7958 to
0.8359 (FBIRN), 0.6825 to 0.7778 (COBRE), and 0.6341 to 0.7224 (B-SNIP). The saliency maps
revealed more concentrated and biologically meaningful salient features along the time
axis, aligning with the episodic nature of schizophrenia. TR consistently outperformed
baseline pretraining methods, including OCP and PCL, in terms of AUC, balanced accuracy,
and robustness. Conclusions: This study demonstrates the dual benefits of the TR method:
enhanced predictive performance and improved interpretability. By aligning model predic-
tions with meaningful temporal patterns in brain activity, TR bridges the gap between deep
learning and clinical relevance. These findings emphasize the potential of explainable AI
tools for aiding clinicians in diagnostics and treatment planning, especially in conditions
characterized by disrupted temporal dynamics.

Keywords: interpretability; explainability, schizophrenia; fMRI; pretraining; self-supervised;
time reversal

1. Introduction
Brain activity is spatially and temporally well-organized, even in resting-state condi-

tions [1]. This inherent organization, assessed through resting-state functional connectivity,
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provides valuable insights into the brain’s intrinsic cognitive functions. Functional connec-
tivity, identified using imaging techniques such as functional magnetic resonance imaging
(fMRI), serves as a biomarker for various pathological conditions, including Schizophrenia,
Alzheimer’s disease, and autism [2]. The fluctuations in the blood oxygenation level-
dependent (BOLD) signal correspond to functionally relevant resting-state networks, which
are captured by resting-state fMRI in the absence of goal-directed neuronal action [1].
However, interpreting the high-dimensional and noisy brain dynamics recorded by fMRI
remains challenging.

Traditional Machine Learning models, while inherently interpretable, often struggle to
capture the complex discriminative features and patterns associated with specific disorders.
In contrast, deep learning frameworks can learn hierarchical representations directly from
raw data through deep, layered architectures that facilitate the flow of information from
input to output. However, this increased modeling capacity typically comes at the expense
of interpretability [3]. This trade-off has motivated the development of explainable and
interpretable Machine Learning methods, which aim to make predictions and decisions
more intelligible to human users. Recent advancements in XAI techniques have been
applied to rs-fMRI data, enabling the interpretation of brain connectivity patterns and their
relationships to disorders [4,5]. These developments underscore the increasing need for
transparent and interpretable deep learning frameworks in neuroimaging.

Explainability and interpretability, though often used interchangeably, have distinct
meanings [6]. Interpretability refers to designing Machine Learning models that are inher-
ently understandable, while explainability involves generating post hoc explanations for
predictions from complex, black-box models [7]. As Artificial Intelligence-based systems
find increasing applications in high-stake domains like healthcare, enhancing trust and
transparency in decision making has become critical. This can be achieved either by de-
signing inherently interpretable models or by employing model introspection methods to
provide faithful explanations for complex models.

Interpretable models, such as logistic regression, linear models, and K-nearest neigh-
bors, exhibit a clear relationship between inputs and outputs, making their predictions
more understandable [8]. Standard machine learning (SML) techniques often fall under
this category, relying on rules of inference to predict outcomes by leveraging linear and
non-linear relationships between variables. While Standard Machine Learning methods
offer transparency and are suitable for high-stake decision making, their predictive power is
limited when data exhibits intricate relationships [9]. In such cases, more complex methods,
including deep learning, are required.

For complex models, model-agnostic and model-specific post hoc techniques provide
explanations for predictions. Model-agnostic methods, such as SHAP [10], LIME [11], and
Perturbation, are applicable to any Machine Learning model. Model-specific methods,
such as integrated gradients (IG) [12], gradient SHAP (GS) [10], and saliency maps [13], are
tailored to specific model architectures. Example-based methods, including adversarial
examples, influence functions, and counterfactual analysis, provide insights using spe-
cific examples from the dataset. Additionally, neural representation techniques, such as
SVCCA [14], activation maximization [15], and TCAV [16], explore model internals to make
latent representations interpretable.

Several studies have utilized these introspection techniques for time-series data. For
example, Hugues Turbé et al. evaluated interpretability methods on ECG data, introducing

new metrics—AUC
∼
Stop and F1

∼
S—to quantify their relevance identification performance.

Their findings emphasize that the effectiveness of these methods depends on both the
dataset and the architecture [17]. Similarly, Rahman et al. applied IG and SmoothGrad
integrated gradients to fMRI data using an LSTM-based architecture, demonstrating their
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efficacy in capturing salient features that improved classification performance across three
neuromimaging datasets [3].

The methods discussed each have their own advantages and limitations, making
them suitable for different applications. Adebayo et al. (2020) found that under standard
conditions, gradient-based methods such as integrated gradients performed well in meeting
end-user recommendations [18]. These methods effectively address common issues found
in traditional saliency maps, including susceptibility to noise and sensitivity to minor
input changes [19]. In our research, we observed that IG and GS demonstrated robustness,
stability, and reduced sensitivity to noise across the datasets we analyzed [20]. Based on
these findings, we selected IG for model analysis in our study.

This work aims to provide post hoc explanations for our previously proposed pretrain-
ing method, time reversal (TR) [21]. Designed for time-series data, the TR method reverses
the order of time points in the data and pretrains a model on both forward and reversed
time courses. This approach enables the model to effectively capture temporal information
that can be leveraged in downstream tasks. In our previous work, we demonstrated the
generalizability of the TR method across multiple datasets and diseases. Specifically, we
applied it to two datasets for schizophrenia classification (FBIRN and COBRE), one dataset
for autism classification (ABIDE [22]), and one dataset for Alzheimer’s disease classifica-
tion (OASIS [23]). Models pretrained with time reversal significantly outperformed those
trained from scratch, even when using fewer subjects, underscoring the cross-domain
benefits of TR-based pretraining.

In this study, we focus on explaining model predictions during both pretraining
and downstream schizophrenia classification. Schizophrenia is a psychiatric disorder
often characterized as a progressive illness based on the degeneration of brain functions.
Its symptoms include delusions, thought disorder, hallucinations, motor and cognitive
impairment, and reduced expression of emotions, to name a few. Schizophrenia is episodic
in nature and known as acute Schizophrenia. Patients have episodes of Schizophrenia
during which their condition worsens followed by periods where there are few or no
symptoms. Although the etiology of the illness remains largely unknown, a progressive
decrease in the gray matter of the brain has been witnessed in adolescents in the early and
chronic stages of the disease [24].

Leveraging an LSTM framework with an attention mechanism, we analyze how
models learn temporal dependencies during pretraining and apply this knowledge to
improve schizophrenia classification performance. Techniques like saliency maps highlight
critical input features, while Earth Mover’s Distance (EMD) measures the focus of these
maps, indicating the model’s attention to significant temporal features. Additionally,
we use the area under the curve (AUC) score [25] to evaluate performance. These tools
collectively bridge the complexity of deep learning with the need for transparency in
high-stake applications like healthcare diagnostics.

In summary, this work aims to bridge the gap between high-performance deep learning
models and the need for transparency in healthcare applications. By leveraging TR-based
pretraining and advanced interpretability techniques, we provide a framework that is both
robust and trustworthy for neuroimaging-based diagnostics.

2. Materials and Methods
The proposed methodology consists of four key steps: (1) pretraining with Time Rever-

sal, (2) providing post hoc explanations for the pretraining phase using model introspection
methods, (3) evaluating downstream classification performance of models with and with-
out the Time Reversal-based pretraining, and (4) assessing the impact of pretraining on
downstream tasks by analyzing the spikiness and uniformity of salient features along
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the time axis. We have discussed each of the four steps in the following subsections. A
schematic description of the proposed methodology is shown in Figure 1.

Figure 1. An overview of our proposed experimental setup.

2.1. Pretraining Method
2.1.1. Problem Formulation and Objective

The Time Reversal-based pretraining strategy is designed to capture the temporal
dynamics inherent in the data. Here is how the method works:

Let the fMRI dataset after independent component analysis (ICA) preprocessing
to be represented as X ∈ RT×N , where T denotes the number of time points, and N
represents the number of independent components or features. The time reversal operation
is defined as a transformation R(·), which reverses the order of time points for each feature.
Mathematically, the reversed dataset, Xreverse, is given by the following:
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R(X) = Xreverse, where Xreverse[t, n] = X[T − t − 1, n], ∀t ∈ [0, T − 1], n ∈ [1, N].

This results in a new dataset Xreverse ∈ RT×N , which retains the same dimensions as
the original data X, but with time points reversed.

During the pretraining phase, the model is trained to distinguish between the original
and time-reversed data. This combined dataset can be formulated as

Xcombined = {(X, y = 0), (R(X), y = 1)},

where y = 0 for the original time series and y = 1 for the time-reversed series.
The objective of the model is to predict whether a given time series is the original or

the reversed version. We define the model as fθ(X), parameterized by θ, where the output
ŷ = fθ(X) represents the predicted probability that the input is time-reversed. The loss
function for training the model can be expressed as

L(θ) = − 1
2T ∑

(Xi ,yi)∈Xcombined

[yi log( fθ(Xi)) + (1 − yi) log(1 − fθ(Xi))].

The model learns latent representations Z = gθ(X) through this pretraining process,
where gθ(·) is the encoder network. These representations Z are then used for downstream
tasks, such as classification or further interpretation.

2.1.2. Temporal Dynamics in the Dataset

The dataset X contains temporal dependencies between time points, where each point
xt is conditionally dependent on previous points xt−1, xt−2, . . .. This relationship can be
expressed as

P(X) = P(x1)
T

∏
t=2

P(xt | xt−1, . . . , x1).

Reversing the time order disrupts these dependencies. For the time-reversed sequence
Xreverse, the conditional probability becomes

P(Xreverse) = P(xT)
T−1

∏
t=1

P(xT−t | xT−t+1, . . . , xT).

As a result, the temporal transitions and dependencies in Xreverse differ significantly
from those in X. To distinguish between the two, the model must learn to encode the
temporal structure of the data effectively.

2.1.3. Expanded Theoretical Analysis

The core idea behind the Time Reversal pretraining strategy is that reversing the
temporal sequence disrupts the natural order of events, requiring the model to extract
and leverage temporal patterns for successful classification. This process encourages the
encoder gθ(·) to learn robust representations Z that encode time-sensitive features, such as
transitions and causal dependencies.

By optimizing the binary cross-entropy loss, the model minimizes the uncertainty
H(y | X) in predicting whether a sequence is reversed. This inherently maximizes the
mutual information I(X; y) between the input X and the output label y, aligning the learned
representations with the underlying temporal dynamics of the data.

The effectiveness of this approach aligns with principles of self-supervised learning,
where the auxiliary task of identifying reversed sequences serves as a proxy for uncovering
latent temporal structures. In Section 3, we provide experimental evidence to substantiate
these claims.
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2.2. Datasets

We used one synthetic dataset and two neuroimaging datasets for pretraining and post
hoc explainability, and employed three additional datasets for the downstream classification
tasks. All neuroimaging datasets are preprocessed using a technique called independent
component analysis [26]. The details of preprocessing are presented in Section 2.3.

2.2.1. Synthetic Dataset for Pretraining

The synthetic data consists of concatenated chirp signals designed to match the dimen-
sions of the real datasets (i.e., 53 components with each component comprised 1200 time
points). A chirp is a signal in which frequency decreases (down-chirp) or increases (up-
chirp) with time. For generating the synthetic data, we used up-chirp signals with varying
start and end frequency values. The chirp signal was chosen to generate time series data
by incorporating a time component and capturing the changes associated with it. The
employment of synthetic chirp signals to model time-series data in neuroimaging research,
while not directly mimicking biological signals, offers significant advantages in understand-
ing brain dynamics. Synthetic chirps can simulate frequency modulations akin to those
observed in neural oscillations during cognitive tasks, providing a controlled environment
to study how neural networks process these changes. They enable the isolation of specific
signal characteristics for algorithm development and testing, serving as benchmarks to
assess the performance of a model. By augmenting real data or providing a training ground
for educational purposes, chirp signals contribute to the development of more robust
models that can generalize to the complexities of biological data, thereby enhancing our
ability to interpret real-world neuroimaging signals.

2.2.2. Neuroimaging Datasets for Pretraining

In the next phase, we used healthy controls from two publicly available datasets from
the Human Connectome Project (HCP) [27] and the UK Biobank [28]. The HCP and UK
Biobank datasets each contain 823 healthy control subjects. Each subject is represented
by 53 non-noise components. In the HCP dataset, there are 1200 time points per subject
(53 components × 1200 time points), while in the UK Biobank dataset, there are 490 time
points per subject (53 components × 490 time points). The purpose of pretraining on healthy
controls is to learn prior knowledge about the general signal dynamics from large datasets.

2.2.3. Neuroimaging Datasets for Downstream Classification

The three datasets utilized for downstream classification are related to schizophrenia.
Specifically, we employed data from the following projects: the Function Biomedical
Informatics Research Network (FBIRN) [29], which includes 311 subjects (160 patients
and 151 healthy controls); the Centre of Biomedical Research Excellence (COBRE) [30],
comprising 157 subjects (89 patients and 68 healthy controls); and the Bipolar-Schizophrenia
Network for Intermediate Phenotypes (B-SNIP) [31], consisting of 589 subjects (251 patients
and 338 healthy controls).

2.3. Preprocessing

The raw resting-state fMRI data are processed using statistical parametric mapping
(SPM) in MATLAB 2016. The first five scans were discarded to allow for signal equilibrium
and participants’ adaptation to the scanner’s noise. Motion correction was performed
using the rigid body motion correction toolbox in SPM to address subject head movements,
followed by slice-timing correction to account for temporal differences in slice acquisition.
Subsequently, the fMRI data were normalized to the Montreal Neurological Institute (MNI)
standard space using an echo-planar imaging (EPI) template. The fMRI data are resampled
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to 3× 3× 3 mm3 and smoothed with a Gaussian kernel having a full width at half maximum
(FWHM) of 6mm. Subjects with head motion exceeding 3 degrees of rotation or 3 mm
of translation were excluded from further analysis. To ensure high data quality, quality
control (QC) was performed on the spatial normalization output, and subjects with limited
brain coverage were excluded [32]. ICA time courses were utilized, as they provide a more
robust representation of fMRI data compared to anatomical or atlas-based approaches [33].
For each dataset, we employed a fully automated framework for extracting components.
To generate network templates, spatial group ICA was conducted on two independent
datasets, namely the Human Connectome Project (HCP) and the Genomics Superstruct
Project (GSP). For each dataset, group-level ICs were estimated and matched by comparing
their spatial maps. IC pairs with a spatial correlation of ≥ 0.4 were considered consistent
and reproducible across datasets. A subset of these matched ICs was classified as intrinsic
connectivity networks (ICNs), excluding components related to physiological noise, motion
artifacts, or imaging artifacts. This classification was performed by five fMRI experts,
who evaluated ICs based on specific criteria: activation peaks in gray matter, low spatial
overlap with vascular, ventricular, or motion-related artifacts, and dominant low-frequency
fluctuations in their corresponding time courses. ICs receiving at least three votes from the
experts were deemed meaningful ICNs. These ICNs were subsequently used as templates
for individual-level ICA analysis. Using the same procedure, 100 ICA components were
estimated for each dataset. For the current study, we focused on 53 intrinsic networks that
perfectly matched the standard network templates [3].

2.4. Model Architecture and Training Methodology

The proposed architecture is designed for processing sequential data with a focus on
temporal dynamics and feature importance. It begins with an LSTM encoder to capture
dependencies across time, transforming the input sequence into a series of hidden states.
A custom attention mechanism follows, where the last hidden state is expanded and
concatenated with all LSTM outputs to compute attention weights through two linear
layers. These weights, after softmax normalization, are used to emphasize critical temporal
features, creating an attention-weighted context vector. This vector is then processed
by a decoder, consisting of linear layers with dropout for regularization, culminating in
a sigmoid activation for binary classification tasks. The model’s weights are initialized
using Xavier normal initialization, aiming to enhance training stability, particularly for
the encoder, attention, and decoder components. A visual representation of the network
architecture is shown in Figure 2. We used the same architecture and same hyperparameters
for pretraining and the downstream prediction tasks.

For our experiments, a learning rate of 7 × 10−4 was selected after testing various
values in the range 1 × 10−3 to 1 × 10−5. This value provided stable convergence without
oscillations or premature stagnation. The Adam optimizer, combined with the ReduceL-
ROnPlateau scheduler, dynamically adjusted the learning rate based on validation loss,
ensuring effective optimization. A batch size of 32 was chosen based on empirical testing,
balancing computational efficiency and gradient stability. Smaller batch sizes resulted in
noisier gradient updates, while larger sizes slowed convergence due to fewer updates per
epoch. To ensure robust evaluation, we employed 10-fold cross-validation, which reduced
the risk of overfitting to specific data splits and provided a comprehensive assessment of
the model’s generalization capabilities.

Training was conducted with a maximum of 1000 epochs, and early stopping was
applied to prevent overfitting. Early stopping monitored the validation loss, halting training
when no improvement was observed for a specified number of epochs, thus ensuring that
the model did not overtrain. Convergence during training was verified by monitoring the
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loss curves, which exhibited smooth declines for both training and validation, with no signs
of divergence or overfitting. Metrics such as accuracy and AUC consistently improved
during training, further confirming stable convergence. To evaluate the contributions of
individual model components, ablation studies were performed. Removing the attention
mechanism led to a significant drop in performance, demonstrating its role in emphasizing
critical temporal features. Disabling dropout regularization caused overfitting, evident
from a larger gap between training and validation performance. Replacing the LSTM
encoder with a GRU resulted in slightly reduced performance, underscoring the LSTM’s
ability to capture temporal dependencies effectively. These results validate the robustness
of the architecture and the importance of its components in achieving optimal performance.

Figure 2. Proposed Architecture: We input time series data into an LSTM layer and apply an attention
mechanism to selectively retain information from previous LSTM cells. This approach is especially
beneficial when the sequence length is long.

2.5. Evaluation Metrics and Interpretability Framework

In this work, we aim to interpret and provide faithful post hoc explanations of the pre-
training method (Time Reversal). An interpretation is a translation between two domains
such that the concepts of the first domain can be understood in terms of concepts of the
second domain. Here, we are interested in interpretations of a neural network in terms
of human-understandable representations. To achieve the objective outlined above, we
investigated various attribution methods documented in the literature. We discovered that
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gradient-based techniques, specifically integrated gradients, performed most effectively in
our experiments.

To evaluate the impact of pretraining on downstream tasks, we utilized three datasets:
FBIRN, COBRE, and B-SNIP. For each of these datasets, we applied pretrained weights from
the HCP dataset for Schizophrenia classification. Additionally, we trained models from
scratch to enable a direct comparison of models’ performance with and without pretraining.
To assess the performance of the models, we used AUC as our evaluation metric because
it provides a robust measure of model performance by considering the true positive rate
and false negative rate across various cutoff thresholds. AUC is especially preferred over
accuracy in the context of imbalanced datasets, such as those used in our schizophrenia
classification task, as it offers a reliable evaluation across varying thresholds and is widely
regarded as a dependable performance indicator in such scenarios.

We further sought to provide explanations for the improved predictive performance
in Schizophrenia classification tasks with pretraining by using EMD. EMD calculates the
minimum “cost” required to transform one distribution into another. It quantifies the
dissimilarity between two frequency distributions by measuring the minimal amount of
work needed to match one distribution to another, based on a fixed reference template [34].
In simple terms, Earth Mover’s Distance is like figuring out how much effort it would
take to rearrange one pile of sand to look exactly like another pile. If you imagine each
pile representing how data are spread out, EMD measures the “work” or “cost” of moving
grains from one pile to match the shape and size of the other pile. This cost depends on
how far and how much sand needs to be moved.

Our objective in employing EMD was to evaluate the “spikiness” of the resultant
distributions from saliency maps. EMD was chosen for its unique capability to measure
the distance between two probability distributions over a given metric space, which, in
our context, represents the temporal distribution of feature importance across time series
data from resting-state fMRI. Unlike other metrics that might focus on local differences or
aggregate statistics, EMD provides a holistic view of how the importance of features shifts
over time, offering insights into the temporal dynamics critical for understanding neural
processes. This metric’s ability to capture the overall ’movement’ or shift in importance
across the entire time axis allows for a more nuanced interpretation of how our model
prioritizes different temporal features, potentially correlating with known neurobiological
mechanisms of the disease.

In this study, a “distribution” refers to the flattened saliency maps along the time
axis, transforming, for instance, a 53 × 140 saliency map into a linear distribution of
140 time points. The spikiness measure we derive from this indicates the importance of
each time point in the model’s prediction, where a distribution with pronounced peaks
or “spikes” implies that fewer, more specific time points are crucial for the prediction,
leading to a lower EMD value that signifies higher variability and focus. ely, Conversa
smoother distribution with less pronounced peaks suggests a more diffused importance
across time points, resulting in a higher EMD value, indicating less variability. This
approach aids in understanding how the model prioritizes different time segments in its
decision-making process, as visualized in Figure 3, where the contrast in spike distributions
between two different conditions or models is highlighted. This visualization underscores
the interpretative power of EMD in distinguishing how models focus on temporal features
in rs-fMRI data for schizophrenia classification.
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Figure 3. This figure illustrates the relationship between EMD and the distribution of spikes. As
shown by the two distributions, fewer spikes correspond to higher EMD values, while more spikes
and a more scattered distribution result in smaller EMD values.

3. Results
We present the results in two main sections: first, we provide post hoc explanations for

the pretraining method using saliency-based techniques; second, we evaluate the impact
of pretraining on the downstream schizophrenia classification task, complemented by
explanations for the downstream tasks using Earth Mover’s Distance scores.

3.1. Post Hoc Explanations for the Pretraining Method

Before presenting the results, it is important to first explain how the saliency maps for
each subject are generated and displayed. As illustrated in Figure 4, we pass the time series
data (in both forward order, T1, T2, T3, ..., Tn, and reverse order, Tn, ..., T3, T2, T1) and the
pretrained model to the model introspection algorithm (integrated gradients) to produce
the corresponding saliency maps. These saliency maps are represented as forward and
reverse sequences: forward saliency maps, S1, S2, S3, ..., Sn, and reverse saliency maps,
Sn, ..., S3, S2, S1. To facilitate a comparison, we flip only the reversed saliency maps and
visualize the resulting matrices, given that we have 53 vectors, each corresponding to a
time point. The purpose of this procedure is to align the salient features across both the
forward and reverse saliency maps, ensuring that the location of key features on the time
axis is consistent in both orientations. Figure 5 illustrates the saliency map for a single
subject, where time courses are plotted along the x-axis and ICA-extracted components
along the y-axis. The vertical bars, marked with red rectangles, denote the top 5% most
salient features identified using the integrated gradients’ technique, highlighting their
significant impact on the model’s predictions. The samples depicted in subsequent saliency
maps Figures exhibit the same pattern as demonstrated in Figure 5.

The resulting saliency maps of the pretrained model applied to the synthetic data
are shown in Figure 6. The red vertical bars highlight the most significant features that
contributed to learning the direction of time. Notably, these bars are aligned across both
the forward and reverse saliency maps. Our analysis suggests that the location of certain
features helps the model discern the direction of time in the time series data. Since we used
up-chirp signals, the frequency increases from left to right, which is reflected in the saliency
patterns. It is also worth noting that the salient regions are predominantly concentrated on
the low-frequency side of the chirp signal.

Next, we shifted our focus to the neuroimaging datasets to investigate whether the
trend observed with the synthetic data held true in real-world datasets. Specifically, we
examined healthy controls from two datasets: the HCP (Human Connectome Project) and
the UK Biobank.
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When we generated saliency maps for the test sets from both the HCP and UK Biobank
datasets, we observed a similar phenomenon—alignment of the vertical bars across the
forward and reverse saliency maps. However, for some subjects, this alignment was not
apparent. To quantify the degree of alignment, we calculated the Pearson correlation
coefficients between the features of the forward and reverse ordered data. The correlation
coefficient is a statistical measure that represents the degree of linear association between
two variables [35].

Figure 4. Saliency Map Visualization Method: In this method, T represents the time points, and S
denotes the corresponding saliency maps for each time point. We calculate the saliency maps using
integrated gradients. For the time points in the reverse pipeline, the resulting saliency maps are
flipped before being presented.
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Figure 5. Saliency Map for a Single Subject: Temporal Dynamics and Component Importance.
Saliency maps are visual representations that show which parts of the input data are most important
for a model’s predictions. In the context of brain imaging data, they highlight which time points or
brain regions the model considers crucial for classification. The x-axis represents time courses, while
the y-axis displays components identified through ICA. Vertical red bars highlight the top 5% of
features deemed most salient by the integrated gradients’ method, indicating their critical influence
on model predictions.

Figure 6. The saliency maps for five samples in the synthetic data are presented. “F” and “R”
represent the saliency maps for the forward and reverse order data points, respectively. Correlation
coefficient values between F and R for each sample are also presented. The red vertical bars highlight
the most salient features in the data. As seen in the figure, the attributions in both the forward (F)
and reverse (R) saliency maps align along the time axis for each sample.

The correlation coefficient serves as an indicator of the alignment between the forward
and reverse saliency maps. We found that in both datasets, over 75% of the subjects had
correlation coefficients greater than 0.55 (as shown in Figure 7), suggesting that for the
majority of subjects in both test sets, the salient features aligned in both forward and reverse
maps along the time axis.
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Figure 7. Correlation coefficient plots for the entire test sets: In both the HCP and UK Biobank
datasets, the correlation is high for the majority of subjects, indicating that the vertical bars are
well-aligned across forward and reverse time points for most subjects.

We present the five subjects with the highest correlation values for each dataset (HCP
and UK Biobank) in Figure 8. For most of these subjects, the vertical bars are well aligned.
While a few exceptions exist, these are likely outliers and can be ignored. Conversely, the
subjects with the lowest correlation values are shown in Figure 9. For the subjects in the
top half of this group, no alignment is observed, but as we move toward the lower half,
where the correlation values are higher, some alignment is evident.

The alignment of forward and reverse saliency maps significantly enhances inter-
pretability by providing a robust mechanism to validate the reliability of the extracted
salient features across time. When saliency maps for forward and reverse time points are
aligned, it demonstrates that the most influential features identified by the model are con-
sistent and invariant to the temporal direction of the input. This consistency indicates that
the features are intrinsic to the data and not an artifact of the model’s training process or
temporal biases. By flipping the reverse saliency maps and observing their alignment with
the forward saliency maps, we gain confidence in the model’s ability to capture meaningful
patterns that are not contingent on the directionality of time. Moreover, this alignment helps
to visually validate the temporal importance of features, enhancing the interpretability
of how the model identifies key patterns over time. This process is particularly useful in
domains like neuroscience, where identifying temporally relevant features is crucial for
understanding underlying physiological processes.

As an additional validation, we employed a model-agnostic method called submodular
pick to identify representative subjects from the test sets. This algorithm, proposed by
Ribeiro et al. [11], provides a global understanding of the model by selecting subjects
that best represent the overall behavior of the model. We fed flattened saliency maps into
the submodular pick algorithm, which then selected a set of representative subjects. The
attributions for these representative subjects are shown in Figure 10. The high correlation
values and alignment of the vertical bars in the majority of these representative subjects
further support our argument that the matching location of salient features along the time
axis plays a crucial role in the model’s decision-making process.

This alignment is significant because it provides insight into how the model learns to
determine the direction of time. By identifying a subset of significant features and learning
their locations, the model is able to infer the direction of time and, in turn, capture the
temporal dependencies within the data.
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Figure 8. Saliency maps for five sample subjects with the highest correlation in each of the two
datasets used for pretraining are presented. The correlation coefficient between the forward (F) and
reverse (R) maps is shown at the top of each group. The red vertical bars highlight the most salient
features that the model uses to learn the order of time points. Notably, the alignment of these bars in
both the F and R maps is of particular interest. The model identifies a subset of features, and based
on their position along the time axis, it distinguishes between forward and reverse time points.

Figure 9. Saliency maps for five sample subjects with the lowest correlation in each of the two datasets
used for pretraining are presented. In most cases, the vertical bars do not align, as reflected by the
low correlation values.
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Figure 10. Saliency maps for five representative subjects selected using the submodular pick algorithm
are shown. The submodular pick algorithm identifies subjects with high correlation values, which
correspond to the alignment of salient regions in both the forward and reverse data.

3.2. Downstream Tasks: Performance and Explanations
3.2.1. Performance on the Schizophrenia Classification Tasks

We evaluated the performance of pretraining on the Schizophrenia classification task
across three different datasets, using two distinct architectures: the proposed architecture
(LSTM + attention) and the wholeMILC model [36]. The results, presented in terms of AUC
scores, are shown in Figure 11, with performance measured using 10-fold cross-validation.

It is important to highlight that the proposed architecture consists of a unidirectional
LSTM followed by an attention mechanism, whereas wholeMILC employs a more complex
design. Specifically, wholeMILC uses a convolutional neural network encoder to process
the time series data in a sequence of windows, applies attention to each encoded window,
and then employs a bidirectional LSTM with an additional attention mechanism on top of
it. The proposed architecture has fewer parameters compared to wholeMILC, making it
less complex and more interpretable.

The results demonstrate that pretraining significantly improves model performance
across all three datasets, outperforming models that were trained solely on the downstream
datasets. Interestingly, wholeMILC performed better than the proposed architecture when
no pretraining was applied, suggesting that more complex models may achieve higher
performance but at the cost of reduced interpretability. However, when pretraining with
time reversal was applied, the performance of the proposed architecture was comparable
to state-of-the-art results, as reported by Pavel Popov et al. [37], despite using a simpler,
more interpretable architecture. This finding highlights that with pretraining, even a less
complex model can achieve competitive results, all while maintaining better explainability.
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Figure 11. The figure illustrates the median area under the curve (AUC) scores for three different
approaches in classifying schizophrenia across the FBIRN, COBRE, and B-SNIP datasets: LSTM
+ attention without pretraining, LSTM + attention with time reversal (TR) pretraining, and the
wholeMILC model without pretraining. The red ’+’ sign in the figure represents outliers. Statistically,
the median AUC for the pretrained LSTM + attention model is highest across all datasets, reaching
0.8359 on the FBIRN dataset, which signifies a significant boost in performance over its non-pretrained
counterpart (median AUC of 0.7958). This suggests that pretraining with TR captures essential
temporal features, enhancing the model’s ability to distinguish between schizophrenia patients
and controls. The wholeMILC model, while showing a median AUC of 0.8086 on FBIRN without
pretraining, does not consistently outperform the pretrained LSTM + attention model. This indicates
that, despite its complexity, wholeMILC’s performance benefits less from the lack of pretraining
compared to the pretrained LSTM model, with median AUC values being 0.7778 for pretrained
LSTM versus 0.8254 for wholeMILC on COBRE, and 0.7224 for pretrained LSTM versus 0.6706
for wholeMILC on B-SNIP. These results underscore that pretraining significantly improves the
classification capabilities of simpler architectures, making them competitive with or even superior to
more complex models in terms of performance, while also enhancing interpretability.

3.2.2. Explanations for the Schizophrenia Classification Tasks

To assess the impact of pretraining on the patients in the downstream task, we calcu-
lated saliency maps both with and without pretraining weights. We then selected the top 5%
of the most salient points, flattened them, and plotted the results. These plots, representing
eight subjects from each of the three downstream datasets, are shown in Figure 12.

We observed that, in most cases, models using pretraining weights exhibited fewer
spikes in their saliency maps. In contrast, without pretraining, the salient features were
more scattered across the time axis. However, we did observe some subjects where the
opposite trend occurred. To identify a dominant pattern, we used the Earth Mover’s
Distance metric, which quantifies the “spikiness” or “scatteredness” of the salient points
along the time axis.

The EMD box-and-whisker plots for Schizophrenia patients in the downstream tasks
are shown in Figure 13. The higher EMD values for the models with pretraining indicate
that the saliency points are concentrated into fewer spikes, suggesting that the model
identified discriminative activity in shorter, more focused time intervals. This aligns with
findings from a similar study on Schizophrenia classification (FBIRN) [3], which reported
similar patterns of concentration in saliency after pretraining.

In summary, the EMD results highlight that pretraining encourages the model to focus
on specific, discriminative time windows in patients, leading to more concentrated and
interpretable saliency patterns, consistent with prior research in the field.
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Figure 12. We plot the top 5% of the most salient features calculated using integrated gradients. Each
row represents a subject (Schizophrenia patient), and we present the results for eight subjects from
each dataset. In the majority of cases, we observe that pretraining leads to fewer spikes compared to
models without pretraining, suggesting that the model identifies discriminative activity in shorter,
more focused time intervals.

Figure 13. The EMD box-and-whisker plots for the downstream tasks show that higher EMD values
for the models with pretraining indicate that the saliency points are concentrated into fewer spikes.
This suggests that the model has identified discriminative activity within shorter, more focused time
intervals. Here, The red ’+’ sign represents outliers.
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3.3. Comparison of Time Reversal with Other Pretraining Methods

We compared our Time Reversal pretraining approach with two other methods: order-
contrastive pretraining (OCP) [38] and permutation contrastive learning (PCL) [39]. Similar
to our Time Reversal technique, both OCP and PCL leverage the temporal sequence of
time series data in a self-supervised manner to extract meaningful temporal information.
OCP involves sampling pairs of time segments from each trajectory in the input data. For
half of these pairs, the order is switched to create negative examples, while the other half
remains in their correct temporal sequence, forming positive examples. The model is then
trained to predict whether a given pair is in the correct order or not, effectively learning to
discern temporal dependencies. On the other hand, PCL also uses positive pairs that are
consecutive windows in the correct order but differs in its approach to negative sampling.
Here, negatives are random window pairs from the same trajectory which might still be in
the correct temporal order, contrasting with OCP where negatives are always misordered.
This key difference in negative sampling might influence how each method learns from
and represents temporal structures, with OCP potentially offering a more explicit signal
about order due to its deliberate misordering of negatives.

The models are pretrained using Time Reversal, OCP, and PCL, and the effectiveness
of the pretraining is evaluated on a downstream Schizophrenia classification task using
the FBIRN dataset. The results are shown in Figure 14. In our comparative analysis, Time
Reversal demonstrated superior performance over both OCP and PCL across two key
metrics: AUC and balanced accuracy (BA). For AUC, Time Reversal exhibited a higher
median performance (approximately 0.9172) compared to OCP (around 0.8057) and PCL
(about 0.8708), suggesting a more robust capability in distinguishing between classes across
various thresholds. This was mirrored in the consistency of Time Reversal’s results, with
a tighter interquartile range indicating less variability. In terms of balanced accuracy,
Time Reversal again led with a median of roughly 0.9238, showcasing its ability to handle
class imbalances effectively by maintaining high accuracy for both true positives and true
negatives. OCP, with a median of approximately 0.9128, showed slightly more variability,
while PCL had a median around 0.8965 with a notably wider spread, including significant
outliers. These results highlight Time Reversal’s robustness and consistency in leveraging
temporal information for enhanced model performance in time series data analysis.

Figure 14. Performance Comparison of Pretraining Techniques (Time Reversal, OCP, and PCL) on
Schizophrenia Classification Task using FBIRN Dataset. The dots in the figure represent outliers in
box and whisker plots. Time Reversal shows the highest median AUC (0.9172) and balanced accuracy
(0.9238), with the lowest variability, outperforming OCP (AUC: 0.8057, BA: 0.9128) and PCL (AUC:
0.8708, BA: 0.8965).
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4. Discussion
Functional magnetic resonance imaging (fMRI) is preferred over other imaging modal-

ities owing to its non-invasive nature. However, the high-dimensional nature (4D) and
complicated relationship among features limit the use of standard Machine Learning algo-
rithms for data analysis, despite them being inherently interpretable. Deep neural networks
such as convolutional neural networks, recurrent neural networks, transformers, etc., on the
other hand, have the capability to automatically extract features and exploit the information
available from minimally preprocessed data to identify the subtle patterns and discrimina-
tive representations within the data [9]. This complexity, however, gives rise to black-box
models that lack interpretability and hence make them less trustworthy, especially in
high-stake domains such as neuroimaging. Luckily, we have model introspection methods
available that can be used to provide post hoc explanations to the predictions of a deep
learning model. The understanding of the internals of a model and the rationale behind
a decision helps trust a model’s decision. This work demonstrates that it is possible to
achieve high predictive performance out of a model and simultaneously provide rationale
behind predictions of a deep framework to make it clinically relevant.

Deep neural networks require a lot of data for efficient training. Data scarcity in
the medical domain is very prevalent due to patient data laws. One of the solutions to
this problem is to use efficient pretraining methods that are capable of working with less
data and still produce acceptable results in terms of performance. We use a pretraining
method called Time Reversal to pretrain a model on different larger datasets. The purpose
of this pretraining is to learn general structures and temporal information in the data. We
pretrained two models to learn the order of time points in two different datasets (HCP, UK
Biobank) with more than 98% accuracy.

The next step was to use IG to generate saliency maps on the test datasets. We
experimented with different attribution algorithms and found out that IG’ attributions
were more interpretable given the datasets and network architecture we used. We observed
the alignment of vertical bars in forward and reverse time points of the saliency maps in
the majority of the subjects. The vertical bars represent the most salient features that the
model considered to make a prediction. We analyze that the model picked a subset of
salient features in the data and based on the location of these features on the time axis, the
model was able to learn the order of time courses. These post hoc explanations correspond
to the working of a human brain. If a person wants to know the order of some objects, the
brain would focus on the location of one or a subset of objects to reach a conclusion.

To evaluate the effectiveness of Time Reversal in downstream tasks, we applied it
to three Schizophrenia-related datasets: FBIRN, B-SNIP, and COBRE. The results demon-
strate that transferring pretrained weights to downstream classification tasks provides a
significant performance boost, as evidenced by improved AUC scores. Pretraining proved
beneficial across all datasets, despite their varying age ranges [21]. The advantages of
transfer learning are especially pronounced in the COBRE dataset, which has a limited
number of subjects (only 157), making it more challenging to train and test the model.
As shown in our previous work [21], even using only one-third of the available data for
training, pretraining still enhanced model performance compared to training the model
solely on the downstream data.

To investigate the effectiveness of Time Reversal in downstream tasks beyond pre-
dictive performance, we evaluated the attributions of models trained with and without
pretraining. We selected the top 5% of the most salient points, aggregated them along
the components axis, and plotted the results. The plots revealed one or more spikes of
varying height. To quantify the “spikiness” of these patterns, we employed EMD, a metric
that estimates the spread of features along the time axis. The patterns observed in the
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EMD scores reflect the concentration and spread of salient features along the time axis,
which is crucial in understanding the temporal structure of brain activity in the context of
schizophrenia. When pretrained weights were used, we found that salient features were
more concentrated in smaller regions along the time axis, indicating that the model iden-
tified focused intervals of activity. This aligns with the episodic nature of schizophrenia,
where specific periods of neural activity are more pronounced, and the brain’s temporal
dynamics become more defined.

Interestingly, this concentration of salient features in shorter, contributing to more
focused intervals being able to correspond to the brain’s processing of certain stimuli or
cognitive tasks, which can be more disrupted or appear in a more fragmented manner
people with in schizophrenia. The ability of our method to detect these more localized in-
tervals is reflective of a potential shift in temporal dynamics in patients with schizophrenia,
where cognitive processes may be more disrupted or decoupled in terms of timing.

We also demonstrated that Time Reversal consistently outperformed the baseline
pretraining methods (OCP and PCL) in both AUC and balanced accuracy, demonstrating
higher median performance and less variability. This suggests that Time Reversal captures
temporal dependencies more effectively, leading to more reliable and robust models for
time series data.

Moreover, when compared against other pretraining techniques, like PCL and OCP,
TR has shown superior performance, highlighting its ability to better capture temporal
dependencies critical for schizophrenia classification. This advantage underscores TR’s
effectiveness in dealing with the inherent noise and complexity of rs-fMRI data.

The very high predictive accuracy during pretraining, along with the highly aligned
salient features, provides insights into the model’s reliance on temporal order for its decision
making. These maps substantiate that alignment cannot be achieved without accurately
pinpointing the temporal dynamics in both directions. Moreover, results on real datasets for
downstream tasks reveal the additional advantages of pretraining. In particular, the models
were able to identify smaller subsets of features compared to their without pretrained
versions, as reflected in Figures 12 and 13. This phenomenon potentially indicates the
model’s deeper understanding of the temporal dynamics within the disease signal.

While the manuscript emphasizes the importance of interpretability and high pre-
dictive performance for schizophrenia classification, additional considerations for clinical
integration of the proposed method could enhance its impact. Saliency maps, generated
using IG, can play a crucial role in clinical decision making by offering a transparent under-
standing of the model’s reasoning process. For instance, the alignment of salient features
with biologically meaningful temporal patterns could aid clinicians in identifying specific
neural signatures associated with schizophrenia, supporting more precise diagnostics.

Moreover, the episodic nature of schizophrenia, as reflected in our findings on the
temporal dynamics of the BOLD signal, highlights potential use cases where our method
would be particularly impactful. For example, the ability to pinpoint shorter, more concen-
trated intervals of activity could inform the timing and targeting of interventions, such as
cognitive behavioral therapy or pharmacological treatments, which may be more effective
during these critical periods.

To integrate this method into clinical workflows, pretrained models could be deployed
as part of a decision-support system in clinical imaging centers. These systems would
analyze rs-fMRI scans and provide interpretable outputs, such as salient feature maps,
alongside traditional diagnostic reports. Such maps could aid clinicians in verifying and
contextualizing the model’s predictions by highlighting specific neural patterns associated
with schizophrenia, enabling more informed and precise diagnostic decisions. Further-
more, the identification of salient temporal features could guide the timing of therapeutic
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interventions, such as cognitive behavioral therapy or pharmacological treatments, tailored
to address the episodic nature of the disorder. Further research could explore whether
these salient features align with known clinical biomarkers or predict treatment outcomes,
thereby enhancing the practical utility and clinical relevance of this method.

This study significantly contributes to the growing field of explainable AI in neu-
roimaging by demonstrating that deep learning models can achieve high predictive perfor-
mance while providing interpretable insights into their decision-making processes. The
use of integrated gradients to generate saliency maps bridges the gap between model
outputs and biological relevance, fostering trust in AI applications for clinical diagnostics.
By aligning salient features with meaningful temporal dynamics, our approach highlights
the potential for AI-driven tools to assist clinicians in identifying neural patterns associated
with schizophrenia, supporting more precise and personalized treatment strategies. More-
over, this methodology can serve as a foundation for extending explainable AI techniques
to other neurological conditions, enhancing their applicability and clinical impact.

While our proposed method demonstrates robust performance, it has certain lim-
itations. First, regarding scalability, the computational demands of the Time Reversal
pretraining task increase significantly with larger datasets, potentially limiting its applica-
bility in real-time systems or environments with limited computational resources. Second,
the datasets used for evaluation—FBIRN, COBRE, and B-SNIP—although well established
in Schizophrenia research, may introduce biases due to their specific collection settings
and population characteristics. These biases could impact the generalizability of the results
across broader clinical or real-world settings.

To address scalability, future works could explore more efficient model designs, such
as lightweight architectures or optimization techniques like knowledge distillation, to re-
duce computational overhead. Additionally, applying distributed training methods could
facilitate scalability to larger datasets. Beyond Schizophrenia, evaluating the proposed
method on datasets from other conditions, such as autism and Alzheimer’s disease, would
broaden its applicability and validate its robustness in diverse clinical contexts. To mitigate
potential biases, future research should include evaluations on more diverse and hetero-
geneous datasets, ideally collected from multiple institutions or geographical regions, to
ensure the generalizability of the findings.

5. Conclusions
In conclusion, our study has demonstrated the superior efficacy of the time reversal

pretraining method in enhancing both the performance and interpretability of deep learning
models for schizophrenia classification using resting-state functional MRI data. By applying
TR to datasets from the Human Connectome Project and UK Biobank for pretraining,
followed by testing on the FBIRN, COBRE, and B-SNIP datasets, we observed significant
improvements in median AUC scores, rising from 0.7958 to 0.8359 on FBIRN, 0.6825 to
0.7778 on COBRE, and 0.6341 to 0.7224 on B-SNIP compared to models without pretraining.
Furthermore, when benchmarked against other pretraining strategies, like PCL and OCP,
TR exhibited higher median AUC scores (0.8359 on FBIRN vs. 0.8057 for OCP and 0.8708
for PCL), underscoring its effectiveness in capturing critical temporal dependencies. This
approach not only surpasses simpler models without pretraining but also competes well
with complex models like wholeMILC, particularly when not pretrained, while offering
enhanced interpretability through saliency maps and Earth Mover’s Distance. These
findings lay a groundwork for developing more trustworthy and clinically applicable AI
models in neuroimaging, potentially influencing diagnostic and therapeutic strategies for
schizophrenia and extending to other neuropsychiatric conditions.
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