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Abstract: Background: Attention-Deficit/Hyperactivity Disorder (ADHD) represents a
widely prevalent and heterogeneous neurodevelopmental condition in pediatric popu-
lations, often exhibiting a substantial propensity to persist into adulthood. ADHD is a
multifaceted disorder that resists straightforward diagnostic tests. Clinicians must in-
vest substantial time and effort to secure an accurate diagnosis and implement effective
treatment. ADHD diagnosis is primarily based on psychiatric tests, as there is currently
no clinically utilized objective diagnostic tool. Nonetheless, several studies in have doc-
umented endeavors to create objective instruments designed to assist in the diagnostic
process of ADHD, aiming to enhance diagnostic accuracy and reduce subjectivity. Method:
This research endeavor sought to establish an objective diagnostic modality for ADHD
through the utilization of electroencephalography (EEG) signal analysis. With the use
of innovative deep learning techniques, this research seeks to improve the diagnosis of
ADHD using EEG data. To capture complex patterns in EEG data, this study proposes
a double-augmented attention mechanism ResNet-based model. Using an autoencoder
for feature extraction, the Reptile Search Algorithm for feature selection, and a modified
ResNet architecture for model training comprise the technique. Results: AUC, F1-score,
accuracy, precision, recall, and other standard classifiers like Random Forest and AdaBoost
were utilized to compare the model’s performance. By a wide margin, the proposed
ResNet model outperforms the traditional models with a 99.42% accuracy, 99.03% precision,
99.82% recall, and 99.42% F1-score. Conclusions: ROC AUC score of 0.99 for the model
underscores its remarkable capability to differentiate between children with and without
ADHD, thereby minimizing misclassification errors and improving diagnostic precision.

Keywords: ADHD; ResNet; double augmented attention mechanism; EEG; auto encoder;
reptile search algorithm

1. Introduction
Attention deficit hyperactivity disorder (ADHD) is a common disorder in children,

marked by ongoing issues with focus, easy distraction, hyperactivity, and impulsive
behavior [1]. ADHD affects individuals from childhood through adulthood, with chil-
dren and adolescents making up over 80% of the total cases. Moreover, the number of
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children and teenagers diagnosed with ADHD rises progressively each year [2]. If ADHD
is not treated, its symptoms can cause ongoing challenges for children as they grow up [3].
Children with ADHD have a 70% chance of still having it in their teen years, and if it is
not treated, it can continue into adulthood in more than half of the cases. The prompt
ascertainment and initiation of therapeutic measures for ADHD are crucial, given their
profound impact on alleviating the disorder’s pervasive developmental, cognitive, and
social ramifications [4,5]. The wide range of symptoms and the common presence of other
conditions with ADHD make it hard for doctors to diagnose it accurately, which can lead to
missed cases or mistaken diagnoses [6,7]. Missed diagnoses leave patients dealing with the
harmful effects of the disorder, while erroneous diagnoses result in unsuitable therapeutic
interventions, potentially accompanied by adverse side effects. Delays in accurate diagnosis
and treatment can lead to higher healthcare costs utilization, often driven by the worsening
of other mental and physical health conditions that occur together [8,9].

While conventional statistical techniques can assess predictive accuracy, they often fall
short in capturing intricate, non-linear relationships, especially when numerous predictive
variables interact to shape outcomes. Conversely, machine learning can adeptly navigate
these complexities, assuming that an adequately large dataset is available [10]. Although
machine learning has been employed on objective datasets, its application is restricted by
the substantial expense associated with data acquisition, thereby limiting the breadth of
accessible sample sizes. Furthermore, small sample sizes can result in inflated accuracy
estimates if machine learning techniques are incorrectly applied [11–13].

Since 2010, there has been active research on diagnosing ADHD through artificial
intelligence, capitalizing on the advancements in machine learning and deep learning tech-
nologies. The research is increasingly centered on creating faster and more efficient methods
for diagnosing ADHD. This entails leveraging a diverse array of objective data sources,
including accelerometer readings, simulation results, and interactive gaming outputs, in
conjunction with biometric metrics such as MRI, EEG, and ECG, to augment diagnostic
accuracy and efficacy. These findings are expected to augment the precision of ADHD
diagnoses and streamline the temporal demands associated with this diagnostic process.
Specifically, the dissemination of the Neuro Bureau ADHD-200 dataset has facilitated the
advancement of research by providing a comprehensive and standardized repository of
data for the investigation of ADHD, which has prompted various research institutes to
actively investigate methods for improving ADHD diagnosis accuracy. Their efforts are
concentrated on formulating advanced machine learning and deep learning algorithms
utilizing this dataset [14].

In assessment, electroencephalogram (EEG) tracking of brain activity is quicker, less
expensive, more transportable, and more descriptive. Therefore, electroencephalogram
(EEG) may be a beneficial tool for studying and assessing the peculiar functioning of
children with attention deficit hyperactivity disease (ADHD). Further studies on using
EEG testing to diagnose ADHD are important to enhance the modern-day State of the
Art and provide more accurate results. Lots of records are included within the indicators
of an electroencephalogram (EEG). Manual identification of outliers is not much better
either. This is the optimal point for machine learning (ML). The basic idea behind machine
learning is to train computers to improve a performance metric using previous work or
example data; this technique might be applied to the current task. In order to improve the
accuracy of ADHD (Attention-Deficit/Hyperactivity Disorder) classifications using EEG
data, the research introduces a novel technique. By combining advanced feature extraction
methods and a complex classification system, the study aims to address the challenges of
accurately diagnosing ADHD.
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The main contributions of the study are as follows:

• This study introduces a novel method for extracting meaningful features from EEG
data using auto-encoders, effectively reducing noise and improving data entry quality
for ADHD designation.

• A deep residual network (ResNet) is used for classification, which offers the advan-
tage of being able to control fluid loss and improve model performance on complex
EEG datasets.

• The study integrates an advanced dual attention mechanism to selectively prioritize
and emphasize the most pertinent features, thereby enhancing the model’s ability to
capture critical patterns, dramatically enhancing the model’s sensitivity and accuracy
in distinguishing between non-ADHD and ADHD.

2. Literature Review
Electroencephalography (EEG) is a non-invasive method for monitoring and recording

electrical signals and voltage fluctuations generated by neuronal activity in the brain, using
electrodes attached to the scalp. EEG can record brain activity over extended periods and
measure neural signals, providing valuable information for analyzing and treating health
issues related to brain function, which serves as a crucial data source for various fields,
including neuroscience, biomedical engineering, and brain–computer interface studies. Its
accessibility makes it valuable for numerous neuroscience research applications [15,16].
Chen M. (2019) conducted a retrospective case–control study that leveraged pre-existing
data from the Neuro Bureau ADHD-200 dataset, encompassing 973 participants. Multiscale
functional brain connectomes were constructed, integrating both anatomical and func-
tional criteria to capture complex brain connectivity patterns. During cross-validation, the
mcDNN model—utilizing an integrated feature set combining multiscale brain connectome
data and Principal Component Decomposition (PCD)—demonstrated superior accuracy in
ADHD detection, achieving an AUC of 0.82 (95% CI: 0.80, 0.83), thereby surpassing scDNN
models, which analyzed features from each brain connectome scale and PCD independently.
In hold-out validation, the mcDNN model maintained robust performance, yielding an
AUC of 0.74 (95% CI: 0.73, 0.76) [17]. In 2020, Dubreuil-Vall presented a four-layer convo-
lutional neural network (CNN) architecture, integrating filtering and pooling operations.
The model was trained on stacked multi-channel EEG time-frequency decompositions
(spectrograms) derived from event-related potentials (ERPs) in ADHD patients (n = 20) and
healthy controls (n = 20), recorded during the Flanker Task, with 2800 samples per group.
This approach mirrors techniques used in audio and image classification, employing deep
neural networks to autonomously identify invariant and compositional features within the
data. Achieving a classification accuracy of 88% ± 1.12%, the model outperformed both
Recurrent Neural Networks and Shallow Neural Networks, obviating the need for manual
feature selection based on EEG spectral or channel-specific characteristics [18]. Tosun (2021)
analyzed the effects of photic stimuli at various frequencies and across different channels
on ADHD diagnosis, aiming to identify the most effective channel and recording state for
accurate ADHD detection. The dataset, obtained using power spectral densities and spec-
tral entropy values from individuals with and without ADHD, was used in experiments
with long short-term memory (LSTM), support vector machine (SVM), and artificial neural
network classifiers. Among these, LSTM achieved the highest accuracy, with 88.88% accu-
racy on the “Fp1, F7” channel and 92.15% in the eyes-closed resting state. Spectral entropy
was found to enhance classification accuracy positively [19]. Zhou D (2021) summarized
the brain electrical activity and clinical characteristics of children aged between 6 and 16
with ADHD in a children’s hospital, using long-range EEG video data to assess their clinical
diagnostic significance. Deep learning models, including fully connected neural networks,
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2D convolutional neural networks, and LSTM networks, were employed, achieving an
average accuracy of 97.7% and a false negative rate of 2.2%. The results highlight the strong
generalization capability of the convolutional neural network in accurately identifying
ADHD in each participant [20]. Donglin Wang (2022) describes a method that combines
independent component analysis (ICA) with a convolutional neural network (CNN), where
ICA extracts independent components from each subject, which are then fed into a CNN
to classify ADHD patients from typical controls. The second method, the correlation
autoencoder, uses brain region correlations as input to an autoencoder, learning latent
features for classification through a new neural network. Although each method captures
inter-voxel information from fMRI differently, both employ CNNs to extract predictive
features. These methods achieved an accuracy of around 69% [21]. Ning Qiang (2022)
proposes a spatiotemporal attention auto-encoder (STAAE) to identify global features that
address learning difficulties in volumetric resting-state fMRI (rfMRI). The unsupervised
STAAE framework spatiotemporally models rfMRI sequences, decomposing them into
spatial and temporal patterns. While spatial patterns, known as resting-state networks
(RSNs), have been extensively studied, temporal patterns have been largely overlooked in
recent decades. For ADHD classification, the proposed RSTT-based classification frame-
work achieved a high accuracy of 72.5%, outperforming methods from recent studies [22].
Jungpil (2021) applied a deep learning (DL)-based algorithm that was implemented to
distinguish children with ADHD co-occurring with ASD, utilizing functional near-infrared
spectroscopy (fNIRS) signals. Data acquisition involved thirteen children diagnosed with
ADHD and coexisting ASD, along with fifteen typically developing (TD) children. They
performed periodic line (PL) and zigzag line (ZL) drawing tasks under both prediction and
tracing conditions, which each task repeated three times. A sophisticated hybrid model,
integrating convolutional neural networks (CNN) with bidirectional long short-term mem-
ory (Bi-LSTM), was engineered to effectively classify ADHD-ASD comorbidity. This model
achieved a classification accuracy of 94.0%, sensitivity of 89.7%, specificity of 97.8%, an
F1-score of 93.3%, and an AUC of 0.938, demonstrating robust performance in accurately
identifying ADHD with coexisting ASD [23]. Mustafa Yasin Esas et al. explored the efficacy
of EEG in detecting ADHD within a clinical cohort, where EEG data were acquired from
121 children aged 7–12, comprising 61 from the ADHD group and 60 from the healthy
control group. The study sought to establish an objective diagnostic instrument for ADHD
by leveraging EEG signals. These signals were subjected to decomposition into sub-bands
utilizing advanced techniques, such as robust local mode decomposition and variational
mode decomposition. These sub-bands, along with the original EEG signals, were then
input into a custom-designed deep learning algorithm. The resulting algorithm achieved
over 95% accuracy in distinguishing ADHD from healthy individuals using 19-channel
EEG signals, with a classification accuracy of over 87% through the proposed EEG signal
decomposition and processing approach [24]. Miguel Garcia-Argibay et al. (2023) collected
data from 238,696 individuals born and residing in Sweden between 1995 and 1999 to assess
the effectiveness of various machine learning techniques in aiding ADHD diagnosis in
children and adolescents. The methodologies employed encompassed logistic regression,
random forest, gradient boosting, XGBoost, penalized logistic regression, deep neural
networks (DNN), and ensemble techniques. Of these, the DNN demonstrated superior
performance, attaining an area under the receiver operating characteristic curve (AUC)
of 0.75 (95% CI: 0.74–0.76) and a balanced accuracy of 0.69. With a probability threshold set
at 0.45, the model’s sensitivity was 71.66%, and specificity reached 65.0%, demonstrating
its potential in accurately differentiating ADHD cases [25]. Wonjun (2023) developed a
game-based system for ADHD screening and diagnosis in children, utilizing five Azure
Kinect units with depth sensors to capture skeleton data during gameplay. The skeleton
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data were divided into standby data, collected while the child observed the robot demon-
strating the path, and game data, collected while the child followed the path. Classification
was conducted utilizing RNN-based architectures (GRU, RNN, and LSTM), incorporating
a bidirectional layer and a weighted cross-entropy loss function. The LSTM model, featur-
ing the bidirectional layer and weighted cross-entropy, attained a classification accuracy
of 97.82%, whereas both the GRU and RNN models achieved accuracies of 96.81% [26].

Despite the advancements in ADHD classification using EEG data, several research
gaps remain unaddressed. These include the limited exploration of advanced deep learn-
ing models, underutilization of feature extraction techniques, and a lack of emphasis on
attention mechanisms. Traditional machine learning classifiers and neural networks are
the primary methods used, while advanced deep learning architectures like ResNet and
attention mechanisms could enhance classification accuracy. Additionally, attention mech-
anisms are not prioritized in prioritizing the most relevant features in EEG data, which
could further refine ADHD classification models’ accuracy and sensitivity. Table 1 shows
the datasets used by various researchers for their research on ADHD.

Table 1. Models related to ADHD classification using Deep learning for various datasets.

Author Year Dataset Model,
Validation Method Accuracy Recall Precision F1 Score ROC_AUC

Chen M et al. [17] 2019 977 participants mcDN
Hold-out - - - - 0.82

Dubreuil-Vall L.
et al. [18] 2020

40 participants, comprising
20 healthy adults (10 males and
10 females) and 20 adults with

ADHD (10 males and 10 females)

CNN,
LPOCV 88% - - - -

Tosun et al. [19] 2021 EEG Data LSTM,
No 92.15% - - - -

Zhou et al. [20] 2022 Children of 6–16 years CNN,
No 97.7% - - - -

Donglin Wang
et al. [21] 2022 - CNN

No 69% - - - -

Niang Qiang [22] 2022 -

Spatiotemperal
atttention

autoencoder
No

72.5% - - - -

Jungpil [23] 2023
156 samples from ADHD children

with coexisting ADD and
180 samples of TD children

CNN
LOOCV 94% 89.7% 97.8% 91.3% 0.938

Mustafa Yasin Esas
et al. [24] 2023

EEG data obtained from children
aged 7 to 12 years, comprising
61 individuals diagnosed with

ADHD and 60 age-matched
controls without ADHD

CNN
CV 87% - - - -

Miguel Garcia
Argibay et al. [25] 2023

238,696 individuals residing in
Sweden during the period from

1995 to 1999

DNN
No 69% 71.6% 65.0% - 0.75

Wonjun Lee
et al. [26] 2023 Screen video game

LSTM
GRU
RNN
No

97.82%
96.81%
96.81%

- - - -

3. Methodology
In this work, a cutting-edge deep learning algorithm is used to create a unique method

for classifying ADHD using EEG data. The methodology is as follows. First, the EEG
data are gathered and preprocessed; then, an autoencoder is used to extract deep features;
next, the Reptile Search Algorithm is applied to select features; and finally, a ResNet model
enhanced with a double-augmented attention mechanism is used for classification. This
segment outlines each degree of the method, emphasizing the strategies used to achieve
dependable function illustration and high category accuracy. Figure 1 shows the flowchart
of methodology.
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3.1. Data Collection

The EEG dataset for this study was obtained from the IEEE-DataPort database and
comprised 121 participants, including 61 individuals diagnosed with ADHD and 60 healthy
controls (boys and girls, ages 7–12). The ADHD children were diagnosed by an experienced
psychiatrist according to DSM-IV criteria and took Ritalin for up to 6 months. None of
the children in the control group had a history of psychiatric disorders, epilepsy, or any
report of high-risk behaviors. EEG recording was performed based on 10-20 standard
by 19 channels (Fz, Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3, P4, T5, T6, O1, O2)
at 128 Hz sampling frequency. The A1 and A2 electrodes [27] were the references located
on earlobes.

Since one of the deficits in ADHD children is visual attention, the EEG recording pro-
tocol was based on visual attention tasks. In the task, a set of pictures of cartoon characters
was shown to the children, and they were asked to count the characters. The number of
characters in each image was randomly selected between 5 and 16, and the size of the
pictures was large enough to be easily visible and countable by children. To have a contin-
uous stimulus during the signal recording, each image was displayed immediately and
uninterrupted after the child’s response. Thus, the duration of EEG recording throughout
this cognitive visual task was dependent on the child’s performance (i.e., response speed).
The recorded dataset consists of 50,000 rows and 20 columns, containing EEG signals
recorded through 19 electrodes that depict the 10–20 international system. In this way, each
row represents one sample while each column represents one electrode channel where the
values consist of the voltage at any given time point from the brain area connected to that
electrode. To optimize the data for feature extraction and classification, pre-processing
techniques, including noise reduction and artifact removal, were applied.
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3.2. Data Pre-Processing

In this step, the data were pre-processed in order to prepare the EEG signals ready for
analysis by filtering and artifact removal. The following steps ensured the pre-processing
followed in this study.

3.2.1. Data Inspection and Separation

The dataset was examined to validate class distribution, differentiating between the
‘normal’ and ‘ADHD’ categories. The data from each class were isolated and reviewed,
with class labels saved separately.

3.2.2. EEG Data Preparation

The channel names were retrieved, and the MNE library was used to generate an
info object, including EEG channel data and sample frequency. This information item was
presented using the conventional 10–20 system montage.

3.2.3. Data Conversion

The EEG data from the normal and ADHD groups were extracted and transformed
from DataFrame to NumPy arrays. These arrays were transposed so that channels became
rows and samples became columns, and were then converted into MNE RawArray objects.

3.2.4. BandPass Filtering

A bandpass filter was used to keep the frequencies between 4 and 40 Hz. Power
Spectral Density (PSD) plots were made both before and after filtering to assess the
filter’s effectiveness.

3.2.5. Independent Component Analysis (ICA)

Artifacts in EEG facts were diagnosed and removed from the use of ICA. The EEG
data were cleaned by identifying and removing ICA components associated with artifacts.
Plotting the cleaned records allowed us to affirm that the artifacts have been successfully
removed. Multiple procedures were conducted to validate Independent Component Anal-
ysis (ICA) artifact reduction in EEG data. Visual inspection of the original EEG signals and
the cleaned signals confirmed that artifacts such eye blinks and muscle movements were
removed. SNR and power spectrum analysis were also employed to evaluate signal quality
improvement. The SNR increased after artifact removal, indicating higher signal clarity.
Additionally, subjective judgment by a trained expert maintained key brain activity and
deleted unnecessary artifacts. ICA preprocessing enhanced event-related potential (ERP)
and frequency band analysis accuracy and clarity, proving artifact removal’s efficacy.

3.3. Train-Test Split

The train-test split is a machine learning technique that splits the dataset into two
subsets: the training set and the test set. This is used to analyze the performance of a
given model. The model performs well on the training data, and the generalizability of the
model toward new data is tested, which is kept separate. Overfitting is when a model does
well on the training data but not on fresh, unseen data, and this division avoids it. The
most commonly used split ratio is 80/20, where training uses 80% of the data and testing
uses the remaining 20%. The proposed method in this study may provide an approximate
estimate of the model’s performance by splitting the test set from the training set. This is
usually performed using the train test split method in sklearn model selection. The random
state parameter within this method ensures that the split is repeatable when running the
code, whereas the test size parameter provides the percentage of data to be used for testing.
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The dataset for this study comprised 50,000 samples. From this dataset, 80% was used for
training the model, and the remaining 20% was used for model testing.

3.4. Feature Extraction Using Autoencoder

After preprocessing the EEG information, an autoencoder become used to extract deep
functions from the alerts, reducing dimensionality while taking pictures complex patterns.
This method generated latent capabilities that represented the facts underlying structure,
encapsulating excessive-level abstractions and complicated interactions inside EEG signals.
Concurrently, time-area parameters inclusive of imply, variance, and skewness had been
retrieved, as well as frequency-domain functions like strength spectral density (PSD) and
spectral entropy. The autoencoder’s deep functions were then concatenated with the time-
area and frequency-domain capabilities, yielding a unified characteristic set that captures
each an appropriate shape of the EEG signals and their temporal and spectral houses [28].

3.5. Autoencoder Structure

The architectural decisions of the autoencoder and the role of its latent space in classi-
fication can be elaborated for clarity. The autoencoder consists of an encoder and decoder,
with the encoder featuring three fully connected layers containing 128, 64, and 32 neurons,
respectively, and using the ReLU activation function to capture non-linearity and dynamic
EEG patterns effectively. These layer sizes progressively reduce the dimensionality of the
input, focusing on extracting meaningful features while discarding noise. The latent space,
represented by the bottleneck layer with 32 neurons, encapsulates the most significant
aspects of the EEG signals, serving as a compact and highly informative feature repre-
sentation. This latent space plays a critical role in classification, as it captures high-level
abstractions that are fed into the Reptile Search Algorithm for feature selection and sub-
sequently into the ResNet classifier. Further details on how the latent features contribute
to specific aspects of classification performance, such as sensitivity to temporal or spatial
variations in the EEG data, would enhance understanding. The decoder replicated this
structure, recreating the input from the latent space [29]. An autoencoder is symmetrical in
design and has two main parts (as shown in Figure 2a,b).
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Encoder: An autoencoder for EEG feature extraction generally comprises an encoder
that diminishes the dimensionality of the input data. The encoder may comprise multiple
fully linked layers or convolutional layers when dealing with spatio-temporal data. The
quantity of layers is contingent upon the intricacy of the data and the magnitude of the
input features.

Bottleneck Layer: The bottleneck layer, including 32 neurons, served as the latent
representation, the latent space extracts the most significant features by eliminating noise
and superfluous variations in the data. The latent space improves computational efficiency
by ensuring that only the most important features are sent to the classifier by lowering the
input dimensions. The network was trained utilizing the Mean Squared Error (MSE) loss
function to reduce the reconstruction error between the input and output signals. Mean
Squared Error (MSE) was selected for its straightforwardness and efficacy in assessing re-
construction correctness by penalizing significant discrepancies. Alternative loss functions,
including Mean Absolute Error (MAE) and Huber loss, were evaluated but found to be
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inadequate due to their diminished sensitivity to significant mistakes, which are crucial in
EEG signal reconstruction [30].

Decoder: The decoder reconstructs the initial input from the latent representation.
This component replicates the encoder in reverse, restoring the dimensionality to its
original form.

3.6. Reptile Search Algorithm

The Reptile search algorithm is a metaheuristic method that is based on how crocodiles
naturally hunt [31]. Two phases are necessary for the RSA to function: the hunting phase
and the encircling phase. Such an algorithm ensures optimal balances between exploration
and exploitation stages: it breaks up into four discernible phases when drawing, making
it both suitable and efficient for facing all possible optimization challenges, using similar
tactics to those employed by strategic crocodiles hunting. The complete stepwise structure
of the Reptile Search Algorithm is given below as Algorithm 1.

Algorithm 1 Reptile Search Algorithm (RSA)

1: Input:Population size N, maximum iterations T, search spacebounds LB, UB
2: Initialize population P = {X1, X2, . . ., XN} randomly within [LB,UB]
3: Initialize bestsolution Xbest and its fitness fbest

4: for each individual Xi inpopulation P do
5: Calculate fitness fi = f (Xi)
6: if fi < fbest then
7: Update Xbest = Xi

8: Update fbest = fi
9: end if
10: end for
11: for iteration t = 1 to T do
12: for each individual Xi in population P do
13: Generate a movement vector Vi based on reptile-inspired strategies
14: Update position Xnew = Xi + Vi

15: Apply boundary constraints on Xnew to keep with in [LB,UB]
16: Calculate fitness fnew = fi(Xi

new)
17: if fnew < fi then
18: Accept The New Position Xi = Xi

new

19: Update fitness fi = finew

20: end if
21: if fi < fbest then
22: Update Xbest = Xi

23: Update fbest = fi
24: end if
25: end for
26: Optionally: Apply reptile-specific strategies like warm-up or local search
27: end for
28: Output: Best solution Xbest and its fitness fbest

3.6.1. Initialization

In the first step of the reptile search algorithm, a collection of potential beginning
solutions is generated stochastically utilizing the following equation:

xjk = rand × (Ub − Lb) + Lb k = 1, 2, . . . , n, (1)

where xjk = initialization matrix, j = 1, 2, . . ., P. P represents population size (rows of the
initialization matrix), and n represents the dimensions (columns of the initialization matrix)
of the given optimization problem. Lb, Ub, and rand represent the lower bound limit, upper
bound limit, and randomly generated values [32].

3.6.2. Encircling Phase (Exploration)

During the surrounding phase, densely populated areas are primarily explored. High
walking along with belly walking, particularly those derived from crocodile motions, are
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crucial during the encircling period. These motions aid in finding a large search area but
do not contribute to capturing prey.

xjk(τ+ 1) = Bestk(τ)×
(
−µ(jk)(τ)

)
× β−

(
R(jk)(τ)× rand

)
, T ≤ T

4
, (2)

xjk(τ+ 1) = Bestk(τ)× x(r1,k) × ES(τ)× rand, τ ≤ 2
T
4

and τ >
T
4

, (3)

where Bestk(τ) denotes the optimal solution achieved at the kth position within the current
iteration. Here, rand signifies a stochastic variable representing a randomly generated
number, while τ represents the current iteration count, with T defining the upper limit for
total iterations. The parameter µ(j,k) encapsulates the value of the hunting operator for the
jth solution, specifically at the kth position. The calculation of the value for (j,k) is governed
by the following formula:

µ(j,k) = Bestk(τ)× P(j,k), (4)

R(j,k) =
Best(τ)− P(r2,k)

Bestk(τ)+ ∈ , (5)

where r1 represents a random number selected between 1 and N. Here, N denotes the total
number of candidate solutions. The pair (r1, l) indicates a random position for the kth
solution. Similarly, r2 is another randomly chosen number within the range from 1 to N,
and ϵ represents a small magnitude. ES(τ), or Evolutionary Sense, is defined as a probability-
based ratio that quantifies the evolutionary dynamics within the system. The mathematical
formulation of the Evolutionary Sense is given as follows:

ES(τ) = 2 × r3 ×
(

1 − 1
T

)
. (6)

3.7. Feature Selection Using Reptile Search Algorithm

The Reptile seek technique became used to extract the maximum important traits from
a huge characteristic collection. Reptile, a meta-mastering method, improves function selec-
tion via schooling the version on several subsets of capabilities and improving its overall
performance. This iterative process successfully discovers and maintains the maximum
critical tendencies, growing version performance and accuracy. The chosen traits were then
utilized to educate the final model type.

3.8. Model Building

After feature extraction and choice, the next level was to construct a sophisticated
classification model making use of ResNet and a double-augmented interest mechanism.
The ResNet design, cited for its residual mastering skills, serves to alleviate the vanishing
gradient problem and allows for successful deep neural community education. To further
improve the model’s overall performance, a dual-augmented attention mechanism was
incorporated. This method contains spatial and temporal attention layers, permitting the
version to dynamically focus on the maximum huge factors even as nonetheless shooting
complex relationships in the EEG information. The model can effectively categorize EEG
signals by combining ResNet’s study characteristic extraction with better interest mecha-
nisms, taking use of each residual connection and refined attention to maximize overall
performance and reliability. The ResNet model is enhanced with spatial and temporal
attention mechanisms. The incorporation of spatial and temporal attention layers into
ResNet may be elucidated by specifying their architectural positioning and operational
roles. Spatial attention layers prioritize essential EEG channels by creating attention maps
from intermediate convolutional feature outputs, which are then multiplied element-wise
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with feature maps to enhance significant areas. Temporal attention layers, conversely,
allocate weights to various time periods in EEG data, emphasizing crucial parts that repre-
sent brain activity. Attention techniques may be included at several junctures within the
ResNet architecture, including between residual blocks or after feature extraction, thereby
enhancing concentration on relevant characteristics. The Reptile Search Algorithm (RSA) is
used for feature selection because of its strong capacity to balance exploration and exploita-
tion, efficiently traversing high-dimensional EEG feature spaces. RSA’s hunting-inspired
technique facilitates dynamic optimization, surpassing standard methods such as Particle
Swarm Optimization (PSO) and Genetic Algorithms (GA) in evading local optima. By
choosing the most relevant features from the autoencoder output, RSA enhances the input
to ResNet, hence augmenting classification accuracy. Direct comparisons with other opti-
mization methods would further validate the choice of RSA and its incorporation into the
feature selection process, then improves ADHD classification by dynamically focusing on
the most relevant features of EEG data. Spatial attention prioritizes key EEG channels that
capture critical patterns indicative of ADHD, allowing the model to amplify important re-
gions while suppressing irrelevant ones. Temporal attention, on the other hand, highlights
significant time intervals where variations in EEG signals reflect crucial neural activity
related to ADHD. Together, these mechanisms enable the model to efficiently extract both
spatial and temporal features, ensuring a comprehensive analysis of the EEG signals. The
integration of these attention mechanisms with ResNet’s residual learning capabilities
helps the model overcome challenges like vanishing gradients, leading to more accurate
and robust ADHD classification.

The classification model utilized a modified ResNet featuring a dual-augmented
attention mechanism.

Architecture: The ResNet model was tailored for EEG signal classification with modi-
fications including the following:

Layer Configuration: Eighteen residual layers featuring skip connections.
Kernel Sizes: One-dimensional convolutional layers utilizing kernel sizes of 3, 5, and 7

to capture both short- and long-term signal relationships.
Stride and Padding: A stride of 2 facilitated downsampling, whereas same-padding

maintained feature dimensions.
Double-Augmented Attention Mechanism integrates two complementary attention

components:
Spatial Attention: Concentrated on essential EEG channels.
Temporal Attention: Emphasized significant time periods.

3.9. Model Evaluation

The method of “version evaluation” examines whether a produced model may be
implemented to fresh information to ascertain the model’s generalizability. Several key
metrics are employed to evaluate categorization performance, including accuracy, precision,
recall, F1 score, specificity, and sensitivity. Iterative validation methods, such as cross-
validation, rigorously refine these estimates, ensuring their robustness and reliability. This
approach enriches evaluative tools, such as confusion matrices, with extensive statistical
insights. Comprehensive assessment plays a crucial role in refining models for both
development and practical deployment.

ResNet

Recurrent Neural Network (ResNet) is a network architecture that builds upon the
VGG19 network by incorporating residual units via a short link mechanism. The challenge
of performance attenuation, wherein accuracy diminishes with an increase in network
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depth, is alleviated through the incorporation of identity mapping, represented by curved
lines and residual mapping, characterized by the model’s residual components. These
methodologies safeguard the preservation of informational fidelity as it traverses through
successive layers of greater depth. ResNet implements the full 3 × 3 convolutional layer
architecture of VGG. It incorporates a Batch Normalization layer and a ReLU activation
function. Additionally, it introduces an additional 1x1 convolutional layer to convert the
input into the exact shape required. This transformation is then directly combined with
the residual function output. Reducing the feature map size by half doubles the size of the
map, as shown in the model, which is a basic design element of ResNet. The complexity of
network levels may be preserved with the help of this notion. To include residual learning,
the ResNet design introduces a short connection mechanism across every two layers. Their
main differences are that ResNet uses stride = 2 convolution for down sampling and that a
global average pool layer replaces the fully connected one. The key structure of ResNet is
shown in Figure 3.
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Through its chosen approach, the implementation of zero-padding results in an in-
crease in dimensions and eliminates the occurrence of arguments within the network.
An alternative approach would be to implement a novel mapping technique called the
projection shortcut, which typically involves a 1 × 1 convolution. This method results in
an increase in parameters and hence raises the computational workload.

3.10. Performance Metrics

Accuracy: The simplest way to measure how often the classifier makes correct pre-
dictions is by using accuracy. Another way of looking at it is that this is the percentage of
correct forecasts relative to all guesses.

Accuracy =
TP + TN

S
. (7)

Precision: In contrast to this ratio, in addition subtracting it from one minus,
i.e., (1 − precision), which represents the percentage of false negatives. Additionally,
recall can be derived as the inverse of precision, offering a distinct perspective on
classification performance.

Precision =
TP

TP + FP
. (8)
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Recall: On the other hand, there are so-called false negatives in relation with
True Negatives.

Recall =
TP

TP + FN
. (9)

F1-Score: It is calculated by taking the accuracy and recall scores and squaring them.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
. (10)

AUC Calculation: The AUC is computed as a graph of the ROC curve, describing
the relationship between TPR and FPR for different thresholds. The value of the AUC
corresponds to the area below the curve. Values close to 1.0 indicate high performance,
and a higher AUC generally implies that the model can distinguish between classes more
accurately. The AUC can be calculated using the formula given below.

AUC = 0.5 ∗ (TPR + TNR) ∗ 100. (11)

Specificity: The ability of the model to correctly identify negative cases. Specificity
measures the ratio of actual negative cases that are correctly identified. It is calculated
as follows:

Specificity =
TN

TN + FP
(12)

Sensitivity: The ability of the model to correctly identify positive cases. Sensitivity
measures the ratio of actual positive cases that are correctly identified. Sensitivity is also
called Recall. It can be calculated as follows:

Sensitivity =
TP

TP + FN
. (13)

Table 2 shows the specificity and selectivity of all the models. A high sensitivity
proposed model indicates that the model can detect most of the relevant cases, making it
crucial in applications compared to Adaboost and Random Forest model. On the other
hand, high selectivity for the proposed ResNet model ensures that the model minimizes
false cases by accurately excluding irrelevant or negative cases compared to Random Forest
and Adaboost.

Table 2. Model Evaluation using specificity and selectivity.

Model Specificity Sensitivity

ResNet with Double Augmented Attention Mechanism 0.99 0.99

Adaboost 0.89 0.89

Random forest 0.92 0.92

The EEG data used in this study underwent a variety of preprocessing steps. After the
dataset was analyzed, class labels were saved independently to confirm the distribution of
classes between the “normal” and “ADHD” categories. Following the 10–20 system mon-
tage, the MNE library was used to prepare the EEG data. The channel names were acquired,
and an info object with the sample frequency and EEG channel data was produced. The
normal and ADHD groups’ data were then extracted from the DataFrame and converted
to NumPy arrays. After that, these arrays were reversed so that channels appeared as
rows and samples as columns. These arrays were converted into MNE RawArray objects
for further processing. For outlier treatment, artifacts in EEG facts were diagnosed and
removed the use of ICA. The EEG facts were cleaned by identifying and getting rid of
ICA additives connected to the artifacts. Plotting the cleaned records allowed us to affirm
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that the artifacts had been successfully removed. Reptile Search Algorithm (RSA) is an
optimization algorithm for the selection of most relevant features from the EEG dataset for
feeding into a machine learning model. Specifically, it is used to solve the feature selection
problem. This is common when dealing with high dimensional datasets, such as EEG data,
which often has a large number of features (channels in this case). Not all the features
contributing to the task are meaningful (i.e., separating ADHD from normal subjects). Too
many features overfitting and a quick increase in computational complexity may even
decrease performance. Feature selection methods are typically developed to select the most
relevant subset of features with the best predictive performance.

4. Results and Discussion
This study included 121 participants (61 with ADHD and 60 without), providing a

dataset of 50,000 samples. The focus of this study was to identify a dataset with greater
variability and a balanced representation of ADHD and healthy subjects. The process
included building a model using a ResNet architecture that was tweaked with a double-
augmented attention mechanism, feature selection employing the Reptile Search Algorithm,
and feature extraction with an autoencoder. Various evaluation metrics have been employed
for this study, including F1 score, accuracy, precision, and recall, to assess the efficacy of the
classification model. This method has the ability to improve ADHD diagnosis by using
EEG data processing.

Figure 4 shows ResNet with double Augmented attention module confusion matrix
with exceptional model performance. Out of 10,000 samples, the model demonstrates
exceptional performance with 4961 records correctly identified as class 0 (True Negatives)
and 4981 records accurately classified as class 1 (True Positives). Misclassifications are
minimal, with only 49 False Positives (class 0 misclassified as class 1) and 9 False Negatives
(class 1 misclassified as class 0), signifying a highly precise model.
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Figure 5 shows the Random Forest confusion matrix with a slight decline in accuracy
compared to the ResNet with double Augmented. It records 4630 True Negatives and
4606 True Positives, with misclassifications increasing to 386 False Positives and 378 False
Negatives, indicating a moderate decrease in performance. Similarly, Figure 6 shows the
confusion matrix of Adaboost classifier, further highlighting an escalation in misclassifi-
cations. It records 4533 True Negatives and 4445 True Positives, with 520 False Positives
and 502 False Negatives, reflecting a more noticeable decline in accuracy compared to the
AdaBoost results.
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According to the obtained results, ResNet has the highest accuracy with minimum
misclassifications. AdaBoost and RandomForest, however, have some considerable in-
creases in the rate of misclassifications that could, in fact, represent some true degradation
in the performance of the model. The three matrices illustrate differing levels of model
performance, with the ResNet with double Augmented attention model exhibiting the high-
est efficacy, whereas the others demonstrate elevated misclassification rates, underscoring
the necessity of error reduction to enhance prediction accuracy. It would be possible to
make a judgment on whether these differences in performance are statistically significant if
the misclassification rates and the overall accuracy are examined. Since there were varia-
tions in True Positives, True Negatives, False Positives, and False Negatives between the
three models, the differences in performance are likely to be statistically significant. The
misclassification rate for all the models is shown in Table 3.

Misclassification rate = FP + FN/(TP + TN + FP + FN).
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Table 3. Misclassification Rate Calculation.

Model False Positive False Negative Misclassification

ResNet with Double Augmented
Attention Mechanism 49 9 0.58%

Adaboost 520 502 10.22%

Random forest 386 378 7.64%

The ROC curves for three machine learning models, which are evaluated based on
their ability to distinguish between classes, Random Forest, AdaBoost, and ResNet with
Double Augmented Attention Mechanism, are shown in Figures 7–9. As can be seen in
Figure 7, ResNet with Double Augmented Attention Mechanism performs very well, whose
ROC curve nearly hugs the upper left corner. With an AUC of 0.99, the classification skill
is almost flawless. The model detects genuine positives with almost no misclassification,
given the steep climb of the curve and the low False Positive Rate. With an AUC of 0.93,
as shown in Figure 8, Random Forest also performs strongly and shows good prediction
accuracy, as indicated in Figure 8. However, the ROC curve is not as steep as that of the
ResNet model’s, and it shows that Random Forest is slightly less accurate than ResNet,
although still good at class distinction. The TPR and FPR are well-balanced in the model.
AdaBoost performs excellently, as shown in Figure 9, with an AUC of 0.87. However, it still
shows the ability to distinguish between the classes, although its curve is not as prominent
as the first two models. Although the model does well, it does not compare to Random
Forest and ResNet. All the models perform better than random guessing, which is shown
by the dashed diagonal line. However, ResNet has the best classification.
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Some of the three models—RandomForest, AdaBoost, and ResNet with double aug-
mented attention module—had a higher level of predictiveness in their respective perfor-
mance metrics. The highest F1-score, that is, 0.9942 accuracy value of 0.9942, precision value
of 0.9903, and recall value of 0.9982, shown Figures 10 and 11, was obtained by the model
with the double-augmented attention module, ResNet. This indicates that the model is very
good at producing high-quality predictions and has an impressive capacity to identify real
positives, as indicated by its almost flawless recall. The presence of the double augmented
attention module probably improves the ability of the model to concentrate on relevant
features, which boosts classification accuracy. AdaBoost produced some average results;
F1-score was 0.8967, recall score was 0.8976, and accuracy and precision were 0.8978, as
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shown in Figures 10 and 11. These scores, in comparison to the ResNet-based model, result
in the observation that AdaBoost is not very resistant but still fairly successful. Although it
combines several weak classifiers into building a strong one, the low recall rate shows that
it may miss some of the actual positives, leading to its total performance. RandomForest
surpassed AdaBoost with an F1-score of 0.92, accuracy of 0.9236, precision of 0.92361, and
recall of 0.9236, as shown in Figures 10 and 11. But the results were short of those of ResNet.
It is the ensemble method, and it uses many decision trees to build a model. It has good
generalization. Thus, it reduces overfitting. Its much lower F1-score depicts little disparity
in the recall and precision. Because the ResNet model with two-fold enhanced attention
module has its deep learning structure and sophisticated attention mechanism, it is perfect
for challenging jobs. On the other hand, RandomForest and AdaBoost have respectable but
somewhat limited predictive capabilities, making them appropriate for simpler datasets or
situations where computational speed is an issue.
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Figure 10. (a) Accuracy and (b) precision of ResNet with Double Augmentation Mechanism,
AdaBoost, and Random Forest Classifier.
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Figure 11. (a) Recall; (b) F1-Score of ResNet with Double Augmented Attention Mechanism,
AdaBoost, and Random Forest Classifier.

Table 4 shows the comparisons of the model’s performance on important metrics
and p-value results. The proposed model, ResNet with double Augmented Attention,
outperforms the other models—AdaBoost and Random Forest—in all four important
metrics: Accuracy, Precision, Recall, and F1-Score. It is clear that there are considerable
disparities in performance, with ResNet clearly demonstrating much better results across
the board. The results of the statistical analysis indicate that the ResNet (p < 0.001) is
statistically significant. This further substantiates the superiority of the proposed model.
The comparison of AdaBoost and Random Forest, on the other hand, reveals that there
is no significant difference (p > 0.05), indicating that their individual performances are
comparable. As a result, ResNet with double Augmented Attention is unquestionably the
best model, since it has a large advantage over the other two models in all of the criteria
that were analyzed.

Table 4. Comparing Models’ Performance on Important Metrics with p-Value.

Model Accuracy Precision Recall F1-Score p-Value

ResNet with double
Augmented Attention 0.9942 0.9903 0.9982 0.9942 0.0005

AdaBoost 0.8978 0.8978 0.8976 0.8967 0.08

Random Forest 0.9236 0.9236 0.9236 0.92 0.06

According to the basic data, ResNet with double Augmented Attention performs
better than the other models when it comes to accuracy, precision, and memory. All
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models were analyzed on 95% confidence interval. Table 5 shows the comparisons of
model’s performance respect to mean, standard deviation, lower bund, and upper bound.
ResNet achieves an average accuracy of 0.9946 (SD = 0.00597), a mean precision of 0.9895
(SD = 0.00444), and a mean recall of 0.9977 (SD = 0.00643). The confidence ranges for all of
these measurements are very small. Random Forest and AdaBoost, on the other hand, do
not do as well, with mean accuracies of 0.9230 and 0.8972, respectively, and similar trends
in precision and recall. Overall accuracy, precision, and recall scores for all models are all
around 0.938, further supporting the conclusion that ResNet is the best model for this task.

Table 5. Comparing Models’ Performance on Important Metrics with Statistical Significance.

N Mean Std. Deviation
95% Confidence Interval for Mean

Lower Bound Upper Bound

Accuracy

ResNet with
double

Augmented
Attention

20 0.9946 0.00597 0.9918 0.9974

AdaBoost 20 0.8972 0.00473 0.8950 0.8995
Random Forest 20 0.9230 0.00485 0.9207 0.9253

Total 60 0.9383 0.04186 0.9275 0.9491

Precision

ResNet with
double

Augmented
Attention

20 0.9895 0.00444 0.9874 0.9916

AdaBoost 20 0.8968 0.00593 0.8940 0.8996
Random Forest 20 0.9238 0.00459 0.9216 0.9259

Total 60 0.9367 0.03958 0.9265 0.9469

Recall

ResNet with
double

Augmented
Attention

20 0.9977 0.00643 0.9947 1.0007

AdaBoost 20 0.8959 0.00431 0.8939 0.8979
Random Forest 20 0.9211 0.00449 0.9190 0.9232

Total 60 0.9382 0.04396 0.9269 0.9496

The effects of these studies suggest that the proposed ResNet model with a double-
augmented attention mechanism is a success at detecting ADHD using EEG statistics. The
model’s exceptional ability to differentiate between children with and without ADHD
is demonstrated through its outstanding precision, recall, and F1-score metrics. The ro-
bustness of the ResNet model is further validated by its comparative performance against
alternative models, such as AdaBoost and Random Forest. While AdaBoost and Ran-
dom Forest fared properly, their lower ratings throughout numerous classes suggest that
algorithms are less powerful at detecting subtle patterns in EEG statistics.

The confusion matrix shows that the ResNet version not only reduces misclassifications
but also excels at efficaciously identifying authentic positives and actual negatives. The
misclassification rates of 0.58% for the ResNet, 10.22% for AdaBoost, and 7.64% for Random
Forest highlight significant clinical relevance, particularly in diagnostic scenarios where
accuracy directly impacts patient outcomes. A misclassification rate as low as 0.58%
suggests the proposed model’s potential for high reliability, reducing false diagnoses that
could lead to unnecessary or incorrect treatments. This level of precision is especially
critical for conditions like ADHD, where accurate early detection can significantly influence
therapeutic decisions and long-term patient management. The ResNet model’s capacity to
retain high overall performance while producing few false positives and negatives suggests
that it might be an effective diagnostic device for ADHD.
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Furthermore, the ROC AUC value of 0.99 demonstrates that the ResNet version ex-
hibits exceptional discriminating abilities, confirming its superiority over other models. The
ResNet model’s close to-perfect ROC AUC price demonstrates its high-quality sensitivity
and specificity, organizing it as a reliable model for ADHD classification.

To conclude, the ResNet model with a double-augmented attention mechanism out-
performs present ADHD type methods together with AdaBoost and Random Forest. These
findings imply that incorporating State-of-the-Art attention processes into deep learning
models could substantially enhance their potential to acquire and interpret complex bi-
ological statistics, potentially leading to more accurate and reliable diagnostic tools in
medical practice.

5. Conclusions and Future Scope
Using electroencephalogram (EEG) statistics and advanced machine learning algo-

rithms, this research concludes with a completed technique for ADHD category. The
proposed ResNet model achieves better outcomes than top-tier models like Random Forest
and AdaBoost across numerous metrics, including F1 rating, recall, accuracy, and preci-
sion, due to its double-augmented attention mechanism. Based on its near-optimal ROC
AUC rating, the version has a low misclassification charge and excellent sensitivity and
specificity, which would make it a powerful tool for ADHD diagnosis.

Given that the ResNet model was able to discover intricate patterns in EEG facts, it is
clear that attention processes must be coupled with deep learning for biological applications.
In medical contexts, the ability of faulty diagnoses is a major concern; this strategy comple-
ments the device’s classification accuracy while addressing this issue. The findings of this
study imply that the proposed model has the capability to be used in practical conditions,
supplying medical professionals with a tool for diagnosing ADD/ADHD appropriately
and at an early level.

With an emphasis on the ability of deep learning models with attention mechanisms
to enhance diagnostic procedures, this study adds to the expanding body of information
about the use of machine learning in healthcare. Additional research might look at using
this method for other types of neurological illnesses, which would prove its usefulness and
increase its impact on medical diagnosis.

This study also has its limitations. A visual attention task, which focuses on a single
component of attention, served as the basis for the EEG recording procedure. Working
memory, executive function, auditory attention, and other cognitive processes are all
impacted by ADHD, which is a complex condition. The limited emphasis on visual
activities may not offer a thorough comprehension of the brain activity associated with
ADHD. Ritalin had been used by some children diagnosed with ADHD for as long as six
months. The medication may introduce confounding variables by affecting EEG readings
and brain activity. It may be difficult to extrapolate the results to children with ADHD who
are not taking Ritalin due to its effects on EEG patterns.

Given these constraints, it would be advantageous to develop EEG recording proto-
cols that incorporate a greater variety of cognitive activities, including working memory,
inhibitory tasks, auditory and executive attention, and others, in order to fully capture
the breadth of cognitive functioning and impairments associated with ADHD. In order to
properly separate the brain markers of ADHD without the influence of pharmacological
therapies, future research should consider children with ADHD who have not taken any
medication; this would make it easier to distinguish between changes caused by medica-
tion and brain activity related to ADHD. A more thorough knowledge of the neurological
correlates of ADHD might also be possible by extending EEG recording to additional brain
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networks and regions implicated in the disorder, such as the frontal-lobe circuits linked to
executive functions.

The future aim is to augment the capabilities of advanced deep learning model to de-
velop an application-based system that will aid psychiatrists by integrating ML/DL-powered
tools for the automation and optimization of ADHD symptom assessment.
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