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Abstract: Background/Objectives: Experimental studies show that when an individual
makes choices, they affect future decisions. Future choices tend to be consistent with past
ones. This tendency matters in the context of ambivalent situations because they may not
lead to clear choices, often leading people to make “arbitrary” decisions. Thus, because
of choice consistency with the past, people’s decision-making values diverge. Thus, hard
choices may contribute to the individuation of values. Methods: Here, we develop a
Bayesian framework for the effects of cognitive choice consistency on decision-making.
This framework thus extends earlier cognitive-science Bayesian theories, which focus
on other tasks, such as inference. The minimization of total surprisals considering the
history of stimuli and chosen actions implements choice consistency in our framework.
We then use a computational model based on this framework to study the effect of hard
choices on decision-making values. Results: The results for action selection based on
sensory stimuli show that hard choices can cause the spontaneous symmetry breaking
of the decision-making space. This spontaneous symmetry breaking is different across
individuals, leading to individuation. If in addition, rewards are given to certain choices,
then the direction of the symmetry breaking can be guided by these incentives. Finally,
we explore the effects of the parametric complexity of the model, the number of choices,
and the length of choice memory. Conclusions: Considering the brain’s mechanism of
choice consistency and the number of hard choices made in life, we hypothesize that
they contribute to individuality. We assess this hypothesis by placing our study in the
context of the cognition-of-individuality literature and proposing experimental tests of our
computational results.

Keywords: cognition; choice consistency; decision-making; individuation of values; brain’s
reward system; memory; Bayesian theory; surprisals; symmetry breaking

1. Introduction
When an individual makes choices, they affect future ones because future decisions

tend to be consistent with those from the past [1,2]. This consistency between past and
future choices leads to the refinement or development of new preferences, a phenomenon
referred to as “preference learning” [3]. In addition, this temporal consistency of choices has
been shown to have important consequences for perception. For example, this consistency
tends to lead to aesthetic stability [4]. Merely making a choice leads to a “spreading of
alternatives”, whereby the two options become further apart in the preference domain,
leading to improved detection [4]. Another consequence of choice consistency is increased
confidence [5–7]. Self-consistency refers to an agreement between the current perceptual
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choice and the most frequent ones made for a given sensory stimulus and decision-making
situation [7]. Perceptual confidence thus becomes an estimation of the probability that one
would make the same decision given the same situation and physical stimulus. Consistently,
emerging theories of decision-making and economics predict that as people gain experience
with a decision-making task, their apparent internal decision noise decreases [8,9].

Surprisingly, however, although past choices tend to stabilize future ones, they may
also contribute to the individuation of values. This tendency is especially important in the
context of hard, ambivalent situations because they may not lead to clear choices, often
leading people to make different, “arbitrary” choices. Thus, because of choice consistency
with the past, people’s decision-making values may begin to diverge. The same does not
happen in easy situations, that is, those for which choices are clear. In these situations,
people have clear preferences on how to act, rarely making “arbitrary” decisions. Thus,
preference learning may ensue only with hard choices. The role of preference learning
for people’s individuality has been discussed elsewhere [10–12]. The emphasis of these
studies has been on the reinforcement learning of aesthetic values of individuals under
different exteroceptive (sensory) and interoceptive (body) environments [2,13,14]. There-
fore, decision-making values would be learned to improve reward estimation, thus making
it better. However, given the role of choices in preference learning, we must generalize
these reward-based theories. The simplest way is to consider good past choices as rewards
themselves. In this article, we propose a way to add past choices to the existing theoretical
framework and analyze the consequences of the new emerging theory.

To add choice consistency to the current theoretical frameworks for preference learning,
we must start with a deeper understanding of how they work. They have been proposed
and analyzed in conditions of fixed [11,12] and varying [15] sensory environments. The
basic idea of these frameworks is that at every instant, an individual receives sensory and
body signals, and must decide on what action to take. A good decision depends on the
correct estimation of reward for the various possible actions. After taking an action and
receiving the reward, if the estimation is poor, the brain learns new parameters for its
internal model of recompense expectation. In the case of aesthetic values, they are taken
to be the expectation of reward. One can model such a process for aesthetic values with
different mathematical tools. In this article, we take the approach of Bayesian theories
of reinforcement learning [16–18]. These Bayesian theories have been especially useful
in accounting for the process of inference [16]. Here, we expand them by adding choice
consistency to the Bayesian framework by incorporating the recent history of the stimuli
and decisions into the information provided to the individual. We assume that decisions
made with choice consistency are more rewarding or equivalently, less discomforting.

Analysis of such theoretical frameworks has already shown that even without choice
consistency, they tend to produce high individuality. Part of it appears from the exposure of
individuals to the different statistics of distinct cultures and environments [12]. However,
even if the statistics are similar, the stochasticity of the incoming signals causes variability
in the values that we learn. This variability is magnified by a redundant space of values,
that is, different parameters of the internal model of reward expectation predict the same
rewards [11]. Our hypothesis is that choice consistency will magnify these individuation
tendencies even further because random, hard decisions will separate people more.

In this article, we develop our Bayesian theoretical framework by adding to it the
choice-consistency part. Bayesian theory has been influential in cognitive science, covering
areas such as inference, perception, decision-making, and reinforcement learning [16–24].
The addition of choice consistency into the Bayesian framework allows for the possible
emergence of cognitive individuation. We then use this expanded framework to develop
a computational model to perform simulations. This model is rich enough to allow us to
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reach conclusions about how choice consistency may interact with reward mechanisms to
contribute to individuality.

2. Theoretical Framework
We have split the description of the theory into two subsections, physical and mathe-

matical. The “Physical Description” section (Section 2.1) has an account of the ideas without
any equations. Our goal in that section is to help the reader understand the elements of
the theory at an intuitive level. That section may allow readers to skip the equations
(Sections 2.2 and 3) at a first read and go directly to the “Results” (Section 4). We also place
the mathematical developments in the appendices, leaving only the main equations in the
“Mathematical Description” section (Section 2.2) to simplify the explanation.

2.1. Physical Description

The core of a model of choice is that given information, for example, a sensory stimulus,
the person must decide what action to take. The person uses a parametric internal model
for this decision, with the parameters based on experience involving evolution (genes),
development, learning, and choice consistency. How do the parameters change in time? In
an optimal situation, parameter evolution should use a Bayesian process, recognizing that
stimuli, choices, and rewards tend to be probabilistic. Figure 1 illustrates how the Bayesian
update of parameters works.
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Figure 1. Bayesian update of the parameters of choice consistency. The figure shows three moments
of parametric updates indicated in red, blue, and green. The first moment at time k (red) begins with
a stimulus (Stim k) drawn from the probability distribution of stimuli (P(S)). With this stimulus, the
brain calculates an action (Act k) from the probability distribution of actions given stimuli (P(A|S)).
This calculation uses the set of parameters (Par k − 1) calculated at time k − 1. A reward (Rew
k) then arrives from the probability distribution of rewards given stimuli and actions (P(R|A,S)).
These stimulus and action are added to the histories of these values (Stim Hist and Act Hist). Given
these histories and the new reward Rew k, a new parameter set (Par k) is computed, maximizing the
Bayesian expected reward and action consistency. With this new set, one can repeat the process again
at time k + 1 (blue). This process leads to the computation of a new parameter set (Par k + 1) that
triggers the process again (green) and so on.

Without loss of generality, we will mostly refer in this article to sensory stimuli because
all experimental evidence so far has only addressed them. However, as explained in the
next section, our theory is compatible with body signals as well. We will address their
importance in the Discussion.
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2.2. Mathematical Description

At time k, a person receives sensory and/or body signals and must decide what
action ak to take. The best action must balance the maximization of reward, rk, and the
minimization of the deviation from past actions given similar stimuli. The stimulus sk is
sampled from the probability distribution of inputs, P(s) (Figure 1). From that, we use
an internal model, P( a⌋sk,

→
wk−1), to decide on the action to take, where

→
wk−1 is the vector

of parameters learned at time k − 1. From the action sampled from the model, we can
sample the reward rk from the probability distribution of rewards given actions and stimuli,
P( r⌋ak, sk).

In the next step, we update the parameters of the model before the next sampling
begins. As mentioned above, this update must simultaneously optimize expected reward
and consistency with past actions. So, we must perform an optimization that balances these
two constraints. We do this by first finding the Bayesian expected loss for each constraint
and then treating the problem as a Compromise Decision Problem [25,26].

The key decision in this step is the choice of parameters. To calculate the Bayesian
expected choice-consistency loss as a function of the candidate parameters, we need the
histories of the sampled stimuli and actions (Figure 1). We limit these histories to a finite
number of time bins, that is, to a finite memory length. For each value of parameters, we
can calculate the loss due to errors of choice consistency with these histories. The best
parameters maximize the probability that from each stimulus in the past, we obtain the
action seen in history. If we take the minus logarithm of this maximal probability, the best
parameters minimize the total amount of surprisals in the history of the stimuli and actions.
Thus, we choose the parameters that emphasize the most common stimulus–action pairs,
weeding out the surprises. This choice yields the Bayesian expected choice-consistency loss
la(

→
wk). The value of the parameters also affects the Bayesian expected reward loss through

the chosen action, and the probability distribution of rewards given actions and stimuli.
We denote the reward loss as lr(

→
wk).

Finally, we propose working with Kempthorne’s λ-Bayes-based compromise prob-
lem [25] to propose that the brain minimizes

lλ(
→
wk) = λlr(

→
wk) + (1 − λ)la(

→
wk), (1)

where 0 ≤ λ ≤ 1. The parameter λ simply balances the competition between rewards and
choice consistency in decision-making. Equation (1) and the parameter λ are like what
Bayesian cognitive models of cue integration have proposed [27–30].

Any model based on Equation (1) must specify three mathematical quantities: P(s),
P( a⌋s,

→
wk), P( r⌋a, s). To specify the three probability functions, we must begin with the

domains of the variable. For simplicity, the stimulus and reward variables will be one-
dimensional with an infinite domain, and we consider a discrete and finite action space.
Furthermore, for simplicity, we base the probability distributions on Normal distributions.
To begin, we take the distribution of the stimuli to be Normal, with zero mean and a given
standard deviation σs:

P(s) =
e
− s2

2σ2
s

√
2πσs

. (2)

Next, we represent the probabilistic relationship between stimulus and action as a sum of
Nw Normal distributions with a standard deviation σa, where the vector of parameters is
→
wk = (w(0)

k,1 , w(1)
k,1 , . . . , w(0)

k,Nw
, w(1)

k,Nw
):



Brain Sci. 2025, 15, 131 5 of 22

P( a⌋s,
→
wk−1) =

1
Nw

√
2πσa

Nw

∑
i=1

e
−

(
a−

(
w(0)

k−1,i+w(1)
k−1,i s

))2

2σ2
a . (3)

Hence, the components of the vector of parameters map linearly to the means of the Normal
distributions selecting the actions. Finally, we also make the reward function a Normal
distribution, standing for the probability of reward of each decision:

P( r⌋a, s) =
1√

2πσr
e
− (r−α(a−β)∗s)2

2σ2
r , (4)

where the parameters α and β set the relationship between the stimulus and the action to
the mean reward for that pair, and σr is the standard deviation.

3. Methods
3.1. Algorithm of the Computer Simulations

The simulation uses discrete time steps, labeled k. At time k, the model begins with
the last estimation of the choice parameters, namely,

→
wk−1. From this time, the simulations

continue as follows:

a. Sample sk (Equation (2)).
b. Add sk to the history of stimuli (Appendix A.1).
c. Sample ak (Equation (3)).
d. Add ak to the history of rewards (Appendix A.1).
e. Sample rk (Equation (4)).
f. If not enough time has passed to accumulate enough history, go back to Step a.

g. Otherwise, calculate
→
wk by minimizing Equation (1).

h. Go back to Step a.

The minimization in Step g uses the simplex search method of Lagarias et al. [31].

3.2. Parameters of the Simulations

In this article, we report on simulations with different parameter sets to explore the
model (see the end of Appendix A.2 for a complete list). We have chosen one of these
sets as our standard set. We also show simulations with other parameter sets to illustrate
individual differences and analyze the various behaviors of the model. Table 1 below shows
the parameters of the standard simulations; we discuss others when presenting the results.

Table 1. Standard set of parameters.

Parameter(s) Equation Values
→
w0 1 (1.5, 0)

Nw 3 1

Na A8 2

∆ A2 20

λ 1 0

σa 3 1

σr 4 1

[α, β] 4 [2, 3/2]
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We have set λ = 0 in this standard set because the emphasis of this article is on choice
consistency, not rewards. Consequently, most simulations here are without the interference
of rewards on the effects of choice consistency.

4. Results
4.1. Algorithm of the Computer Simulations

The goal of this article is to estimate whether people’s past choices may affect current
ones significantly. The experimental observation is that choices of the past and present tend
to be consistent. We have proposed a Bayesian theory for this consistency phenomenon.
In this theory, choice consistency appears to adhere statistically to the recent history of
stimuli and actions (Figure 1). Mathematically, such statistical adherence arises through
the minimization of the total amount of surprisals in this history by judicial choice of the
model parameters (Equation (1)). A typical computer simulation of a simple model based
on such a total-surprisal theory of consistency appears in Figure 2.
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The results of the computer simulations help us to understand how choice con-
sistency develops over time. In the beginning, if choices are hard, they stay statistically 
split between the possible actions (Figure 2A). However, because the choices are initially 
random, a small statistical imbalance appears as a function of the stimuli. The proposed 
minimization of total surprisals then takes over, slowly expanding this imbalance and 
breaking the symmetry. In Figure 2A,B, this expansion causes Action 1 to occur mostly 

Figure 2. Computer simulation of our Bayesian theory of choice consistency with the standard
parameters (Table 1). (A) Choices of two actions for different stimuli over time. An example of such
an action is buying a shirt with this or that pattern. In this figure, every dot stands for a choice (color)
for the given sampled stimulus at the given time. (B) Running average (5 points) of the choices
in panel (A). (C) Choice-consistency loss as a function of time. (D) Temporal evolution of the two
parameters of the model. These time courses reveal that the choices separate spontaneously, with an
apparent phase transition in loss and parameters.

The results of the computer simulations help us to understand how choice consistency
develops over time. In the beginning, if choices are hard, they stay statistically split between
the possible actions (Figure 2A). However, because the choices are initially random, a small
statistical imbalance appears as a function of the stimuli. The proposed minimization
of total surprisals then takes over, slowly expanding this imbalance and breaking the
symmetry. In Figure 2A,B, this expansion causes Action 1 to occur mostly for positive



Brain Sci. 2025, 15, 131 7 of 22

stimuli and Action 2 for negative ones. This separation between the choices is initially slow
but then reveals the characteristics of phase transition. A way to understand this phase
transition is by seeing the total consistency loss (Figure 2C—Equation (3)). After a first
climb resulting from the addition of stimuli and actions, the loss collapses, reaching a low
plateau at around t = 55. This collapse is accompanied by a sudden change in the second
model parameter (Figure 2D). Other simulations yield comparable results, although the
time of the phase transition and what parameters change can vary.

How stable is the division of choices such as those in Figure 2? On one hand, one may
expect major stability because after a division occurs it could self-perpetuate through the
minimization of surprisals (Equation (1)). On the other hand, random sampling of choice
could continue to bias one choice over another. This bias would then become stronger
by symmetry-breaking mechanisms. Thus, one should not be surprised if eventually
one choice swamps the other, taking over in perpetuity. Figure 3 assesses this idea by
lengthening the simulation.
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eventually, choice consistency may cause one of the choices to eliminate the others. The conventions
in this figure are the same as in Figure 2A. (B) Distribution of times of choice elimination for two
values of memory length, namely, ∆.

Figure 3A shows that with enough time, one choice may swamp the others. In this
simulation, the equilibrium between the choices of Actions 1 and 2 persists until about
t = 30. After that time, choices of Action 2 for positive stimuli start breaking the symmetry.
By t = 100, most choices now go to Action 2, even in situations of slightly negative stimuli.
Finally, after t = 200, the choice of Action 1 is eliminated, with the individual always
picking Action 2. With forty simulations as in Figure 3, Action 1 or Action 2 always wins
out, and the mean time at which one of the actions disappears as a choice is 160 ± 80
(standard deviation). Hence, the division of choices is not stable, and even with consistency,
the brain may choose to drop some of them. The broad range of choice-disappearance
times (Figure 3; blue bins) also implies individuality in the stability of decision-making
based on the history of selections.

The length of memory (∆) should influence stability and thus, the time when one
choice swamps the other. One would expect that the longer this length is, the more stable
the choice dependence on stimulus becomes. This stability should stem from the increased
evidence for a particular discrimination of choices. One would expect that the stability
would increase with the square root of ∆. Such dependence should hold because as a rule
of thumb, the variability of the signal decreases by roughly the square root of the number
of points averaged [32]. To test this prediction, we run the simulations with larger lengths
of memory.
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The results in Figure 3B show a significant choice-stabilization effect as the length
of memory increases. The red bins (∆ = 40) extend to longer times than the blue ones
(∆ = 20). The mean time when one choice takes over the other with ∆ = 40 is 450 ± 240.
This time is statistically significantly longer than that reported above for ∆ = 20 (one-sided
t-test, t = 5.32, 78 degrees of freedom, p < 5 × 10−7). The difference in stoppage times
is ≈290 iterations despite ∆ increasing by only 20. If one were to use the square root law
theorized above, the increase in stoppage time by raising ∆ by a factor of 2 should have
been only 160 ∗

√
2 − 160 ≈ 70. Consequently, the effect of ∆ on stoppage time is much

more than simply increasing sampling. In contrast, the percentage of time in which the full
discrimination of actions by stimuli occurs is 73% ± 7% for ∆ = 40. This percentage is not
statistically significantly different from that seen for ∆ = 20.

4.2. Individuation of Values from Choice Consistency

The spontaneous symmetry breaking with choice consistency revealed in Figures 2 and 3
suggests the possibility of another surprising phenomenon. Given that spontaneous sym-
metry breaking starts with small statistical imbalances, if these were distinct for different
individuals, they may display completely different patterns of choices over time. Thus,
random first hard choices may lead to later individuation even for identical observers. To
evaluate this individuation-by-choice idea, we repeated the simulations of Figures 2 and 3
multiple times. The results of these simulations and their implications for individuation
appear in Figure 4.
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Figure 4. Eight consecutive simulations of actions in response to sensory stimuli with the standard
set of parameters, using the conventions of Figure 2A. Each simulation yielded a unique pattern of
behavior. After a first random phase, the most common behaviors were such that positive sensory
stimuli tended to yield Action 1 (Panels D,G,H) or Action 2 (Panels A,C,E). In these behaviors,
negative sensory stimuli tended to yield the opposite actions. Occasionally, we also saw a behavior
that was more mixed (Panel B). More rarely, we saw a behavior in which an action happened for
positive stimuli earlier and negative ones later (F).

Figure 4 shows that the symmetry breaking induced by choice consistency can lead to
strong individuality. This individuality expresses itself in multiple forms. The most usual
form (80%± 6% in forty simulations; standard error) is that positive stimuli eventually give
rise to Action 1 (Figure 4D,G,H) or Action 2 (Figure 4A,C,E), and vice versa for negative
stimuli. Another form is that the chosen actions stay intermingled until one of them takes
over (Figure 4B—12% ± 5%). Finally, an action may occasionally correspond to positive
stimuli early and negative ones later (Figure 4F—8%± 4%). Another important observation
is that the time of separation of actions by stimuli varies, occurring early (Figure 4A) or late
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(Figure 4D). Therefore, early choices can cause strong individuality that may remain for a
long time.

Another key observation is that the stimuli for which the model makes a choice are
not constant but drift continuously. As mentioned above, one can see this in Figure 4F.
However, even when the order of the stimuli yielding an action does not change, one can
see a drift in the space of choices. For example, in Figure 4A,C, the stimuli giving rise to
Action 1 become increasingly negative. Consequently, the selection of actions under choice
consistency shows temporal instability.

We have also reasoned that the individuation may become more pronounced if the
number of choice parameters (

→
wk—Equation (3)) increases. The logic is that with more pa-

rameters, the set of choices becomes larger. This logic follows from a recent study showing
that parametric redundancy increases individuality when performing reinforcement learn-
ing of aesthetic values with stochastic inputs [11]. Alternatively, an increase in the number
of parameters may instead lead to more chaos and thus, apparently less organized choices.
Figure 5 shows a test of these alternatives. This test uses standard parameters (Table 1),
except that we have four choice parameters (2 × Nw = 4) instead of two (2 × Nw = 2).
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Figure 5. Increasing the number of choice parameters boosts the individuality arising from the model.
In these simulations, we substituted

→
w0 = (1.25, 0, 1.75, 0) for the standard value in Table 1 and thus,

we had four choice parameters instead of two. (A–C) Examples of choices (with conventions as in
Figure 2A). (D–F) Temporal evolution of parameters in the simulations of (A, B, and C) respectively.
Most simulations with 4 choice parameters yielded behaviors like those in Figure 4. However,
some simulations yielded different behaviors, as illustrated in this figure. (A,D) Examples of not
discriminating actions by stimuli. (B,E) Examples of switching stimulus dependence of choices. (C,F)
Examples of Action 1 sandwiched between two stimulus locations of Action 2.

The increase in the number of choice parameters from two to four boosts individuation
by adding new choice behaviors. Most simulations (out of forty) still give behaviors as
in Figures 2–4 (70% ± 7%). However, three new behaviors appear with more parameters.
The first, and the rarest, is the continued intermingling of Actions 1 and 2 regardless of
the stimuli (2.5% ± 2.5% of the simulations—Figure 5A). The second is cases in which
one choice shifts to different stimuli during the simulation (7.5% ± 4% of the simulations).
Thus, in Figure 5B, Action 2 tends to occur with negative stimuli until about t = 60, but
then shifts to positive ones after that. Finally, the third is a behavior in which a choice at
intermediate stimuli (≈0 in Figure 5C) has the other choice for higher and lower stimuli
(≈−1 and ≈1 in Figure 5C). We have even seen such a sandwich behavior with four bands,
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for example, Action 1, Action 2, Action 1, and Action 2, as the stimulus increases. This
sandwich behavior happens in 20% ± 6% of the simulations.

This increase in individuation can be understood in terms of the larger variability
of the choice parameters. The intermingling, non-discriminating behavior in Figure 5A
results from the dominance of one of the parameters over the others (Figure 5D). Such
dominance reduces the ability to make discriminating choices. In turn, the sudden shift
in the choice of Action 2 in Figure 5B results from a phase transition in three of the four
parameters (Figure 5E). Finally, the sandwich behavior (Figure 5C) arises from a delicate
balance between the four choice parameters (Figure 5F). Such richness of behaviors is
not possible with just two choice parameters because they have a more limited repertoire
(Figure 2D).

4.3. The Effect of the Number of Choices

So far, the simulations have focused on two choices (Na = 2) because that is the most
common situation in laboratory settings [7]. However, in the real world, the number of
choices is often larger. We thus asked in what ways this number would affect the results.
Our first prediction was that in a constrained space of stimuli, we could not achieve full
discrimination of choices when the number of actions became high. Figure 6 shows a test
of this prediction by using standard parameters (Table 1), except that we have more than
two choices (Na > 2).
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Figure 6. Outcome of the simulations with three or four choices instead of two. (A) Choices of
three actions for different stimuli over time (conventions as in Figure 2A). (B) Running average
(5 points) of the choices in Panel (A). These panels show that choice consistency organizes the three
actions in the space of stimuli. However, eventually one action dominates (Action 3 in this example),
with one of the other actions stopping first (Action 2 in this example) and then the other (Action 1).
(C) Scatter plot of the stoppage times of the losing actions. They tend to stop almost at the same time.
(D) Running average (5 points) of a simulation with four choices.
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The results show that with the standard parameters, except for three choices (Na = 3),
the model can segment the actions into different regions of the stimulus space (Figure 6A,B).
In forty simulations, such three-way segmentation happens often (68% ± 7%). Hence,
the incidence of three-way segmentation is not statistically significantly different from
that seen with two choices. When the segmentation does not happen, we see either the
intermingling of choices (as in Figure 4B; 25% ± 7%) or a two-way segmentation with
two choices combined (7% ± 4%). When the three-way segmentation happens, one of the
actions comes to dominate eventually (Figure 6A,B), as for two choices (Figure 3). The
stoppage times of the two losing actions are almost identical (Figure 6C). Plotting the second
stoppage time against the first reveals an almost perfect correlation (r = 0.996± 0.003), with
linear regression giving an intercept of 21 ± 4 (standard error) and a slope of 1.00 ± 0.01.
Therefore, the two stoppage times are about a constant 20 iterations apart. Moreover,
these two stoppage times tend to occur later than when the stimulations had two choices
(Figure 3). The first stoppage time with three choices is at 220 ± 160, while the second is at
240 ± 150.

One of the most interesting results in Figure 6A is that the stimulus range for Action 2
is narrow. In all simulations, the actions sandwiched between the other two have a narrow
range. This narrowness is not surprising because different from the outer actions, the inner
one has little room to expand. The narrowness of the inner action allows us to inspect in
more detail the instability of the choices. In Figure 4, the instability appears as choices
corresponding to stimuli that are more negative over time. However, the narrowness of
the range of stimuli of Action 2 in Figure 6A,B reveals that the instability can show richer
behavior. In these figures, the stimuli yielding Action 2 rise slowly initially and then fall
rapidly. In multiple simulations, we have seen different rise-and-fall behaviors for the
inner action.

We can still achieve full discrimination of actions by stimuli when the simulations run
with more than three choices (Na > 3—Figure 6D). However, full discrimination becomes
rarer as the number of choices increases. With forty simulations, the percentage of time to
achieve full discrimination falls to 53% ± 5% with four choices (Na = 4). This percentage
collapses with five choices or more, becoming 10% ± 5% with Na = 5 and 0% with Na = 6.
We do not achieve any full discrimination with six choices or more (Na > 6) with our
standard parameters. This lack of discrimination is consistent with our first prediction that
in a constrained space of stimuli, one cannot achieve full discernment of choices when the
number of actions is high.

4.4. The Interaction Between Reward and Choice Consistency

The simulations have focused so far on choice consistency. However, in the real world,
choices can be affected by both their consistency and their elicited rewards [11,12,15]. We
expect that if a reward favors the relation relationship between certain stimuli and an action,
then this incentive would tend to bias the final discrimination. Consequently, we expect
a reduction in the contribution to individuation by choice consistency. This reduction
would not mean less total individuality because rewards can cause individuation by them-
selves [11,12]. To test this predicted competition between rewards and choice consistency,
we use the standard parameters, except for varying the value of λ, the parameter weighing
the impact of these two factors (Figure 7). The design of the standard parameters is such
that Actions 1 and 2 will obtain rewards for negative and positive stimuli, respectively.
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Figure 7. The interaction between rewards and choice consistency with standard parameters, except
for variations of λ. (A) Simulation with only rewards (λ = 1). As expected from the choice of the
standard parameters, Action 2 is chosen for positive stimuli and vice versa for Action 1. (B) Example
of simulation with λ = 0.5 in which positive stimuli elicit Action 1 despite the rewards favoring the
opposite. (C) Percentage of simulations for which Action 2 stimuli converge to values larger than
those for Action 1 as a function of λ. (D) Mean stoppage time of the losing actions as a function of
λ. Error bars in (C,D) are standard errors. As λ increases, we obtain more Action 2 because of the
rewards, and the stoppage time rises because the influence of choice consistency diminishes.

Figure 7A shows that if only rewards affect the choices (λ = 1), then they will be such
as to maximize the rewards. For the standard parameters, this maximization means that
negative and positive stimuli will yield Action 1 and Action 2, respectively. Furthermore,
different from what happens with choice consistency alone, no action dominates the other
even after a long time. However, as λ falls, the percentage of simulations for which action-2
stimuli converge to values larger than those for Action 1 decreases (Figure 7B,C). This curve
has a sigmoidal shape as a function of λ, with the change in dominance from Action 1 to
Action 2 occurring between λ ≈ 0.4 and λ ≈ 0.9 for the standard parameters. Another
important result is that the stoppage time of the losing action increases with λ (Figure 7B,D).
For the standard parameters, the stoppage time curve rises rapidly after about λ = 0.5.
This rise tends towards infinity because no action ever stops for λ = 1. Hence, in the
competition between reward and choice consistency, the model picks the action as a hybrid
between them.

5. Discussion
5.1. Contribution to Individuation by Symmetry Breaking in the Minimization of Surprisals

We have proposed that the brain implements choice consistency by a minimization
of the sum of surprisals [33]. Thus, we propose minimizing unexpected actions given
both the current stimulus and the history of stimuli and actions. Such a minimization
has been used in other cognitive-science contexts, such as in perception [34,35] and active
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inference [36]. Other models are possible for choice consistency, of course, but minimization
of surprisal appears naturally from the Bayesian framework. We will discuss these alternate
models below.

Our results show that such a surprisal-minimization mechanism of choice consistency
can contribute to the individuation of values. Individuality means variance within and
across people [37]. Consequently, because individuality means that different people are
distinct and because the simulations all have the same initial conditions, the individual
uniqueness implies that the system undergoes spontaneous symmetry breaking [38–40]. In
physical systems, spontaneous symmetry breaking implies equations of motion obeying
symmetries, as well as a lowest-energy state without the same symmetries. Our equations
of motion are symmetric in that stochastic sampling allows any action to connect with any
stimulus. However, when a connection between certain neighbor stimuli and an action
becomes statistically stronger than others, the minimization of surprisals makes future
choices compatible with this link, reinforcing it. This is positive feedback because this
reinforcement makes the connection itself stronger. Such positive feedback is not unique
to surprisal-minimization theories. But whatever the theory used, choice consistency will
reinforce the connection between certain past stimuli and an action. Such a spontaneous
symmetry breaking of choices with positive feedback is bound to generate phase transi-
tions [39]. We see phase-transition behavior in how the choice parameters change in our
simulations.

Another result is that increasing the number of choice parameters strengthens the
individuation tendency. Parametric redundancy has been studied recently as a way to
increase system reliability [41]. Such redundancy allows the automatic re-assignment of
tasks performed by a basic element to a backup one. From our perspective, redundancy
allows for the generation of optimal parametric surfaces instead of points [42]. Therefore,
because solutions can exist at different points on the surfaces, we can achieve individuality.
As such, the individuation of values achieved with our minimal-surprisal theory of choice
consistency has a relation to that achieved with reinforcement learning of rewards, which
also has parametric redundancy [11].

5.2. Why a Choice Always Eventually Dominates

We have already seen that spontaneous symmetry breaking causes different chosen
actions to occupy distinct portions of the stimulus space. However, spontaneous symmetry
breaking has another effect, namely, in every simulation, a choice ends up dominating
the others after enough time has elapsed. To understand this effect, let us begin with
the simplest example, that of Figure 3A. In this example, the model initially samples the
action probabilistically. With the initial condition of the choice parameters, the mean of
the underlying probability distribution is exactly in the middle between the two possible
actions. However, over time, the mean moves statistically in the direction of one of the
actions. This movement causes the parameters to shift towards the action, producing
positive feedback. It, in turn, causes a phase transition that ends up dropping the alternate
action. Its removal is a form of spontaneous symmetry breaking because the equations of
motion do not favor any action in the beginning.

This spontaneous symmetry-breaking process can also account for two features of the
times at which the losing actions stop: First, the stoppage times have a broad range. Such a
range occurs because the model is stochastic and must reach the phase transition point. The
distribution of first-passage times through this point is broad when the stimuli do not have
bounds, as in our case [43–45]. Second, when more than two choices are available, the losing
actions tend to die at similar times. The positive-feedback process for choice elimination
explained in the last paragraph works here as well. As the parameters move towards the
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winning choice, the process reinforces the motion itself in a positive-feedback loop. Hence,
the winning choice becomes stronger, ending the others quickly in a phase transition.

5.3. How to Stabilize the Effect of Choice Consistency

Can one change the theory or model to stabilize choices such that actions do not
stop after a while? From the simulations, the strongest factor stabilizing the actions is the
length of memory. Consequently, a way to stabilize the choices is to make the length of
memory infinitely long. Of course, the brain cannot remember all the pairs of choices and
stimuli in the distant past. However, an alternative is to accumulate past choices by using
them to adjust the parameters of a model, such as in reinforcement learning [46,47]. Such
adjustment can consider as much of the past as one wishes.

We emphasize that the instability is in part due to the use of a continuous stimulus
space. In the laboratory, the number of stimuli is typically finite [5–7]. With a finite set
of well-separated stimuli, an action cannot easily invade the space of another one. This
separation then results in more stability that we see in our simulations. Future experiments
with longer durations and/or with continuous stimulus variables can test the instability
predictions of this article.

5.4. How to Get More Choices Represented

With our model and the standard parameters, only up to five choices could fully be
discriminated by the stimuli eliciting them. Can we change the theory or the model to
allow for the discrimination of more choices? The simplest such change is the reduction in
the standard deviation of the connection between stimuli and choices. Such a reduction
would separate the actions more with respect to the stimuli. Another way to improve
the discrimination of actions is to use a nonlinear model for the relationship between
stimuli and the mean of the distribution. If well designed, such a nonlinearity could allow
a better separation between an action and its neighbor. Finally, the model could use a
non-Normal distribution for the stimuli to counter the tendency of Normal distributions to
bunch up the outputs around the mean. Instead, leptokurtotic distributions tend to have
fatter, longer tails, allowing for more discrimination of actions [48]. Such distributions
occur in natural [49–51] and human-made environments [52].

5.5. Reward Versus Choice Consistency

The competition between reward and choice-consistency mechanisms in the context
of individuation merits a discussion. Reward mechanisms have been shown to elicit in-
dividuation in at least three ways: First, reinforcement learning of prediction of reward
leads individuals from diverse cultures to develop different values [12,53,54]. Second,
interoceptive (body) inputs to the brain modulate the learning of aesthetic values in ways
that are individual [12,13]. Third, the parametric redundancy intrinsic to reinforcement
learning of rewards leads to individuation (Section 5.1). In this article, we show that para-
metric redundancy also helps magnify the individuality generated by choice consistency.
And although we have emphasized sensory stimuli, the theory for choice consistency is
also compatible with interoceptive signals (Section 2). This compatibility adds further
individuation power to choice-consistency mechanisms.

The question for us is as follows: are reward and choice mechanisms for individuation
independent, adding to each other linearly, or do they interact in a nonlinear way? Our
results show that this interaction is nonlinear. The more the model considers rewards,
the more biased the choices become, to the point of occasionally disregarding consistency
with the past. Thus, if choice consistency is akin to avoiding cognitive dissonance, we
may avoid it if the price is right. However, we can also see this competition from the
opposite perspective to reach a well-known startling conclusion. People often have so
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much discomfort with cognitive dissonance that they may make choices that are irrational
from a reward (utility) perspective [55–57]. To bring back the discussion to individuality,
different people have distinct degrees of aversion to cognitive dissonance [58–60]. Such a
difference in degrees of aversion implies an inter-individual variability in the weights that
people use to balance reward versus choice consistency. Therefore, although rewards may
reduce the individuation due to choice consistency, the competition between these factors
may vary across individuals.

5.6. Practical Applications

The results described in this article on the effects of rewards and choice consistency
may have practical applications for society. The next section will address implications
for cognitive psychology, while here, we provide three examples of real-world applica-
tions: First, in the marketing and behavioral economics fronts, rewards would bias initial
consumer choices that would then linger for a long time [3,8,9,61–63]. Second, choice
consistency has been used in clinical decision-making [64], especially for individuals with
intellectual and developmental disabilities [64]. Third, what will happen when we start
producing artificial intelligence (AI) systems that learn autonomously? Currently, such
systems depend on their programmers. However, imagine, for example, an AI system in a
spaceship exploring outer space. Because in these situations, one does not know what one
may find, perhaps these systems should make their own choices, learning from them. And
as for humans on Earth, perhaps choice consistency and free reinforcement learning may
make sense as a part of how these systems learn. A consequence of this learning will be the
breaking of symmetry and individuation of these AI systems.

5.7. Relationship with Other Studies of Individuation and Experimental Predictions

The brain has mechanisms to allow the individuation of cognitive values to continue
throughout life [65–68]. They are complex and not compatible with trait models of in-
dividuality [69]. Thus, these mechanisms clash with the idea that personality is made
up of stable characteristics that influence how people think, feel, and behave in different
situations [70–72]. Instead, individuation is associated with value instability [3,4]. In this
article and elsewhere, we propose that these differences are due in part to brain mecha-
nisms of stochastic learning [11,12,73]. The brain valuation system has been extensively
studied [74] and the involvement of reward-learning systems, such as the basal ganglia,
has been established [13]. Such reward-learning systems may also help in learning choice
consistency. This is because choice inconsistency may be related to cognitive dissonance
(Section 5.5), which can be viewed as a negative reward. Other areas involved in choice
inconsistency include the ventromedial prefrontal cortex, anterior cingulate cortex, and
posterior cingulate cortex [75]. Another result of interest related to the cognition of choice
consistency is that taxing cognitive capacities reduces choice consistency [76]. An explana-
tion for this reduction is that under cognitive taxation, people make impulsive, irrational
choices [76–78]. Alternatively, people change their decision strategies to simpler ones when
the cognitive load is higher [76,79].

This discussion on the cognitive mechanisms of choice consistency suggests new
experiments to assess the computational models of this article. In these experiments,
we imagine subjects first performing a continuous Likert rating [80] of multiple stimuli
organized according to a variable (for example, degree of complexity). Afterwards, we
perform two alternative forced choices of pairs of these stimuli, especially those similarly
liked during the Likert rating. We then return later to the Likert rating to see if the forced
choice breaks the symmetry. Moreover, we repeat the rating days or weeks later to evaluate
if the individuality is “permanent”. This general rating technique allows us to answer other
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questions. For example, does taxing cognitive capacities affect the learning of the choices
or just the later decisions? Similarly, does taxing cognitive capacities cause impulsive
choices or a simplified decision strategy? To answer these questions, we can repeat the later
measurements to study whether the choices are inconsistent with the past but internally
consistent. Finally, we can use modified versions of these kinds of measurements to evaluate
the interaction between reward and choice consistency.

5.8. Do Hard Choices Have an Effect on the Individuation of Values?

In this section, we go back to the issue raised by the title of the article, namely, “the
Effect of Hard Choices on the Individuation of Values”. To start, let us consider what hard
choices are. They emerge in four main situations [81,82]: First, one often makes choices
with incomplete information. Second, hard choices often arise from complex challenges,
that is, those for which calculating an ideal action is difficult. Third, hard choices also
arise from incomplete preferences, often resulting from novel situations, for which people
have not yet developed clear values. Research has shown that behavior that is indicative
of incomplete preferences is empirically associated with deliberate randomization as we
use in our simulations [83]. Fourth, when making choices, people must regularly juggle
competing values, and no decision satisfies them all. Sometimes choice conflicts arise
between one’s important values, causing negative emotions [84]. Such negative emotions
can contribute to perceived decision difficulty [85–87].

Do these four situations occur often enough in everyday life to make hard choices
significant factors in the individuation of values? According to some estimates, a person
makes thousands of choices a day [88,89]. These choices include, for example, what to
eat [90], what to wear [91], and when to slow down when driving a car [92]. Such choices
are often hard because of one or more of the four situations described above. For example,
making choices with incomplete information is common in tasks [62,93,94].

Therefore, given that hard choices are common, we can now address the issue in
the title of this article. We begin by admitting that one cannot fully clarify this issue
without experimentation (but see Section 5.7). However, the theoretical work described
here strongly suggests that the answer is yes. Our theoretically optimal implementation of
choice consistency leads us to believe that making hard choices makes our values diverge
from those of others. Hence, we argue that hard choices contribute to our individuality.
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Appendix A
Appendix A.1. A Bayesian Description of the Framework

At time k, a person receives sensory and/or body signals sk, and must decide what
action ak to take. The best action must balance the maximization of reward, rk, and the
minimization of the deviation from past actions given similar stimuli. The stimulus sk is
sampled from the probability distribution of inputs, P(s) (Figure 1). From that, we use an
internal model, P( a⌋sk,

→
wk−1), to decide on the action, ak, to take. For this model, we use

the vector of parameters
→
wk−1 learned at time k − 1. From the ak outputted by the model,

we can sample the reward rk from the probability distribution of rewards given actions
and stimuli, P( r⌋ak, sk). The presence of sk in this probability distribution follows the same
rationale given elsewhere that the reward depends on both the stimulus and the action
taken [11,12].

In the next step, we update the parameters of the model before the next sampling
begins. As mentioned above, this update must simultaneously optimize expected reward
and consistency with past actions. So, we must perform an optimization that balances these
two constraints. We do this by first finding the expected loss for each constraint and then
treating the problem as a Compromise Decision Problem [25,26].

The key decision in this step is the choice of
→
wk. To calculate the expected choice-

consistency loss as a function of the candidate parameter wk, we need the histories of the
sampled stimuli and actions (Figure 1). We denote the number of time bins used in the
histories as ∆. Therefore, ∆ stands for how long the memory of choices last. For each value
of wk, we can calculate the loss due to errors of choice consistency with these histories. The
best wk maximizes the probability that from each si we obtain the ai observed in history,
that is, maximizes ∏k

i=k+1−∆ P( ai⌋si,
→
wk). If we take the minus logarithm of this quantity,

the best
→
wk obeys

→
wk(šk, ǎk) = argmin→

w
∗−

k

∑
i=k+1−∆

log2(P( ai⌋si,
→
w
∗
)), (A1)

where, for simplicity, we denote the histories with the notation [95–98]

x̌k = (xk+1−∆, · · · , xk) (A2)

Equation (1) has an important interpretation because the −log terms are the surprisals of ai

given si [33]. Consequently, the optimal
→
wk minimizes the total amount of surprisals in the

history of the stimuli and actions. Thus, we choose the
→
wk to emphasize the most common

(si, ai) pairs, weeding out the surprises. This choice yields the expected choice-consistency
loss as

la(
→
wk) = −

k

∑
i=k+1−∆

log2(P( ai⌋si,
→
wk)). (A3)

Because we sample ai and si according to their own probability, we can write the corre-
sponding loss function [99,100]

La(s, a,
→
wk) = − log2(P( a⌋s,

→
wk)), (A4)

namely, the surprisal itself.
The value of

→
wk also affects the expected reward loss through the chosen action and

the function P( r⌋a, s). The expected reward is
t

rP( r⌋a, s)P( a⌋s,
→
wk)P(s)ds da dr. The

reward loss is then

lr(
→
wk) = −

y
rP( r⌋a, s )P( a⌋s,

→
wk)P(s)ds da dr. (A5)
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Again, because the decision is on wk, the expectation is through P(s), making the loss
function

Lr(s, wk) = −
∫

rP( r⌋s,
→
wk)dr (A6)

after integrating by a. The interpretation of this loss function is simple: find the parameter
that increases the reward for the expected stimuli.

Finally, we propose working with Kempthorne’s λ-Bayes-based compromise problem
to propose that the brain minimizes

lλ(
→
wk) = λlr(

→
wk) + (1 − λ)la(

→
wk) , (A7)

where 0 ≤ λ ≤ 1. See Kempthorne’s theorems 3.1 and 3.2 describing the properties of the
λ-based compromise problem [25].

Appendix A.2. A Simple Model to Explore the Properties of the Theory

Any model based on Equations (1)–(7) must specify six mathematical quantities: P(s),
P( a⌋s,

→
wk), P( r⌋a, s ), Nw, ∆, and λ. To specify the three probability functions, we must

begin with the domains of s, a, and r. For simplicity, the stimulus and reward variables will
be one-dimensional, such that s, r ∈ R, and we consider a discrete and finite action space
(with Na possible actions) represented as

a ∈ (1, 2, . . . , Na) . (A8)

Again, for simplicity, we base P(s), P( a⌋s,
→
wk), and P( r⌋a, s ) on Normal distributions. To

begin, we take the distribution of s to be Normal, with zero mean and a given standard
deviation σs:

P(s) =
e
− s2

2σ2
s

√
2πσs

. (A9)

Next, we represent the probabilistic relationship between s and a as a sum of Nw Normal
distributions, where

→
wk = (w(0)

k,1 , w(1)
k,1 , . . . , w(0)

k,Nw
, w(1)

k,Nw
) with equal standard deviation σa:

P( a⌋s,
→
wk−1) =

1
Nw

√
2πσa

Nw

∑
i=1

e
−

(
a−

(
w(0)

k−1,i+w(1)
k−1,i s

))2

2σ2
a . (A10)

Hence, the components of
→
wk map linearly to the means of the Normal distributions,

selecting the actions. Finally, we also make the reward function a Normal distribution,
standing for the probability of reward of each possible decision:

P( r⌋a, s) =
1√

2πσr
e
− (r−α(a−β)∗s)2

2σ2
r , (A11)

where the parameters α and β set the relationship between the stimulus s and the action a
to the mean reward for that pair, and σr is the standard deviation.

To summarize, the parameters that control the outcome of the simulations of the model
are

→
w0, Nw, Na, ∆, λ, σs, σa, σr, α and β. Without loss of generality, we can set σs = 1 and

control the simulations with the rest of the parameters. Thus, we have nine parameters
with which to explore the predictions of the theory.
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