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Abstract: Background/Objectives: When attempting to study neurocognitive mechanisms
with electroencephalography (EEG) in applied ecologically valid settings, responses to
stimuli may differ in time, which presents challenges to traditional EEG averaging methods.
In this proof-of-concept paper, we present a method to normalize time over unequal trial
lengths while preserving frequency content. Methods: Epochs are converted to time-
frequency space where they are resampled to contain an equal number of timepoints
representing the proportion of trial complete rather than true time. To validate this method,
we used EEG data recorded from 8 novices and 4 experts in veterinary medicine while
completing decision-making tasks using two question types: multiple-choice and script
concordance questions used in veterinary school exams. Results: The resulting resam-
pled time-frequency data were analyzed with partial least squares (PLS), a multivariate
technique that extracts patterns of data that support a contrast between conditions and
groups while controlling for Type I error. We found a significant latent variable representing
a difference between question types for experts only. Conclusions: Despite within and
between subject differences in timing, we found consistent differences between question
types in experts in gamma and beta bands that are consistent with changes resulting from
increased information load and decision-making. This novel analysis method may be a
viable path forward to preserve ecological validity in EEG studies.

Keywords: EEG; multivariate; partial least squares; assessment; decision-making

1. Introduction
When seeking to understand the neurocognitive processes that underscore behavior,

ecological validity is often compromised for experimental rigor. For example, decision-
making is studied with carefully designed, controlled experiments that attempt to decom-
pose this cognitive process into basic components, such as signal detection seen in motion
perception or face/object discrimination tasks [1]. To understand the neural underpinnings
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of decision-making, researchers use electroencephalography (EEG), functional magnetic
resonance imaging (fMRI), or other neuroimaging modalities to examine the exact moment
in time when a decision is made, based on a controlled stimulus, averaged over many trials
to reduce noise or random effects that exist on any single trial [1].

In real life, decision-making can be complex, context-dependent, and made under
varying degrees of time constraint. When people are presented with a problem (e.g., a
doctor working through a clinical case, executives making corporate decisions, students
taking an examination, etc.) and asked to make a decision, there is natural variation within
and between people on when a decision occurs and the time leading up to that decision
is invariably important to what the decision is and how it was made. For example, one
student may respond to a multiple-choice question in 30 s while another takes 3–4 min to
respond to the same question. In the time period between reading a question and providing
a response, processes such as signal detection, memory retrieval, and working memory,
as well as distraction or mind wandering, may occur continuously with decision-making
until the point in time the person feels confident enough in their answer to respond [2].
Herein lies the problem; using current experimental EEG protocols and analyses, we can
time lock immediately before and after a decision is made, but in so doing, we lose valuable
information about the processes involved in the variable time window leading up to
that point.

This is especially true when using EEG, as precision in the time domain is considered
an advantage of the technology. So why do we tend to constrain or lock to timed events?
The main reason is that it provides an easy way to sift through EEG data to differentiate
brain activity signals from noise. Even when measurement error inherent to EEG recording,
such as electrical noise in the recording environment, is effectively handled with filtering
techniques [3], noise remains because the brain is complex and rarely (if ever) does just
one thing at a time [4]. Because this noise is random, if one can generate averages, the true
brain activity signal should be revealed.

For example, EEG has been effectively used to study brain activity related to working
memory [5,6], emotion classification [7,8] and decision-making [6]. It is common for EEG
studies such as these to present a participant with many repetitions of stimuli or prompts in
different conditions and/or over different groups of individuals for aggregate comparison.
Traditional methods, such as event-related potential (ERP) analysis, take a consistent piece
of information, time-locked to a stimulus onset or response, and create averages per subject,
group, or condition. Through this approach, the inherent variability in brain data for
individual trials is managed by the averaging process, and what remains is thought of
as the true signal associated with a stimulus or response, provided enough trials were
collected. In the previous examples, Onton et al. [5] used over 100 repetitions, and Jacobs
et al. [6] used 576 trials.

Differences in the height or depth of peaks in the characteristic ERP can then be related
to differences in cognitive processes. Typically, the more time that passes from the time-
locking event, the more difficult it is to find a consistent response. As a result, ERP analyses
tend to focus on <400 ms after response. For example, the P300 is consistently observed at
the vertex (Cz) around 300 ms after stimulus onset and is related to the improbability of
inputs [9], and reward positivity, RewP, appears around the frontocentral region (FCz) as a
positive peak between 250 and 350 ms following incorrect responses [10]. In the context of a
decision-making study where participants are presented with a written scenario and asked
to select a response from a list of possible answers, like a multiple-choice question, if we
were to take the ERP approach, we could see the visual impact of the stimulus appearing on
screen, or the response components following incorrect responses, but it is unlikely that we
could capture reasoning that occurs seconds after stimulus onset and before the response.
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In comparison, frequency analysis of EEG data converts the signal from a certain
time window around an event into frequency space [11–16]. Because time information is
lost entirely in the transformation to the frequency domain, this method could be used
to compare activity over variable trial lengths. However, if differences were found when
frequency information is considered over conditions or groups, it would be unclear whether
the differences are driven by the conditions or groups or by changes in spectral power over
time that are captured in different-length trials.

In contrast to pure frequency analysis, time-frequency analysis converts the signal
into frequency space for small time windows around an event. We can compute the
perturbations in the power spectrum (∆P) over a sliding latency window and then average
across data trials to obtain time-frequency plots described by:

∆P( f , t) =
1
n

n

∑
k=1

|Fk( f , t)|2

where for n trials, Fk( f , t) is the spectral estimate of trial k at frequency f at time t [modified
from 17]. This allows for preserving some timing information; as such, it seemingly
overcomes the issue of frequency analysis, which is unable to decipher whether differences
are due to condition, group, or spectral power over time. Time-frequency analysis has
effectively demonstrated the distinction between working memory and decision-making in
a memory retrieval task [6]. It is most common to examine similar time ranges as with ERP
analysis (<1000 ms) [17]. Unfortunately, like ERP analysis, we still have a time component
that can differ from trial to trial, posing difficulty in generating averages.

With both time- and frequency-based methods, generating time-locked averages gives
the advantage of focusing the signal on something that is produced consistently due to
a given stimuli or response. Given the applied nature of our imaging research, using
EEG to study health professions, education learning and decision-making led us to our
proof-of-concept idea to address variable time in a manner that would open the opportunity
for more ecologically valid EEG experiments. To proceed with creating averages on trials
of unequal lengths, we propose a method that allows us to assess the entirety of a trial
with variable lengths. In this method, we converted each trial into time-frequency space
and resampled the data from unequal-length trials into an equal number of timepoints to
reflect the proportion of the trial completed rather than time itself. By converting the data
to time-frequency spectral power, we can resample unequal-length time-frequency plots
to generate epochs with the same number of timepoints while preserving the frequency
content at each timepoint as it was calculated prior to resampling.

Because the aim is to find patterns of times and frequencies that are consistently
associated with experimental design but may not follow rigid timelines, multivariate,
data-driven methods may provide insight. Independent component analysis (ICA) is a
powerful, data-driven method for separating brain signals into statistically independent
sources. For example, Onton et al. [5] found certain components that differentiate aspects
of working memory using ICA. However, by itself, ICA does not examine group- and
task-dependent correlations between brain activity and performance. We suggest that using
partial least squares (PLS) provides useful information as it extracts patterns of activity that
support a contrast between design elements. PLS is similar to other multivariate techniques,
such as principal component analysis (PCA), in that contrasts across conditions or groups
typically are not specified in advance; rather, the algorithm extracts latent variables (LVs)
in order of the amount of covariance explained (with the LV accounting for the most
covariance extracted first). The outcome of PLS analysis, therefore, is a contrast between
groups and conditions and the pattern of brain data that stably contributes to the LV.
PLS also conducts all comparisons in a single step, and therefore, correction for multiple
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comparisons is not required. The software PLSGUI (PLSGUI v13: Rotman Research Institute
at Baycrest Centre, Toronto, ON, Canada), was developed to utilize PLS analyses to extract
spatiotemporal patterns in ERP [18,19], which uses time by channel, two-dimensional
data and has been successful in extracting meaningful spatiotemporal patterns [20]. This
methodology was expanded to look at multiscale entropy measures (MSE), a measure of
meaningful complexity in EEG signal, where the data are still two-dimensional, but instead
of timepoints, the second dimension is time scale [21,22]. In the current study, we will be
expanding these uses to include 3 dimensions, channel by time by frequency, collapsed into
channels x time/frequency. Specifically, we will be assessing spectral power estimates over
the proportion of trials complete.

To test our resampling and PLS method, we focused on EEG data collected while par-
ticipants completed common methods for assessing clinical reasoning in health professions
education. Namely, questions in which participants are presented with a written scenario
with five possible options to select from (multiple choice questions) and script concordance
questions, in which participants are presented with a question stem and a Likert-like scale
of agreeability meant to assess higher-order cognitive processing and uncertainty associ-
ated with clinical reasoning [23,24]. Variability in decision-making cognitive processes and
the time required to complete them are common for these assessment methods; therefore,
resampling to represent the percent complete, rather than using time, allows us to capture
the entirety of each individual’s cognitive response to the question. To our knowledge, there
are no published studies examining brain function during completion of multiple choice
and script concordance questions, which are meant to assess decision-making processes
in a naturalistic setting using neuroimaging methods such as EEG, and we propose that
resampling the data to accommodate time may help further develop this area.

We used EEG data collected from 8 novices (veterinary medicine students near the end
of their training) and 4 experts (practicing veterinarians) while performing two different
assessment question types (multiple choice and script concordance) written by experts
in the field of Veterinary Medicine. We used both univariate (t-tests) and multivariate
approaches (PLS) [18,19] to determine whether there is any consistency in brain activity
that may represent different cognitive processes through the course of a trial that may differ
with conditions and groups.

2. Materials and Methods
2.1. Participants

Novice participants (n = 9) were veterinary medicine students near the end of their pre-
clinical training. Expert participants (n = 4) were practicing veterinarians with 5–15 years
of experience in primary care practice (small and large animals). One novice subject was
discarded due to technical difficulties during data recording. Participants confirmed they
were able to wear an EEG cap for an hour, had no known neurological conditions, and had
to have normal or corrected-to-normal vision. This study was approved by the Conjoint
Health Research Ethics Board at the University of Calgary (Ethics ID: REB 17-0788)

2.2. Multiple Choice and Script Concordance Questions

Thirty multiple-choice questions that were developed and validated by content experts
at the University of Calgary for use in assessing veterinary medicine students’ declarative
knowledge were selected for this study. Each question presented a realistic clinical scenario
or clinical case with 5 possible answers (Figure 1a). Each question was meant to assess the
synthesis or application of declarative knowledge regarding clinical practice to select the
most likely diagnosis or treatment. Thirty script concordance questions were developed
to match the content of the multiple-choice questions. Each script concordance question
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presented clinical scenarios or cases similar to those of the multiple-choice questions. How-
ever, rather than 5 possible options to select from, proposed diagnoses, investigations or
management plans are presented. Participants were then presented with new information
and asked how appropriate/suitable the diagnosis/investigation/plan was, considering
the new information provided. Participants were asked to respond using a Likert-like scale
typically ranging from −2 (very suitable) to +2 (very suitable) (Figure 1b).
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Figure 1. (a) Multiple choice question sample; (b) Script concordance question sample. Questions are
designed to be parallel in content.

2.3. Experimental Procedure

Participants were seated in front of a computer screen which displayed the questions.
The distance from the screen was 60 cm, and the screen size was 34 × 22 cm, for a visual
angle of 31.6◦ × 20.8◦. Questions were presented in a randomized blocked design with
either all multiple choice or all script concordance questions first, followed by all the
questions for the other question type, with all participants answering all 60 questions
(30 multiple choice, 30 script concordance). Questions within each block were presented
in random order. A fixation cross was presented prior to each trial for 1000–1800 ms.
Participants were instructed to look at the fixation cross, then read the question and
respond. Participants were given as much time as they needed to respond to the question
on a keyboard in front of them.

2.4. EEG Acquisition and Preprocessing

Participants were seated in a sound-attenuated room during the experiment. We
recorded continuous EEG data from 32 channels (FP1, FP2, F7, F3, Fz, F4, F8, FT9, FC5,
FC1, FC2, FC6, FT10, T7, C3, Cz, C4, T8, TP9, CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4,
P8, O1, Oz, O2) with an actiCAP Slim 10/20 positioning system, referenced to FCz, using
the BrainVision actiCHamp high-impedance system (Brain Products GmbH, Gilching,
Germany). Impedances were maintained at under 17 kOhms for the duration of the
recording. We acquired data at a bandpass of DC to 131 Hz, digitized at a 500 Hz sampling
rate. After the acquisition, we filtered out the 60 Hz electrical noise from the continuous
data using the CleanLine v2.0 toolbox plugin using a sliding window of 4 s with 50%
overlap as implemented in EEGLAB [17]. This plugin adaptively estimates and removes
sinusoidal noise, such as electrical line noise, from scalp channels using multi-tapering
and a Thompson F-statistic [25]. In brief, the continuous data is traversed by a sliding
window. Within each window, the signal is transformed to the frequency domain using
a multi-taper FFT. The complex signal (i.e., amplitude and phase) was obtained for each
frequency. Under the assumption of a deterministic sinusoid embedded in white noise,
this plugin can regress the multi-taper transform (i.e., spectrum) of the line noise from
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the multi-taper spectrum of the brain signal data at a given frequency. The regression
coefficient is a number representing the phase and amplitude of the deterministic sinusoid.
From this, a time-domain representation of the sinusoid may be constructed and subtracted
from the data to remove the line noise. We then bandpass filtered the continuous data from
0.3 to 70 Hz using the default Hamming windowed sinc FIR filter (order = 2 × highpass
frequency cutoff). This was followed by re-referencing the EEG signal to the common
average reference of the 32 electrode channels (i.e., the reference channel was not re-
introduced as a data channel). We performed independent component analysis (ICA) on
the continuous data as implemented in EEGLAB with the ‘pca’, ‘runica’, and ‘number of
components = 30′ options to match the data rank for ICA for up to 30 components [26].
Components containing artifacts associated with blinks, eye movements, muscle artifacts,
and remaining line noise were first classified using EEGLAB’s ICLabel classifier toolbox
that utilizes crowd-sourced IC labels [27]. No components were removed until the artifact
components were manually checked using the criteria described in Makeig and Onton [28]
and then removed from the dataset. One incomplete subject was removed as it had
insufficient data for analysis.

Trials were segmented to include the time between fixation onset and stimulus onset as
baseline and the time between stimulus onset and response. Fixation and stimulus onsets,
as well as response triggers, were recorded in an event list generated with ERPLAB [29].
Epochs were generated throughout the entire period from question onset to response,
resulting in variable-length epochs.

For the purpose of this proof-of-concept paper, we focused on midline electrodes.
Midline effects are well demonstrated in studies of working memory and general task
performance, similar to what we expect to be engaged during the completion of multiple
choice and script concordance questions [30–32].

2.5. Time/Frequency Analysis

Time-frequency spectrograms were created for each individual trial using the new
time function as part of the EEGLAB package [17]. Hanning discrete Fourier transform
(DFT) was calculated from the baseline period, i.e., onset of fixation to stimulus onset, that
included a window size of 1200 samples and a maximum frequency of 40 Hz. The resulting
matrices had 192 frequencies and 200 timepoints for each channel. The proportion of the
trial that was used as a baseline was removed from the beginning of the timepoints, and
the data were subsampled to 100 total timepoints. The final matrices of each trial were
averaged for each question type for each subject. The set of 2-dimensional matrices of time
by frequency for each channel, question type, and subject were used for univariate analysis.

Prior to PLS analysis, we reshaped the data to collapse time and frequency together,
resulting in a 2-dimensional matrix of channels by time/frequency for each question type
and subject.

2.6. Univariate Analysis

Multiple choice questions were compared to script concordance questions for novices
and experts together using paired t-tests at each time/frequency and channel. Novices and
experts were compared for both question types together using independent sample t-tests
at each time/frequency and channel. FDR correction was applied to control for Type I error,
with a threshold of q < 0.1.

2.7. Partial Least Squares Analysis

Time/frequency power data were statistically assessed with partial least squares (PLS)
analysis [18,19], a multivariate approach that allowed us to identify large-scale group-
and condition-dependent changes in the spatiotemporal distributions of time/frequency
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measures. In brief, PLS extracts latent variables (LVs) that identify patterns of similarities or
differences in a brain signal measure between conditions and groups. In the most common
usage of PLS, contrasts across groups or conditions are not specified in advance. Rather,
the algorithm extracts LVs explaining the covariance between groups/conditions and brain
signal measure in order of the amount of covariance explained with the most explained
listed first. Task-related PLS begins by creating a data matrix with subjects and conditions as
rows, spectral power at all measured times and frequencies for every electrode as columns.
PLS uses singular value decomposition to extract LVs, which contain three vectors. The first
vector consists of a singular value, which indicates the strength of the effect expressed by the
LV. The remaining two vectors relate to experimental design and the brain signal measure.
The experimental design vector contains design saliences, which indicate the degree to
which each condition within each group is related to the time/frequency pattern identified
in the LV. These design saliences can be interpreted as the contrast that codes the effect
depicted in the LV. The brain signal vector contains time/frequency saliences. These are
numerical electrode weights that identify the collection of electrodes and time/frequency
combinations that are most related to the effects expressed in the LV. For each LV, there
is one salience per electrode, time, and frequency combination that applies to all groups
and all conditions. To obtain summary measures of each participant’s expression of an LV,
we calculated brain scores by multiplying the vector of electrode weights by the observed
value of the brain signal measure and summing over all brain signal measures for each
participant. These brain scores were calculated for each condition and then mean-centered
using the group mean across all conditions.

Statistical assessment in PLS is performed across two levels. First, the overall signif-
icance of each LV is assessed with permutation testing [33]. For each subject, sampling
without replacement is used to reassign the order of conditions. PLS is calculated for each
sample, and the number of times a singular value exceeds the observed singular value
relative to the total number of permuted samples is used to assess significance. A LV was
considered significant if the observed singular value exceeded the permuted singular value
in more than 95% of the permutations (p < 0.05). Second, bootstrap resampling is used
to estimate confidence intervals around electrode weights in each LV. Bootstrap samples
were created by resampling subjects with replacement, and PLS was recalculated for each
new sample. Distributions of bootstrapped values were used to create standard errors
for electrode weights and confidence intervals for averaged brain scores, allowing for an
assessment of the relative contribution of particular electrodes, times, and frequencies
and the stability of the relationship with conditions and experience groups [34,35]. No
corrections for multiple comparisons are necessary because the electrode saliences are
calculated in a single mathematical step on the whole brain. For this paper, we chose a
bootstrap ratio threshold of 2, corresponding approximately to a 95% confidence interval or
a p-value < 0.05, to display our effects. Because our data is 2 dimensional for each channel,
viewing bootstrap ratio results required separating time and frequency to reshape the data
into time-by-frequency arrays for each channel.

3. Results
3.1. Varying Lengths of Trials

Figure 2 illustrates the challenge of quantifying EEG data with varying trial lengths
due to the wide range of response times across test types (MCQ vs. SCT) and groups
(expert vs. novice).
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Figure 2. Box plot depicting the variability in length of trials based on response times (RT; in seconds)
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3.2. Univariate Statistics

We used paired t-tests of every combination of time and frequency to assess differences
between reading and answering multiple choice questions and reading and answering
script concordance questions in novices and experts together. No differences between script
concordance and multiple-choice questions remained significant at any of the midline
channels when using the false discovery rate to control for type I errors.

We used independent sample t-tests for every time and frequency combination to
assess differences between novices and experts, with question types considered together.
No differences between novices and experts remained significant at any of the midline
channels when using the false discovery rate to control for type I errors.

3.3. PLS

We used rotated (data-driven) task-PLS of time/frequency power values to test for
effects of question type (condition) and experience level (group). One significant latent
variable was extracted, showing a contrast between multiple choice and script concordance
tests for experts only (p = 0.0020, Figure 3), potentially suggesting differences in cognitive
processes accessed and used for these assessment methods.
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Figure 3. Averaged brain scores for PLS analysis comparing novice and expert time-frequency data
while answering MCQ and SCT questions.

Output bootstrap ratio values were plotted and reshaped into time by frequency
matrices for each channel. The midline frontal electrode, Fz (Figure 4a), showed higher
power for SCT questions in experts in the gamma range (>35 Hz) throughout the trials.
Power in the beta frequency range (~20 Hz) was higher for the experts’ SCT questions for
the first 20% of the trial, and the high-alpha/low-beta frequency range (12–16 Hz) showed
more power from 20% of the trial time course and onwards. Power in the theta power
frequency range (~2–3 Hz) was increased for experts during SCT questions in the first 60%
of the trial time course. Increased power for MCQ was observed in the high-beta frequency
range (~28 Hz) for experts throughout the trial and in the alpha frequency range (~10 Hz)
starting from 30% of the trial time course and throughout.

At the midline central electrode, Cz (Figure 4b), we observed higher power for experts
during SCT questions in the gamma frequency range (~30+ Hz) throughout the time course
of the trials. Increased power for SCT in experts was also observed in high-beta (~25 Hz)
for the first 30% of the trial course and high-alpha (~13 Hz) from 15% to 80% of the trials’
time course. Increases in power for MCQs were observed in experts in the alpha frequency
band (~10 Hz) starting from ~25% of the trials’ time course through to the end of the trials,
and low-alpha (~8 Hz) starting from 55% of trials’ time course to the end.

At the midline parietal electrode, Pz (Figure 4c), we observed higher power for experts
during SCT questions in the high-beta and gamma frequency ranges (>25 Hz) and in the
high-alpha (~15–17 Hz) throughout the trials’ time course. Increased power for experts
during MCQs was observed in the alpha range (~10 Hz) starting from 20% of the trials’
time course through to the end of the trials.

At the midline occipital electrode, Oz (Figure 4d), we observed higher power
for experts during SCT questions in the low-beta (~15–20 Hz) and gamma frequency
(>30 Hz) ranges, respectively, throughout the time course of the trials, while for high-beta
(~23–30 Hz) we see higher power from 65% of the trials’ time course and onwards. There
were no notable sustained changes in power for MCQ questions at this location.
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Figure 4. Time-frequency spectral power plots at electrode locations (a) Fz, (b) Cz, (c) Pz, and
(d) Oz, respectively. Positive bootstrap ratios (>2) indicate regions that demonstrate a stable relation-
ship between conditions (i.e., greater spectral power for SCT in experts). Negative bootstrap ratios
(<−2) indicate regions that demonstrate a stable relationship between conditions (i.e., greater spectral
power for MCQ in experts). The black outlined boxes highlight clusters of significant brain activity.

4. Discussion
The aim of this proof-of-concept work was to determine whether we could extract

consistent patterns of time-frequency power from variable epoch lengths of trials, embrac-
ing the variability of decision-making without losing data based on response time. Using
univariate methods, namely multiple t-tests, we found no significant differences between
conditions or groups that survived type I error using the false discovery rate (FDR). How-
ever, using a multivariate method, namely PLS analysis, we were able to find consistent
and stable differences between conditions for one group only. The extracted latent variable
reflected a different spatiotemporal pattern of activity supporting multiple choice and
script concordance questions in experts only. The difference between question types was
expressed in terms of frequency band (e.g., alpha at ~10 Hz) and in terms of proportions
of trial completion (e.g., 10% complete). Specifically, we found typical frequency bands
contributing to the contrast between question types at different electrode locations. For
example, at midline Cz, power in the alpha band (~10 Hz) was found to be greater for
multiple choice questions, and greater power in the gamma band (>30 Hz) was associated
with script concordance questions. In terms of time, we found there are portions of the
trial that more stably contribute to the contrast between question types than others. For
example, at midline Cz, greater power in the gamma band for script concordance questions
was found throughout the trial; however, an increase in power in the alpha band (~10 Hz)
began about 20% of the way through the trials.
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Comparing PLS results to the univariate findings requires caution, as these methods
work very differently. While univariate analyses seek to verify a certain relationship for
every timepoint and frequency, PLS results look for spatiotemporal patterns that support
a certain contrast in design. However, it is undeniable that the many separate tests re-
quired for univariate statistics on this type of data, in this case 192 frequencies for each
of 100 timepoints, increases the risk of type I error. In comparison, multivariate analysis
considers all times and frequencies in just one test and, therefore, does not require any
adjustment for type I error. In our data, we were able to extract clear patterns of power
where univariate statistics using FDR correction failed to find any significance. It is under-
standable that such a finding might lead to skepticism, and there are a few considerations
for the analysis undertaken here. Firstly, this analysis was conducted with only 4 experts
and 8 novices, which leads to low power, particularly for between-subject comparisons. To
verify that such a finding was not driven by one expert alone, we plotted z-scores for each
expert subject for individual comparison and found that the time/frequency regions that
were stable in the PLS analysis were present in all 4 expert participants. As a result, we are
confident that our findings are not driven by one expert alone.

In terms of resampling the data to adjust for variance in decision-making processes,
we were able to find consistent differences between question types for experts with PLS.
Conducting this analysis assumes that participants will engage in similar cognitive pro-
cesses at similar points in the trial. It is not necessarily the case that for every question, an
individual will go through the exact same cognitive steps to arrive at an answer, and in the
most extreme cases, thinking about 10% of the way through a 10 s trial is very different
from 10% of a 70 s trial. However, we were able to extract a significant latent variable
embracing this level of variability.

Some of the most notable spatiotemporal differences we found were in the gamma and
beta frequency bands. We found increased power in gamma (~30+ Hz) that spanned the
entire course of the trials at midline frontal (Fz) and central (Cz) sites. We also measured
increased power in the high-beta frequency range (~20–30 Hz) that spanned the whole trial
primarily at midline parietal (Pz) and occipital (Oz) sites. A previous study in monkeys
found that prefrontal gamma frequency activity increased with increasing information load
and that beta frequency activity is associated with top-down processes such as decision-
making [36]. Furthermore, a study in humans found that the gamma frequency band is
associated with the process of comparing what is in one’s memory to what is presented
in a task [37], which is expected in a test-taking environment. It is possible, therefore,
that the increased power in gamma frequency we found over frontal and central sites for
experts completing script concordance as compared to multiple-choice questions could be
related to an increase in information processing and memory comparison. The reported
increase in high-beta frequency power at parietal and occipital sites for experts during script
concordance, as compared to multiple-choice, could be related to an increased demand for
decision-making. In a human study on decision-making, Siegel, Engel, and Donner [38]
found that increased frontal-parietal low beta frequency (12–15 Hz) power predicted
whether the participant would make a correct choice. Consistent with the literature, we
similarly found increased high-alpha/low-beta frequency power that spanned the entire
trials’ length at the midline central site associated with script concordance questions in
experts. Our results are consistent with previous work that suggests this method may be a
viable path forward to studying cognitive processes over variable time periods.

5. Limitations and Future Directions
This proof-of-concept study is meant to address ecological validity in applied decision-

making studies using EEG. Granted, the primary limitation of this study is the low sample
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size, which relates to lack of power. The exact spatiotemporal pattern associated with
this contrast may differ with a larger sample size, and for this reason, we are cautious
when drawing conclusions as to the neurocognitive implications of our findings. Applying
this analytical method to a larger dataset will allow more confidence in the results and
potentially improve the power of multiple univariate tests to allow a more complete
comparison point for the multivariate results. Another possible limitation is generalizability
to other time-variable research paradigms. Here, we compare the application of the analysis
to two specific question types used for the assessment of decision-making in health students
and professionals. This specific application is one that, to our knowledge, has not been
widely investigated with EEG or other neuroimaging techniques, and we, therefore, have
little expectation of what we could find. We see this as an advantage as all work in this
area is exploratory in nature, and it is possible that this resampling method could uniquely
address time-varying, naturalistic challenges such as this one. Finally, we recognize that
there is a difference between “brain time” and “real-time” [39]. Our study strives to capture
what the brain is doing in “real-time” where some participants respond slower to an event
compared to others. Here, the event is a decision-making process that includes reading,
thinking, making a decision, and responding (and possibly evaluating the decision after the
response, i.e., feedback), which may take some people longer than others. We used those
real-time differences and created a “percentage of time duration” to allow us to directly
compare the cognitive reasoning process across subjects and allow for group averages.

6. Conclusions
In the examination of exploring neurocognitive processes involved in authentic

decision-making or test-taking situations, we have demonstrated the possibility of us-
ing resampling and PLS to allow for the use of the entirety of variable-length trials to
find consistent effects. In comparison to methods that carefully construct questions to
manipulate suspected cognitive processes at known periods, this method allows the re-
searcher to utilize more naturalistic settings related to the decision-making environment.
This methodology could expand the current understanding of neurocognition in authentic
decision-making teaching and learning scenarios, as well as other fields.

Author Contributions: Conceptualization, K.G.H., J.M.H.S. and F.C.; methodology, J.M.H.S., F.C.,
S.J.A., R.A.-R., A.L.W., E.R. and R.A.; formal analysis: J.M.H.S., F.C. and R.A.-R.; writing-original
draft preparation: J.M.H.S., K.G.H. and F.C.; writing—reviewing and editing: J.M.H.S., K.G.H. and
F.C.; supervision: K.G.H. and S.J.A.; project administration: K.G.H. and J.M.H.S.; funding acquisition
K.G.H. All authors have read and agreed to the published version of the manuscript.

Funding: Funding for this study was provided by the Canadian Foundation for Innovation, grant
number: 36634 (K.G.H), the University of Calgary Veterinary Education Research Fund (K.G.H., E.R.,
R.A.) and the University of Calgary Taylor Institute Teaching and Learning Grant (K.G.H).

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki and approved by the Conjoint Faculties Research Ethics Board, University of Calgary (21
July 2017, REB17-0788).

Informed Consent Statement: Informed consent was obtained by all subjects involved in the study.

Data Availability Statement: The datasets analyzed during the current study are not publicly
available due to confidentiality issues of the small sample, which is part of a larger dataset, but are
available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.



Brain Sci. 2025, 15, 135 13 of 14

References
1. Gold, J.I.; Shadlen, M.N. The neural basis of decision-making. Annu. Rev. Neurosci. 2007, 30, 535–575. [CrossRef] [PubMed]
2. Reder, S. Strategy selection and question answering. Cogn. Psychol. 1987, 19, 90–138. [CrossRef]
3. Boudewyn, M.; Luck, S.J.; Farrens, J.L.; Kappenman, E.S. How many trials does it take to get a significant ERP effect? It depends.

Psychophysiology 2017, 55, e13049. [CrossRef] [PubMed]
4. Deco, G.; Jirsa, V.; McIntosh, A.R.; Sporns, O.; Kotter, R. Key role of coupling, delay, and noise in resting brain fluctuations. Proc.

Natl. Acad. Sci. USA 2009, 106, 10302–10307. [CrossRef] [PubMed]
5. Onton, J.; Delorme, A.; Makeig, S. Frontal midline EEG dynamics during working memory. NeuroImage 2005, 27, 341–356.

[CrossRef]
6. Jacobs, J.; Hwang, G.; Curran, T.; Kahana, M.J. EEG oscillations and recognition memory: Theta correlates of memory retrieval

and decision-making. NeuroImage 2006, 32, 978–987. [CrossRef]
7. Ahmed, M.Z.I.; Sinha, N.; Ghaderpour, E.; Phadikar, S.; Ghosh, R. A novel baseline removal paradigm for subject-independent

features in emotion classification using EEG. Bioengineering 2023, 10, 54. [CrossRef] [PubMed]
8. Erat, K.; Sahin, E.B.; Dogan, F.; Merdanoglu, N.; Akcakaya, A.; Durdu, P.O. Emotion recognition with EEG-based brain-computer

interfaces: A systematic literature review. Multimed. Tools Appl. 2024, 83, 79647–79694. [CrossRef]
9. Picton, T.W. The P300 wave of the human event-related potential. J. Clin. Neurophys. 1992, 9, 456–479. [CrossRef] [PubMed]
10. Proudfit, G.H. The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology 2012, 52,

449–459. [CrossRef] [PubMed]
11. Pfurtscheller, G.; Aranibar, A. Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced

movement. Electroencephalogr. Clin. Neurophysiol. 1979, 46, 138–146. [CrossRef]
12. Bressler, S.L.; Freeman, W.J. Frequency analysis of olfactory system EEG in cat, rabbit, and rat. Electroencephalogr. Clin. Neurophysiol.

1980, 50, 19–24. [CrossRef] [PubMed]
13. Makeig, S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr. Clin.

Neurophysiol. 1993, 86, 283–293. [CrossRef]
14. Neuenschwander, S.; Varela, F.J. Visually triggered neuronal oscillations in the pigeon: An autocorrelation study of tectal activity.

Eur. J. Neurosci. 1993, 5, 870–881. [CrossRef] [PubMed]
15. Weiss, S.; Rappelsberger, P. EEG coherence within the 13-18 Hz band as a correlate of a distinct lexical organisation of concrete

and abstract nouns in humans. Neurosci. Lett. 1996, 209, 17–20. [CrossRef] [PubMed]
16. Tallon-Baudry, C.; Bertrand, O.; Delpuech, C.; Pernier, J. Oscillatory gamma-band (30–70 Hz) activity induced by a visual search

task in humans. J. Neurosci. 1997, 17, 722–734. [CrossRef]
17. Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent

component analysis. J. Neurosci. Methods 2004, 134, 9–21. [CrossRef] [PubMed]
18. Lobaugh, N.J.; West, R.; McIntosh, A.R. Spatiotemporal analysis of experimental differences in event-related potential data with

partial least squares. Psychophysiology 2001, 38, 517–530. [CrossRef]
19. McIntosh, A.R.; Lobaugh, N.J. Partial least squares analysis of neuroimaging data: Applications and advances. NeuroImage 2004,

23, S250–S263. [CrossRef]
20. Kovacevic, N.; McIntosh, A.R. Groupwise independent component decomposition of EEG data and partial least squares analysis.

NeuroImage 2003, 15, 1103–1112. [CrossRef] [PubMed]
21. McIntosh, A.R.; Kovacevic, N.; Itier, R.J. Increased brain signal variability accompanies lower behavioral variability in develop-

ment. PLoS Comput Biol. 2008, 4, e1000106. [CrossRef] [PubMed]
22. Szostakiwskyj, J.M.H.; Willatt, S.E.; Cortese, F.; Protzner, A.B. The modulation of EEG variability between internally- and

externally-driven cognitive states varies with maturation and task performance. PLoS ONE 2017, 12, e0181894. [CrossRef]
[PubMed]

23. Charlin, B.; Roy, L.; Brailovsky, C.; Goulet, F.; van der Vleuten, C. The Script Concordance Test: A tool to assess the reflective
clinician. Teach. Learn. Med. 2000, 12, 189–195. [CrossRef]

24. Gawad, N.; Wood, T.J.; Cowley, L.; Raiche, I. How do cognitive processes influence script concordance test responses? Med. Educ.
2021, 55, 359–369. [CrossRef] [PubMed]

25. Mitra, P.; Bokil, H. Observed Brain Dynamics, Chapter 7.3.4; Oxford Academic: New York, NY, USA, 2007. [CrossRef]
26. Makeig, S.; Bell, A.; Jung, T.P.; Sejnowski, T.J. Independent component analysis of electroencephalographic data. In Advances in

Neural Information Processing Systems 8; Touretzky, D.S., Mozer, M., Hasselmo, M.E., Eds.; MIT Press: Cambridge, MA, USA, 1996;
pp. 145–151.

27. Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component
classifier, dataset, and website. NeuroImage 2019, 198, 181–197. [CrossRef] [PubMed]

28. Makeig, S.; Onton, J. ERP features and EEG dynamics: An ICA perspective. In Oxford Handbook of Event-Related Potential
Components; Luck, S.J., Kappenman, E.S., Eds.; Oxford University Press: Oxford, UK, 2013; pp. 51–86.

https://doi.org/10.1146/annurev.neuro.29.051605.113038
https://www.ncbi.nlm.nih.gov/pubmed/17600525
https://doi.org/10.1016/0010-0285(87)90005-3
https://doi.org/10.1111/psyp.13049
https://www.ncbi.nlm.nih.gov/pubmed/29266241
https://doi.org/10.1073/pnas.0901831106
https://www.ncbi.nlm.nih.gov/pubmed/19497858
https://doi.org/10.1016/j.neuroimage.2005.04.014
https://doi.org/10.1016/j.neuroimage.2006.02.018
https://doi.org/10.3390/bioengineering10010054
https://www.ncbi.nlm.nih.gov/pubmed/36671626
https://doi.org/10.1007/s11042-024-18259-z
https://doi.org/10.1097/00004691-199210000-00002
https://www.ncbi.nlm.nih.gov/pubmed/1464675
https://doi.org/10.1111/psyp.12370
https://www.ncbi.nlm.nih.gov/pubmed/25327938
https://doi.org/10.1016/0013-4694(79)90063-4
https://doi.org/10.1016/0013-4694(80)90319-3
https://www.ncbi.nlm.nih.gov/pubmed/6159187
https://doi.org/10.1016/0013-4694(93)90110-H
https://doi.org/10.1111/j.1460-9568.1993.tb00939.x
https://www.ncbi.nlm.nih.gov/pubmed/8281299
https://doi.org/10.1016/0304-3940(96)12581-7
https://www.ncbi.nlm.nih.gov/pubmed/8734899
https://doi.org/10.1523/JNEUROSCI.17-02-00722.1997
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://www.ncbi.nlm.nih.gov/pubmed/15102499
https://doi.org/10.1017/S0048577201991681
https://doi.org/10.1016/j.neuroimage.2004.07.020
https://doi.org/10.1016/j.neuroimage.2007.01.016
https://www.ncbi.nlm.nih.gov/pubmed/17336093
https://doi.org/10.1371/journal.pcbi.1000106
https://www.ncbi.nlm.nih.gov/pubmed/18604265
https://doi.org/10.1371/journal.pone.0181894
https://www.ncbi.nlm.nih.gov/pubmed/28750035
https://doi.org/10.1207/S15328015TLM1204_5
https://doi.org/10.1111/medu.14416
https://www.ncbi.nlm.nih.gov/pubmed/33185303
https://doi.org/10.1093/acprof:oso/9780195178081.001.0001
https://doi.org/10.1016/j.neuroimage.2019.05.026
https://www.ncbi.nlm.nih.gov/pubmed/31103785


Brain Sci. 2025, 15, 135 14 of 14

29. Lopez-Caleron, J.; Luck, S.J. ERPLAB: An open-source toolbox for the analysis of event-related potentials. Front. Hum. Neurosci.
2014, 8, 213. [CrossRef]

30. Hsieh, L.-T.; Ranganath, C. Frontal midline theta oscillations during working memory maintenance and episodic encoding and
retrieval. NeuroImage 2014, 85, 721–729. [CrossRef] [PubMed]

31. Meyer, L.; Grigutsch, M.; Schmuck, N.; Gaston, P.; Friederici, A.D. Frontal–posterior theta oscillations reflect memory retrieval
during sentence comprehension. Cortex 2015, 71, 205–218. [CrossRef] [PubMed]

32. Sauseng, P.; Klimesch, W.; Schabus, M.; Doppelmayr, M. Fronto-parietal EEG coherence in theta and upper alpha reflect central
executive functions of working memory. Int. J. Psychophysiol. 2015, 57, 97–103. [CrossRef]

33. Good, P. Dependence. In Permutation Tests; Springer: New York, NY, USA, 2000. [CrossRef]
34. Efron, B.; Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy.

Stat. Sci. 1986, 1, 54–75. [CrossRef]
35. Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall/CRC: Boca Raton, FL, USA, 1994. [CrossRef]
36. Kornblith, S.; Buschman, T.J.; Miller, E.K. Stimulus load and oscillatory activity in higher cortex. Cereb. Cortex 2015, 26, 3772–3784.

[CrossRef] [PubMed]
37. Herrmann, C.S.; Munk, M.H.J.; Engel, A.K. Cognitive functions of gamma-band activity: Memory match and utilization. TiCS

2004, 8, 347–355. [CrossRef] [PubMed]
38. Siegel, M.; Engel, A.K.; Donner, T.H. Cortical network dynamics of perceptual decision-making in the human brain. Front. Hum.

Neurosci. 2011, 5, 21. [CrossRef] [PubMed]
39. van Bree, S.; Melcon, M.; Kolibius, L.D.; Kerren, C.; Wimber, M.; Hanslmayr, S. The brain time toolbox, a software library to

retune electrophysiology data to brain dynamics. Nat. Hum. Behav. 2002, 6, 1430–1439. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3389/fnhum.2014.00213
https://doi.org/10.1016/j.neuroimage.2013.08.003
https://www.ncbi.nlm.nih.gov/pubmed/23933041
https://doi.org/10.1016/j.cortex.2015.06.027
https://www.ncbi.nlm.nih.gov/pubmed/26233521
https://doi.org/10.1016/j.ijpsycho.2005.03.018
https://doi.org/10.1007/978-1-4757-3235-1_7
https://doi.org/10.1214/ss/1177013815
https://doi.org/10.1007/978-1-4899-4541-9
https://doi.org/10.1093/cercor/bhv182
https://www.ncbi.nlm.nih.gov/pubmed/26286916
https://doi.org/10.1016/j.tics.2004.06.006
https://www.ncbi.nlm.nih.gov/pubmed/15335461
https://doi.org/10.3389/fnhum.2011.00021
https://www.ncbi.nlm.nih.gov/pubmed/21427777
https://doi.org/10.1038/s41562-022-01386-8
https://www.ncbi.nlm.nih.gov/pubmed/35726055

	Introduction 
	Materials and Methods 
	Participants 
	Multiple Choice and Script Concordance Questions 
	Experimental Procedure 
	EEG Acquisition and Preprocessing 
	Time/Frequency Analysis 
	Univariate Analysis 
	Partial Least Squares Analysis 

	Results 
	Varying Lengths of Trials 
	Univariate Statistics 
	PLS 

	Discussion 
	Limitations and Future Directions 
	Conclusions 
	References

