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Abstract: Background: Pathophysiological models of pediatric bipolar disorder (PBD) are
lacking. Multimodal approaches may provide a comprehensive description of the complex
relationship between the brain and behavior. Aim: To assess behavioral, neuropsycholog-
ical, neurophysiological, and neuroanatomical alterations in youth with PBD. Methods:
Subjects with PBD (n = 23) and healthy controls (HCs, n = 23) underwent (a) clinical as-
sessments encompassing the severity of psychiatric symptoms, (b) neuropsychological
evaluation, (c) analyses of event-related potentials (related to the passive viewing of fear-
ful, neutral, and happy faces during electroencephalography recording, and (d) cortical
thickness and deep gray matter volume measurement using magnetic resonance imaging.
Canonical correlation analyses were used to assess the relationships between these dimen-
sions. Results: Youth with PBD had higher levels of anxiety (p < 0.001) and borderline
personality features (p < 0.001), greater commission errors for negative stimuli (p = 0.003),
delayed deliberation time (p < 0.001), and smaller risk adjustment scores (p = 0.002) than
HCs. Furthermore, they showed cortical thinning in the frontal, parietal, and occipital
areas (all p < 0.001) and greater P300 for happy faces (p = 0.29). In youth with PBD, cor-
tical thickening and P300 amplitude positively correlated with more commission errors
for negative stimuli, longer deliberation times, reduced risk adjustment, higher levels of
panic and separation anxiety, and greater levels of negative relationships, whereas they
negatively correlated with levels of depression (overall loadings > or <0.3). Limitations:
Small sample size, cross-sectional design, and limited variables investigated. Conclusions:
This preliminary work showed that multimodal assessment might be a viable tool for
providing a pathophysiological model that unifies brain and behavioral alterations in youth
with PBD.
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1. Introduction
Pediatric bipolar disorder (PBD) is a severe illness with unique features when com-

pared to adult-onset bipolar disorder, including differences in symptom manifestation,
treatment efficacy, severity, duration, and frequency of hospitalizations [1]. PBD is charac-
terized by cyclic mood alterations and is often associated with emotional lability, anxiety [2],
and aggressive, risky, or hostile behaviors [3]. These traits frequently lead to interpersonal
difficulties and family problems [1]. Altered behavior and pathological traits in youth with
PBD are accompanied by subtle neurocognitive dysfunction related to affective process-
ing [4], gratification response [5], working memory [5], decision-making [6], attention [7],
and problem-solving [8]. Notably, the most frequently affected areas include impulsivity [6],
decision-making challenges [9], and difficulties in managing negative events [10]. In the
last 20 years, substantial efforts have been made to define the neural basis underlying these
alterations to facilitate early diagnosis and develop tailored treatment plans for individuals
with PBD [11]. Recent advances in functional and structural magnetic resonance imaging
(MRI) [12] and electroencephalography (EEG) techniques [13] have helped researchers
define the areas and brain networks involved [14,15]. Areas receiving greater attention
include the thalamus [16], hippocampus [17,18], and amygdala [19,20], all of which were
discovered to be smaller in youth with PBD as compared to healthy controls (HCs).

Alterations in cortical thickness have also been observed, most of which are associated
with deficits in emotional and cognitive control [21]. The most frequent cortical thickenings
were identified in the frontal, parietal, and temporal regions, such as the orbitofrontal
cortex [22], anterior cingulate cortex [23], insular cortex [24], supramarginal gyrus [21,25,26],
and orbitofrontal cortex [27].

EEG techniques employ event-related potentials (ERPs) and enrich the knowledge
gained by MRI techniques by providing the exact timeframe in which the aforementioned
cognitive and emotional alterations occur [28]. Particularly, alterations in the P300 have
been shown to reliably detect abnormalities in both cognitive and emotional domains, as
well as related behavioral dysregulation [29]. P300 represents a positive deflection observed
within the parietal cortex in response to infrequent and salient stimuli [30,31] and is
intricately linked with cognitive functions, such as working memory, allocation of attention,
and decision-making [32]. Moreover, P300 is associated with circuits related to reward
frustration [14] and emotion recognition [33]. A reduced P300 amplitude observed during
the recognition of emotions conveyed through facial expressions (happiness, sadness, fear,
disgust, and neutrality) has been associated with PBD [34].

To date, studies combining behavioral and biological evaluations in youth with PBD
have been conducted [3,4,12,31]. Evidence brought so far suggests that behavioral alter-
ations in youth with PBD are driven by a complex array of neural alterations involving
cortical and subcortical areas. Nevertheless, a comprehensive evaluation investigating
the psychopathological, neuropsychological, neuroanatomical, and neurophysiological
domains is still lacking. Such an approach might ease the definition of a comprehensive
physiopathological model of PBD in youth.

Therefore, this study serves as a preliminary work aimed at proposing a cohesive
model that establishes connections between behavioral, neurocognitive, neurophysiological,
and neurobiological parameters.

The aims of this study are: (i) to identify significant behavioral and neurocognitive
alterations in youth with PBD; (ii) to explore neuroanatomical and neurophysiological
alterations in this population; and (iii) to evaluate the relationship among all these domains.

We hypothesize that alterations in neurocognitive and behavioral domains, i.e., greater
levels of depression, excitement, anxiety, hostility, greater interpersonal and family issues,
enhanced response to negative stimuli and rewards, prolonged decision-making times, in-
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creased impulsivity and difficulties in assessing risk in participants with PBD as compared
to HC. Furthermore, we anticipate P300 reductions in amplitude and increases in latency
during emotion recognition and decreased cortical thickness in the frontal, temporal, and
parietal networks. Regarding the relationship between cortical thickness and neurocogni-
tion, we expect a positive correlation between P300 reduction and cortical thinning in the
areas discussed above, as well as an increased number of errors when identifying emotional
stimuli and prolonged decision-making times. Conversely, we expect a negative correla-
tion between these neurophysiological and neuroanatomical alterations and difficulties in
assessing risk. In terms of behavior, we expect that cortical thickening/reduced volumes in
the areas described above correlate with the severity of depression and anxiety disorders,
levels of hostility, and negative relationships.

2. Materials and Methods
2.1. Study Participants

Subjects were recruited from the child and adolescent psychiatric clinic of Baylor Col-
lege of Medicine in Houston, TX, USA, whereas HC were recruited through advertisements.
Written informed consent was obtained from the subjects and their parents prior to enroll-
ment. Inclusion criteria were the following: (i) age between 7 and 17 years; (ii) capability
of subjects’ parents to sign a written informed consent form; (iii)comprehension of the
English language; (iv) subjects with PBD additionally required a prior diagnosis of bipolar
disorder (BD) type I, BD type II, or BD not otherwise specified (PBD-NOS). Exclusion
criteria were (i) substance use disorder; (ii) intellectual disability; (iii) autism spectrum
disorder; (iv) severe neurological conditions; (v) subject and subject’s parent’s inability to
sign a written informed consent; (vi) subject’s unawareness of his/her psychiatric disorder
(only for youth with PBD); and (vii) impossibility to understand English language, written
or spoken. The diagnoses of BDtype I and BDtype II were established according to DSM-5
criteria; the diagnosis of PBD-NOS was based on the Course and Outcome of Bipolar Youth
(COBY) research criteria [34].

2.2. Clinical Assessments

Study participants were assessed using (i) the Mini International Neuropsychiatric
Interview-KID (MINI-KID) and MINI-KID parent version [35] to determine psychiatric
diagnoses and (ii) the Wechsler Abbreviated Scale of Intelligence-II (WASI-II) [36] to de-
termine age- and sex-corrected general intelligence (composite intelligence quotient [IQ]
score). The assessment was performed by a trained clinician.

2.3. Cortical Thickness

Structural scans using three-dimensional magnetization-prepared rapid gradient-echo
imaging (3D MP-RAGE) [37] were obtained on a 3.0 T Siemens Trio scanner with the
following parameters: TR = 2500 ms, TE = 3.5 ms, Bandwidth = 190 Hz/Px, field of view
= 256 × 256 mm, flip angle = 8◦, and voxel size = 1.0 × 1.0 × 1.0 mm. All T1-weighted
scans underwent visual inspection to confirm the absence of significant artifacts and were
subsequently processed using the FreeSurfer software version 6.0 [38,39]. Cortical thickness
measurements were automatically extracted through segmentation of the following regions:
left and right banks of the superior temporal sulcus, left and right caudal anterior cingulate,
left and right caudal middle frontal, left and right cuneus, left and right entorhinal, left
and right fusiform, left and right inferior parietal, left and right inferior temporal, left and
right isthmus cingulate, left and right lateral occipital, left and right lateral orbitofrontal,
left and right lingual, left and right medial orbitofrontal, left and right middle temporal left
and right parahippocampal, left and right paracentral, left and right pars opercularis, left
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and right pars orbitalis, left and right pars triangularis, left and right pericalcarine, left and
right postcentral, left and right posterior cingulate, left and right precentral, left and right
precentral general, left and right precuneus, left and right rostral anterior cingulate, left and
right rostral middle frontal, left and right superior frontal, left and right superior parietal,
left and right superior temporal, left and right supramarginal, left and right frontal pole,
left and right temporal pole, left and right transverse temporal, and left and right insula.

2.4. Deep Gray Matter Structures

Deep gray matter volumes were estimated using the automated procedure for volu-
metric measurements of brain structures implemented in FreeSurfer 6.0 [38], running on a
CentOS Linux 6.4 system. This automated deep gray matter volume segmentation method
has been previously described [40]. In summary, the procedure involves automatic seg-
mentation and labeling of anatomical structures based on an atlas containing probabilistic
information regarding structural locations. Each voxel in the MRI volume is assigned a
neuroanatomical label using probabilistic data derived from a manually labeled training
set. The process begins with an affine registration to Talairach space, followed by initial
volumetric labeling and correction for intensity variations due to “intensity field bias.” A
high-dimensional, non-linear volumetric alignment to the Talairach atlas is then performed,
and the final labeling is completed. This labeling process utilizes an algorithm that com-
bines a subject-independent probabilistic atlas with subject-specific measured values. It
assigns values at each point in space based on three types of probabilities: (1) the likelihood
that a given point belongs to each label class, (2) the likelihood of a point belonging to a
label class based on neighboring points, and (3) the probability distribution function of
the measured intensity values at each voxel, estimated separately for each class [40,41].
This method provides results comparable to those of manual region-of-interest (ROI) de-
lineation [42,43] while eliminating biases and delivering anatomically accurate regional
volume measurements [40]. To account for individual differences in brain size, intracranial
volume (ICV), which includes brain tissue, meninges, and cerebrospinal fluid, was calcu-
lated to adjust for regional brain volume analyses [44]. Specifically, the volumes of the deep
gray matter structures were corrected for ICV using the proportion method [45].

2.5. Event-Related Potentials

Raw EEG signals were recorded using BrainVision Recorder (Brain Products GmbH,
Zeppelinstraße 7, Gilching, Germany) from 32 active electrodes placed at locations based
on the 10–20 international system of EEG electrode placement (ActiCAP; Easycap GmbH,
Zeppelinstraße 7, Gilching, Germany). AFz served as ground; FCz served as reference.
The impedances were less than 20 kΩ. Signals were sampled at 250 Hz, filtered be-
tween 0.1–1000 Hz, and amplified with a BrainAmp Standard amplifier (Brain Products
GmbH, Zeppelinstraße 7, Gilching, Germany). The signals were processed offline using
EEGLAB [46] and ERPLAB [47]. Raw data were re-referenced to TP9/10, segmented into
epochs ranging from 200 ms before to 1500 ms after the face stimuli, band-pass filtered
between 0.1–30 Hz, and baseline corrected. Trials containing incidental, non-repetitive
artifacts (e.g., occasional movement artifacts or clipping) were manually excluded prior
to conducting independent component analysis (ICA; runica option in EEGLAB) [48].
Artifact-related ICA components (such as eye blinks, eye movements, channel pops, and
drift) were manually removed. For each participant, signals free of artifacts were baseline
corrected and averaged according to stimulus type, resulting in six ERPs per individual
(three emotions [fearful, neutral, happy] across two sets [youth, adult]). The N170, P200,
FN400, and P300 components were identified for each ERP. The N170 was quantified as
the mean amplitude between 150 and 200 ms post-stimulus at P7 and P8 [49]. P200 was
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calculated as the mean amplitude from 190 to 230 ms post-stimulus at Pz [50], P300 from
270 to 330 ms post-stimulus at Pz [51], and FN400 from 300 to 500 ms post-stimulus at
Fz [52].

2.6. ERP Paradigm

The emotional faces ERP paradigm was implemented using E-Prime 2.0, and consisted
of 180 sequential trials. This setup included 30 child and adolescent faces (10 fearful,
10 neutral, and 10 happy) sourced from the National Institute of Mental Health Child
Emotional Faces Picture Set (NIMH-ChEF) [53] and 30 adult faces (10 fearful, 10 neutral,
and 10 happy) taken from the NimStim Set of Facial Expressions [54]. Faces were matched
for sex and race/ethnicity (Caucasian, African-American, and Hispanic). The final stimulus
set comprised 60 grayscale images of male and female faces spanning children, adolescents,
and adults, with neutral, fearful, or happy expressions. Each trial began with a fixation
cross displayed at the center of a computer screen for 500 ms, immediately followed by
a face image shown for 1000 ms. Faces measuring 17 cm in height and 15 cm in width
were displayed on a 27-inch flat-screen monitor. Participants sat in a comfortable chair
approximately 34 cm from the screen and were instructed to observe each picture passively
while keeping their gaze on the fixation cross. Across the 180 trials, each face appeared
three times, with the presentation order randomized to ensure that no image was shown
consecutively.

2.7. Neuropsychological Assessment

Participants completed a selection of subtests from the Cambridge Neuropsycho-
logical Test Automated Battery (CANTAB), a widely recognized computerized tool for
assessing cognitive function. The study focused on cognitive domains relevant to affective
information processing, comprehension and learning, decision-making, attention, and
problem-solving, as these have been linked to cognitive changes in youth with PBD [4–6,8].
A summary of the tests evaluating these domains is outlined below.

The Affective Go/No-Go (AGN) test evaluates the biases in processing positive and
negative information. Participants complete several blocks where they are shown words
from three affective categories: positive, negative, and neutral. They must respond to
words matching a designated target category. Key measures include reaction times and
commission errors for positive and negative stimuli.

The Big/Little Circle (BLC) test measures comprehension, learning, and reversal
learning. Over 20 trials, the participants initially selected the smaller of the two circles. The
task then reverses for another 20 trials, requiring participants to choose a larger circle. The
primary measure is the participant’s ability to correctly adjust their responses.

The Cambridge Gambling Task (CGT) assesses decision-making and risk-taking in
a non-learning context. Participants view a row of ten boxes divided into red and blue
sections, with one box hiding a yellow token. They decide whether the token is in a red
or blue box and bet the points accordingly. Starting with 100 points, participants choose
the proportion of points to wager by adjusting a central circle displaying the current bet
value. The outcomes include decision-making quality, deliberation time, risk adjustment,
risk-taking, delay aversion, and the proportion of points wagered.

The Match to Sample Visual Search (MTS) test examines attention and visual search
abilities. A complex pattern is displayed on the screen, followed by a brief delay. Partic-
ipants then see multiple patterns around the screen, one of which matches the original
pattern. They identify the matching pattern, with accuracy (percentage of correct choices)
as the key outcome.
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The Stockings of Cambridge (SOC) test assesses spatial planning and problem-solving
skills. Participants view two displays featuring three stockings, each containing colored
balls arranged in different patterns. The task is to rearrange the balls in the lower display to
replicate the pattern in the upper display using the fewest possible moves. The outcomes
include the average number of moves required to complete the task.

2.8. Behavioral Assessment

The severity of behavioral symptoms was assessed using the Young Mania Rating
Scale).

MRS) to evaluate manic symptoms [55] and the 17-item Children’s Depression Rating
Scale-Revised (CDRS-R) to measure depressive symptoms [56]. Aggression was measured
using the Aggression Questionnaire (AQ) [57], a 29-item instrument comprising four
subscales that evaluate different facets of aggression: anger, physical aggression, hostility,
and verbal aggression.

Motivational systems were assessed using the Behavioral Inhibition Scale/Behavioral
Approach Scale (BIS/BAS) [58], which includes subscales for drive, fun seeking, reward
responsiveness, and behavioral inhibition.

Borderline traits were evaluated using the Borderline Personality Features Scale for
Children (BPFS-C) [59], a 24-item tool divided into four subscales that assess domains such
as affective instability, identity problems, negative relationships, and self-harm.

Family dynamics were examined using the Family Environment Scale (FES) [60], a
measure with 10 subscales covering three broad areas: relationship dimensions, personal
growth (or goal orientation) dimensions, and system maintenance dimensions. In this
study, only the primary scores were analyzed.

Anxiety symptoms were measured using the Screen for Child Anxiety Related Disor-
ders (SCARED) [61], a 41-item self-report questionnaire with five subscales. Four subscales
correspond to the DSM-IV-TR conceptualizations of anxiety disorders: panic disorder, gen-
eralized anxiety disorder, separation anxiety disorder, and social anxiety. The fifth subscale,
school anxiety, addresses the prevalent anxiety issues in childhood and adolescence.

2.9. Statistical Analyses
2.9.1. Sample Size Considerations

The number of participants was estimated through statistical power analysis, a review
of the literature, and according to the recruitment capabilities of the center. Regarding
t-tests regarding neuropsychological, behavioral, and neuroanatomical measurements,
sensitivity analysis using G*Power [62] suggested that a minimum number of 42 subjects
(21 subjects per group) can reach a power of 1-ß = 0.80, to detect an effect size of δ = 0.8
(α = 0.05; two-tailed). A separate measurement was performed for EEG measurements. In
this case, sensitivity analysis suggested that a minimum number of 4 subjects is required to
obtain a power of 1-ß = 0.80 to detect an effect size of δ = 0.8 (α = 0.05; two-tailed; number
of measurements = 6, correlation among repeated measurements = 0.5, and non-sphericity
correctio n = 1).

2.9.2. Demographics and Clinical Characteristics

Multiple t-tests for continuous variables (i.e., age, IQ) and chi-square tests were used
for nominal variables (i.e., gender, race/ethnicity) to assess differences in sociodemographic
characteristics between groups.

2.9.3. Differences in Neuroanatomy, Neurophysiology, Neuropsychology and Behavior

Five separate repeated measures GLMs were used to assess differences in ERP mean
amplitude between groups. In each GLM, Groups (2 levels: PBD, HC) were used as
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between subjects variables, and set (2 levels: youth, adult faces) and emotion (3 levels:
fearful, neutral, happy expressions) were used as within-subjects variables. The mean
amplitude of the N170 at P7 and P8, the mean amplitude of P200 and P300 at Pz, and the
mean amplitude of FN400 at Fz were used as dependent variables. In each GLM, age, sex,
and IQ were used as covariates.

When needed, within-subject effects were corrected for sphericity violations using
the Greenhouse-Geisser algorithm. The main effects and interactions were Bonferroni
Corrected (p = 0.05/5 = 0.01).

Multiple T-tests were performed to investigate differences in deep gray matter struc-
ture volumes, cortical thickness, and scores at neuropsychological and psychopathological
tests between groups. In each t-test, the two diagnostic groups (i.e., PBD and HCs) were
used as independent variables, and ICV-corrected deep gray matter volumes, cortical area
thicknesses, and scores on individual neuropsychological and psychopathological tests
were used as dependent variables. In each t-test, age, sex, and IQ were used as covariates.
Bonferroni correction was applied for multiple comparisons. Specifically, the significance of
the p-value was set at p = 0.0035 (p = 0.05/14) for deep gray matter structures. For cortical
thickness, the significance of the p-value was set at p = 0.00073 (p = 0.05/68). For scores on
psychopathological tests, the significance of the p-value was set at p = 0.0021 (p = 0.05/23).
For neuropsychological test scores, the significance of the p-value was set at p = 0.0035
(p = 0.05/14).

2.9.4. Relationship Among Neuroanatomy, Neurophysiology, Neuropsychology and
Behavior

In order to investigate the bi-directional relationships between neurobiological, neu-
ropsychological, and psychopathological measures in youth with PBD, canonical correlation
analyses (CCAs) were performed. CCAs represent an approach that identifies the relation-
ships between two sets of variables [63]. The results of the CCAs are correlated pairs of
latent variates, which are independent and composed of weighted sums of the predictor
variable that maximally correlate with the weighted sums of the criterion variable. The
interpretation of what the latent variates represent and how they are related to each other
can be determined by the weighted loadings of individual measures on the latent structure,
much like principal component analysis.

In this study, variables differentiating PBD from HCs were entered into the CCA,
and then two separate CCAs were conducted for each type of measure (psychopathology,
neuropsychology). Bonferroni correction was used for multiple testing across the two CCAs,
with the significance set at p = 0.025. For each significant CCA pair, signs of loadings were
used in order to interpret how scores on individual measures related to the latent variates.
Therefore, loadings indicate which aspect of neurocognition/psychopathology is captured
in each analysis, the neurobiological characteristics with which they are associated, and
the nature of the relationship between them. In this view, a positive value of a loading
indicates higher scores on the individual measures, whereas a negative value indicates
lower scores on individual measures. Only moderate-strong loadings (beyond −0.3 or 0.3)
were considered.

3. Results
3.1. Sample

Two hundred and sixty-one subjects were initially screened. Sixty-seven subjects were
selected after applying the inclusion/exclusion criteria. Four subjects were incapable of
sitting continuously and performing CANTAB/EEG/MRI measurements because of their
mood state and were excluded from the sample. An additional 17 subjects were excluded
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because they did not complete all assessments. Therefore, the final sample was composed
of 46 subjects (23 with PBD and 23 HCs).

3.2. Demographics and Clinical Characteristics

Participants did not show differences in age, gender, IQ, race, or ethnicity (see Table 1).

Table 1. Sociodemographic and clinical characteristics of subjects with PBD and HCs.

PBD (N = 23) HC (N = 23) F or χ2 p-Value

Demographics
Age (years), mean ± SD 12.26 ± 3.24 12.00 ± 3.25 0.07 0.791
Female, n (%) 15 (65.22) 13 (56.50) 0.37 0.553
Race, n (%)

Asian 0 (0.00) 3 (13.04)
African-American 2 (8.69) 4 (17.39) 4.34 0.112
Caucasian 21 (91.30) 16 (69.56)

Ethnicity, n (%)
Hispanic 5 (21.73) 1 (4.34) 3.07 0.084

IQ, mean ± SD 103.22 ± 13.36 98.61 ± 15.70 1.15 0.296
Clinical

Year ill (years), mean ± SD 3.30 ± 2.30 - - -
PBD type, n (%)

Type I 15 (65.22) - - -
Type II 1 (4.35)
Not otherwise specified 7 (30.43) - - -

Comorbidity, n (%)
None 10 (43.48) - - -
ADHD 7 (30.43) - - -
OCD 1 (4.35) - - -
Panic Disorder 1 (4.35) - - -
Generalized Anxiety Disorder 4 (17.39) - - -
Mood state, n (%)
Euthymic 10 (43.48) - - -
Manic/hypomanic 7 (30.44) - - -
Depressed 3 (13.04) - - -
Depressed with mixed features 3 (13.04) - - -

Current pharmacotherapy, n (%)
AD 12 (52.18) - - -
AP 10 (43.48) - - -
MS 11 (47.82) - - -
BDZ 0 (0.00) - - -
MARI 8 (34.78) - - -

AD, antidepressant; ADHD, attention-deficit hyperactivity disorder; AP, antipsychotic; BDZ, benzodiazepine;
HCs, healthy controls; IQ, intelligence quotient; MARI, mixed monoamine reuptake inhibitor; MS, mood stabilizer;
SD, standard deviation; OCD, obsessive-compulsive disorder; PBD, pediatric bipolar disorder.

3.3. Neurophysiology

The mean ERP amplitudes at each electrode are reported in Table 2. A GLM investi-
gating differences in P300 revealed a group-by-emotion interaction. Pairwise comparisons
revealed that youth with PBD have greater P300 for happy faces than HCs (see Table 3
and Figure 1). Furthermore, in youth with PBD, happy faces elicited a higher P300 mean
amplitude than fearful faces (see Table 4).

GLMs investigating differences in other ERPs did not show any significant differences
between or within the groups.
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Table 2. ERP amplitudes for happy faces in subjects with PBD and HCs.

PBD (N = 23) HC (N = 23)

ERP

N170 (P7)

Fearful, µV,
mean ± SD 1.30 ± 3.47 0.62 ± 2.47

Neutral, µV,
mean ± SD 1.41 ± 3.31 0.05 ± 1.95

Happy, µV,
mean ± SD 1.87 ± 3.10 0.41 ± 2.43

N170 (P8)

Fearful, µV,
mean ± SD 2.87 ± 3.84 2.23 ± 4.02

Neutral, µV,
mean ± SD 2.07 ±3.26 2.12 ± 3.39

Happy, µV,
mean ± SD 3.07 ± 3.88 2.08 ± 3.99

P200 (Pz)

Fearful, µV,
mean ± SD −1.72 ± 5.78 −0.31 ± 5.56

Neutral, µV,
mean ± SD −1.93 ± 3.40 −2.45 ± 3.53

Happy, µV,
mean ± SD −1.40 ± 5.30 −3.15 ± 4.07

FN400 (Fz)

Fearful, µV,
mean ± SD −10.09 ± 5.56 −8.65 ± 7.86

Neutral, µV,
mean ± SD −8.75 ± 4.69 −8.65 ± 7.86

Happy, µV,
mean ± SD −8.84 ± 5.29 −9.97 ± 5.64

P300 (Pz)

Fearful, µV,
mean ± SD −1.88 ± 5.35 −0.95 ± 5.03

Neutral, µV,
mean ± SD 0.47 ± 5.33 −2.80 ± 4.55

Happy, µV,
mean ± SD 0.95 ± 10.66 −5.60 ± 9.11

Legend: ERP, event-related potential; SD, standard deviation.
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Figure 1. P300 amplitude for passive viewing of happy faces in subjects with PBD and HCs. (Left): wave-
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Table 3. Differences between subjects with PBD and HCs in mean P300 mean amplitude.

PBD HC

Mean Diff p-Value Mean Diff p-Value

Happy vs. fearful, µV, mean ± SD 1.64 0.007 1.85 0.046
Neutral vs. fearful, µV, mean ± SD 2.36 0.061 1.56 0.081
Happy vs. neutral, µV, mean ± SD 0.71 0.793 0.288 >0.999

Legend: significant results are in bold. SD: standard deviation.

Table 4. Differences in mean p300 amplitude to emotional faces in subjects with PBD and HCs.

Faces at Pz PBD vs. HC

F p-Value
Fearfull, µV, mean ± SD 0.33 0.569
Neutral, µV, mean ± SD 0.06 0.085
Happy, µV, mean ± SD 5.13 0.029

Legend: significant results are in bold. Diff, difference; HCs, healthy controls; PBD, pediatric bipolar disorder; SD,
standard deviation.

3.4. Cortical Thickness

T-tests revealed that youth with PBD have reduced cortical thicknesses compared to
HCs in the frontal (right rostral anterior cingulate, right caudal anterior cingulate, right
lateral orbitofrontal, right medial orbitofrontal), parietal (right inferior parietal, left inferior
parietal, left posterior cingulate, right supramarginal, left supramarginal), and occipital
(left lingual) areas (see Table 5 and Figure 2).

Table 5. Cortical thickness in subjects with PBD and HCs.

PBD (N = 23) HC (N = 23) F p-Value

Cortical areas

Frontal
R Rostral anterior cingulate 3.10 ± 0.27 3.16 ± 0.35 8.69 <0.001
L Rostral anterior cingulate 2.99 ± 0.29 3.09 ± 0.24 2.59 0.051
R Caudal anterior cingulate 2.62 ± 0.22 2.78 ± 0.24 12.63 <0.001
L Caudal anterior cingulate 2.78 ± 0.33 2.77 ± 0.11 3.11 0.025
R Isthmus cingulate 2.55 ± 0.16 2.64 ± 0.18 2.69 0.044
L Isthmus cingulate 2.53 ± 0.16 2.61 ± 0.21 2.76 0.040
R Caudal middle frontal 2.61 ± 0.14 2.66 ± 0.12 2.22 0.126
L Caudal middle frontal 2.62 ± 0.13 2.64 ± 0.09 1.70 0.168
R Lateral orbitofrontal 2.78 ± 0.20 2.89 ± 0.17 8.77 <0.001
L Lateral orbitofrontal 2.85 ± 0.22 2.25 ± 0.12 4.02 0.008
R Medial orbitofrontal 2.61 ± 0.20 2.70 ± 0.23 7.29 <0.001
L Medial orbitofrontal 2.59 ± 0.26 2.60 ± 0.19 3.44 0.016
R Pars opercularis 2.76 ± 0.18 2.64 ± 0.17 2.82 0.037
L Pars opercularis 2.80 ± 0.17 2.83 ± 0.12 0.883 0.132
R Pars orbitalis 2.86 ± 0.24 2.96 ± 0.20 2.24 0.082
L Pars orbitalis 2.91 ± 0.25 2.98 ± 0.19 1.54 0.208
R Pars triangularis 2.65 ± 0.21 2.63 ± 0.18 1.87 0.134
L Pars triangularis 2.64 ± 0.17 2.69 ± 0.14 1.86 0.136
R Precentral 2.54 ± 0.18 2.66 ± 0.10 2.15 0.092
L Precentral 5.13 ± 0.30 5.36 ± 0.17 2.47 0.059
R Rostral middlefrontal 2.49 ± 0.18 2.48 ± 0.12 3.97 0.008
L Rostral middlefrontal 2.47 ± 0.17 2.46 ± 0.11 5.07 0.002
R Superior frontal 2.85 ± 0.20 2.93 ± 0.08 3.90 0.009
L Superior frontal 2.83 ± 0.18 2.88 ± 0.13 3.84 0.010
R Frontal pole 2.89 ± 0.32 2.90 ± 0.33 1.81 0.053
L Frontal pole 2.89 ± 0.32 2.81 ± 0.34 2.16 0.090
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Table 5. Cont.

PBD (N = 23) HC (N = 23) F p-Value

Temporal
R Bank STS 2.75 ± 0.24 2.87 ± 0.20 2.68 0.045
L Bank STS 2.77 ± 0.19 2.77 ± 0.11 2.11 0.097
R Entorhinal 3.45 ± 0.47 3.43 ± 0.41 0.73 0.577
L Entorhinal 3.36 ± 0.37 3.48 ± 0.33 1.94 0.122
R Fusiform 2.86 ± 0.20 2.92 ± 0.13 2.38 0.067
L Fusiform 2.91 ± 0.17 3.00 ± 0.13 3.97 0.008
R Superior temporal 2.99 ± 0.25 3.10 ± 0.20 2.79 0.039
L Superior temporal 2.93 ± 0.25 3.04 ± 0.12 2.01 0.111
R Middle temporal 3.08 ± 0.24 3.15 ± 0.12 1.73 0.161
L Middle temporal 2.99 ± 0.24 3.11 ± 0.16 2.14 0.094
R Inferior temporal 2.88 ± 0.20 2.88 ± 0.12 1.83 0.141
L Inferior temporal 2.88 ± 0.22 2.96 ± 0.14 1.68 0.199
R parahippocampal 2.90 ± 0.25 3.00 ± 0.21 2.19 0.087
L parahippocampal 2.99 ± 0.32 3.08 ± 0.29 1.88 0.132
R Temporal pole 3.71 ± 0.31 3.77 ± 0.33 0.69 0.604
L Temporal pole 3.64 ± 0.35 3.80 ± 0.28 0.82 0.518
R Transversal temporal 2.70 ± 0.30 2.84 ± 0.24 2.39 0.066
L Transversal temporal 2.70 ± 0.26 2.83 ± 0.23 5.87 0.001
R Insula 3.17 ± 0.21 3.22 ± 0.19 3.21 0.022
L Insula 3.21 ± 0.16 3.30 ± 0.21 2.70 0.044

Parietal
R Superior parietal 2.22 ± 0.14 2.29 ± 0.13 4.64 0.004
L Superior parietal 2.26 ± 0.16 2.31 ± 0.13 4.07 0.007
R Inferior parietal 2.58 ± 0.13 2.62 ± 0.15 12.05 <0.001
L Inferior parietal 2.56 ± 0.20 2.58 ± 0.16 6.27 <0.001
R Paracentral 2.50 ± 0.22 2.64 ± 0.17 1.98 0.116
L Paracentral 2.52 ± 0.20 2.63 ± 0.18 3.18 0.025
R Posterior cingulate 2.64 ± 0.19 2.71 ± 1.00 2.87 0.035
L Posterior cingulate 2.65 ± 0.21 2.74 ± 0.17 6.49 <0.001
R Postcentral 2.18 ± 0.17 2.21 ± 0.18 2.83 0.010
L Postcentral 5.13 ± 0.30 5.36 ± 0.17 2.35 0.070
R Precuneus 2.56 ± 0.16 2.61 ± 0.12 5.16 0.002
L Precuneus 2.56 ± 0.16 2.60 ± 0.14 11.33 0.001
R Supramarginal 2.70 ± 0.14 2.77 ± 0.14 11.01 <0.001
L Supramarginal 2.71 ± 0.15 2.82 ± 0.15 8.82 <0.001

Occipital
R Cuneus 2.01 ± 0.14 2.10 ± 0.17 4.09 0.007
L Cuneus 2.03 ± 0.19 2.03 ± 0.15 5.37 0.001
R lateral occipital 2.27 ± 0.13 2.32 ± 0.12 1.92 0.126
L lateral occipital 2.22 ± 0.15 2.25 ± 0.12 2.93 0.032
R lingual 2.21 ± 0.15 2.24 ± 0.16 5.38 0.001
L lingual 2.18 ± 0.17 2.21 ± 0.14 8.15 <0.001
R pericalcarine 1.75 ± 0.15 1.79 ± 0.09 1.71 0.166
L pericalcarine 1.80 ± 0.20 1.78 ± 0.13 1.25 0.305

Legend: significant results are in bold. HCs, healthy controls; L, left; PBD, pediatric bipolar disorder; R, right; SD,
standard deviation.

3.5. Deep Gray Matter Structures

T-tests revealed no differences between the groups.

3.6. Neuropsychology

T-tests revealed significant differences between the groups in performance on the
AGN and CGT tests. Specifically, regarding the AGN, youth with PBD committed more
commission errors for negative stimuli compared to HCs. Regarding CGT, youth with
PBD exhibited longer deliberation times and smaller risk adjustment scores than HCs (see
Table 6).
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Figure 2. Differences in cortical thickness between subjects with PBD and HCs. The significant
differences in cortical thickness are shown in red. Legend: HCs, healthy controls; IPC, inferior
parietal cortex; SMG: supramarginal gyrus; LG, lingual gyrus; lOFC, lateral orbitofrontal cortex;
mOFC, medial orbitofrontal cortex; pACC, posterior-anterior cingulate cortex; PBD, pediatric bipolar
disorder; PCC, posterior cingulate cortex; rACC, rostral anterior cingulate cortex.

Table 6. CANTAB tests in subjects with PBD and HCs.

PBD (N = 23) HC (N = 23) F p-Value

Test

Affective Go/No-go
RT positive stimuli (s) mean ± SD 542.58 ± 137.92 483.35 ± 129.15 0.84 0.440
RT negative stimuli (s) mean ± SD 525.71 ± 118.85 481.33 ± 505.99 0.80 0.457
CE positive stimuli (n) mean ± SD 12.00 ± 8.51 11.00 ± 8.72 5.33 0.010
CE negative stimuli (n) mean± SD 13.25 ± 10.62 11.37 ± 8.29 7.15 0.003

Cambridge gambling task

Delay aversion, mean ± SD 0.55 ± 0.29 0.59 ± 23 1.58 0.217
Deliberation time (ms), mean ± SD 384.13 ± 2112.22 252.51 ± 1115.99 12.34 <0.001
Overall proportion bet, mean ± SD 0.55 ± 0.17 0.53 ± 0.12 0.25 0.782
Quality of decision making, mean ± SD 0.90 ± 0.11 0.84 ± 0.16 1.51 0.234
Risk adjustment, mean ± SD 0.18 ± 1.02 0.51 ± 1.02 7.08 0.002
Risk taking, mean ± SD 0.58 ± 0.17 0.56 ± 0.14 0.14 0.870

Stockings of Cambridge

Problem solved in minimum moves (n), mean ± SD 5.65 ± 1.82 6.30 ± 152.03 6.51 0.004

Spatial Recognition Memory

% of correct trials, mean ± SD 65.00 ± 13.48 75.71 ± 12.68 6.48 0.008

Big/Little Circle

% of correct selection, mean ± SD 97.05 ± 3.30 96.74 ± 3.49 0.17 0.845

Match to Simple Visual Search

% of correct choice, mean ± SD 97.02 ± 3.82 96.13 ± 4.02 0.50 0.614

Legend: significant results are in bold. CE, commission error; HCs, healthy controls; L, left; PBD, pediatric bipolar
disorder; R, right; RT, reaction time; SD, standard deviation; s, seconds.
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3.7. Behavior

T-tests revealed significant differences between the PBD and HC groups in the CDRS-
R, YMRS, SCARED, AQ, and BPFS-C. Specifically, youth with PBD exhibited higher scores
on the CDRS-R and YMRS compared to HCs. Additionally, on the SCARED, they demon-
strated higher total scores and elevated scores on the Separation Anxiety Disorder and Panic
Disorder subscales. In the AQ, youth with PBD showed greater total scores and higher
scores on the Anger and Hostility subscales than HCs. Similarly, in the BPFS-C, youth with
PBD exhibited higher total scores and elevated scores on the negative relationship subscale
compared to HCs (see Table 7).

Table 7. Significance of CCA variate pairs in subjects with PBD.

CCA Canonical
Correlation

Squared Canonical
Correlation Eigenvalue Wilk’s Lambda F p-Value

Neuropsychology
Pair1 0.98 0.96 25.72 0.001 3.19 0.008
Psychopathology
Pair1 0.99 0.99 63.53 <0.001 3.53 0.003

Legend: significant results are in bold. CCA: canonical correlation analysis; PBD: pediatric bipolar disorder.

3.8. Relationship Among Neuroanatomy, Neurophysiology, Neuropsychology and Behavior

Variables differentiating participants from HCs were three neurocognitive variables,
seven psychopathological variables, and 12 neurobiological variables. The first CCA
analysis included neurobiological variables in the first set and neuropsychological variables
in the second set. The second CCA analysis included neurobiological variables as the first
set and psychopathological variables as the second set. Age, sex, and IQ were entered into
the model in the first set to evaluate the effects of such variables on psychopathological and
neuropsychological performance. CCA analyses revealed that only the correlation between
the first pair of variates for both models was significant (see Table 8). In the first CCA,
IQ, P300 amplitude for happy faces, cortical thickness of the right lateral orbitofrontal,
right rostral anterior cingulate, left inferior parietal, and left supramarginal thickness
were positively correlated to the latent canonical variable, while age showed a significant
negative correlation. Regarding neurocognitive measures, the number of commission
errors for negative emotions in the AGN and deliberation time in the CGT was positively
correlated with the latent canonical variate, whereas scores of risk adjustment in the CGT
were negatively correlated.

In the second CCA, cortical thickness of the right caudal anterior cingulate, right infe-
rior parietal, right supramarginal, left inferior parietal, left lingual, left posterior cingulate,
and left supramarginal negatively correlated with the latent variate, while age positively
correlated with it. Regarding psychopathological analyses, total scores of the CDRS-R
positively correlated with the latent variate. Conversely, hostility scores of the AQ, scores
of panic disorder and separation anxiety disorder subscales of the SCARED, and scores
of the negative relationship subscale of the BPFS-C negatively correlated with this variate
(See Figure 3).
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Table 8. Psychopathological scales in subjects with PBD and HCs.

PBD (N = 23) HC (N = 23) F p-Value

Test

Children’s Depression Rating Scale-Revised, mean ± SD 33.96 ± 13.75 17.39 ± 4.11 7.76 <0.001

Young Mania Rating Scale, mean ± SD 13.83 ± 10.16 2,70 ± 3.43 5.09 0.001

Family Environment Scale, mean ± SD 47.04 ± 3.90 44.09 ± 13.08 1.11 0.364

Screen for Child Anxiety Related Disorders
Panic disorder, mean ± SD 7.57 ± 5.14 2.09 ± 3.69 5.47 0.001
Generalized anxiety disorder, mean ± SD 8.04 ± 5.17 3.13 ± 4.24 4.05 0.004
Separation anxiety disorder, mean ± SD 6.35 ± 3.99 2.04 ± 2.48 11.00 <0.001
Social anxiety, mean ± SD 2.35 ± 2.33 0.70 ± 0.77 4.31 0.005
School anxiety, mean ± SD 4.70 ± 2.74 3.70 ± 2.65 1.14 0.353
Total, mean ± SD 29.09 ± 14.41 11.74 ± 11.18 7.35 <0.001

Aggression Questionnaire
Anger, mean ± SD 19.35 ± 6.30 12.39 ± 3.59 7.27 <0.001
Physical aggression, mean ± SD 20.00 ± 7.94 14.52 ± 5.11 2.54 0.055
Hostility, mean ± SD 20.30 ± 7.60 11.13 ± 5.55 6.23 0.001
Verbal aggression, mean ± SD 13.61 ± 4.71 10.22 ± 5.43 3.47 0.016
Total, mean ± SD 29.09 ± 14.41 11.74 ± 11.18 6.55 <0.001

Behavioral Inhibition Scale/Behavioral Avoidance Scale
Drive, mean ± SD 8.30 ± 2.54 11.09 ± 3.68 12.48 0.005
Fun seeking, mean ± SD 7.87 ± 1.25 8.65 ± 1.53 2.90 0.096
Reward responsiveness, mean ± SD 9.74 ± 2.75 10.09 ± 3.26 9.98 0.014
Behavioral inhibition, mean ± SD 15.22 ± 3.19 16.13 ± 2.34 1.78 0.189

Borderline Personality Features Scale-Child
Affective instability, mean ± SD 17.22 ± 3.19 16.13 ± 2.34 7.59 0.009
Identity problems, mean ± SD 15.13 ± 6.51 10.52 ± 6.51 7.74 0.008
Self-harm, mean ± SD 15.91 ± 5.76 11.65 ± 3.79 9.06 0.004
Negative relationship, mean ± SD 15.17 ± 4.62 10.57 ± 3.09 16.52 <0.001
Total, mean ± SD 68.08 ± 17.18 44.96 ± 9.81 13.37 0.001

Legend: significant results are in bold. HCs, healthy controls; PBD, pediatric bipolar disorder; SD, standard deviation.
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Figure 3. Relationship between predictors/dependent variables and canonical variables. (Left) loadings
of the first CCA (neurobiological variables as the first set and neuropsychological variables as the second
set); (right) loadings. Loadings are expressed in colors. Loadings > 0 are shown with worm colors,
and loadings < 0 are shown with cold colors. Legend: cACC, caudal anterior cingulate cortex; CCA,
canonical correlation analysis; HCs, healthy controls; IPC, inferior parietal cortex; LG, lingual gyrus;
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PCC, posterior cingulate cortex; rACC, rostral anterior cingulate cortex; SMG, supramarginal gyrus.
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4. Discussion
Youth with PBD showed higher P300 mean amplitude elicited by happy faces than

fearful faces and cortical thinning in the frontal, parietal, and occipital areas than HCs.
Additionally, they demonstrated a greater number of commission errors for negative stim-
uli on the AGN task, delayed deliberation times, and smaller risk adjustment scores on
the CGT compared to HCs. On clinical assessments, youth with PBD reported elevated
levels of manic, depressive, and anxiety symptoms; increased hostility and aggression; and
more negative interpersonal relationships compared to HCs. In the PBD group, cortical
thickening and P300 amplitude were positively correlated with higher commission errors
for negative stimuli in the AGN task, longer deliberation times, reduced risk adjustment in
the CGT, increased levels of panic and separation anxiety, and poorer interpersonal rela-
tionships. In contrast, these measures were negatively correlated with levels of depression.
A recent systematic review showed an increased frequency of anxiety disorders such as
separation anxiety, agoraphobia, generalized anxiety disorder, social phobia, and panic
disorder in youth with PBD compared to the general population [64]. Previous studies
also showed heightened anger, hostility, and interpersonal problems in youth with PBD,
regardless of the phase of the disorder [65–67]. Our findings are also in line with the
majority of studies comparing cortical thickness in youth with BD and HCs [20,21,68–70].
Nevertheless, the study of Zhang and Colleagues found alterations in the temporal cortex,
whereas, in our study, no differences in this area emerged. Such a difference might be due
to the age range of subjects recruited by Zhang and Colleagues, which is higher than ours.
Since alterations in the temporal cortex have been found in subjects with adult BD [71],
temporal thinning might add to the existing alterations at child/adolescent ages. Further
studies are needed to clarify the cortical differences between youth with PBD and HCs.

The anterior cingulate and orbitofrontal cortices are part of the affective network [72–74]
and play a role in the voluntary regulation of emotion [75]. These areas direct attentional
resources to motivationally relevant stimuli and provide information about the emotional
salience or significance of external stimuli in order to rapidly perceive reward contin-
gency [76]. The parieto-occipital regions are part of a broader network involved in the
initiation, maintenance, and control of goal-directed behavior, and are indirectly implicated
in impulse control [77,78]. This network supports functions such as attention, working
memory, response selection, response inhibition, and task switching, which are activated
over time in order to overcome distraction and respond quickly to unpredictable demands
that arise during performance [73]. Results from the AGN corroborate the evidence of
difficulties in processing negative stimuli, whereas alterations found in the P300 ampli-
tude are in contrast with what is expected. However, these findings are consistent with
evidence from other late ERPs, such as LPP, and neuropsychological findings of heightened
sensitivity to positively valenced stimuli [79–81]. Such positivity has been linked to the
propensity to develop manic states [82]. Mismatches between findings from the AGN
and those derived from the EEG might be related to the different stimuli used (words
vs. faces). Language and facial expressions engage distinct areas of processing in the
brain [83,84]. Furthermore, emotions used in the AGN, i.e., positive and negative words,
are not completely comparable with those used in the ERP paradigm, i.e., happy versus
fearful faces.

Results from the CGT regarding deliberation time and risk adjustment support the
evidence of executive dysfunction in BD, especially in planning, strategy formation, and
decision-making. Several studies have reported slower decision-making in individuals
with BD than in HCs, both during manic episodes [80] and in the euthymic phase [81].
The literature provides strong evidence of significant deficits in strategy development and
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problem solving [85], which are present during acute episodes but may also persist during
periods of remission [86].

Partially contrasting with expectations, CCAs showed a complex pattern of associa-
tions between neuroanatomical, neurophysiological, neurocognitive, and behavioral find-
ings. Cortical thickening in areas associated with emotional regulation, decision-making,
and control was linked to impairments in managing negative stimuli and prolonged
decision-making times, while negatively correlating with difficulties in risk assessment.
This finding aligns with evidence from functional MRI studies documenting heightened
activity in the frontal, parietal, and occipital areas in emotional control [87] and, specifically,
in response to negative stimuli [88]. Additionally, heightened negative stimuli correlated
with greater P300 amplitude for happy faces might be the result of an effort to overcome
prepotent impulse dyscontrol driven by negative emotions. Altered emotional processing
might lead to the recruitment of cognitive resources, thereby reducing the cognitive re-
sources dedicated to problem solving and prolonging deliberation times in the AGN. This
alteration may also affect the possibility of recruiting resources to reassess risk, as demon-
strated by the direct correlation between the aforementioned areas related to cognitive
and emotional control, allocation of attentional resources toward positive stimuli, and risk
adjustment in the CGT. Regarding the relationship found in the second CCA, the thickening
of areas belonging to the fronto-parietal networks described above negatively correlates
with levels of depression. Since the role of the affective network is to regulate mood, more
significant alterations in areas within this network might lead to an increased severity of
depressive states. Cortical thickening in these regions is also negatively correlated with
the severity of hostility, panic symptoms, separation anxiety, and negative relationships.
Nevertheless, hostile behaviors have been associated with manic states characterized by
upregulated energy levels [89]. Similarly, borderline personality disorder traits, which
include interpersonal difficulties [90], are characterized by high levels of energy, although
dysregulated [91,92]. Disruption of high-energy levels has also been proposed as a pos-
sible mechanism for anxiety [93]. Furthermore, the consumption of substances that are
supposed to increase body energy has been associated with the development of anxiety
symptoms [94]. Consequently, cortical thickening of areas involved in mood regulation
and levels of control might result in elevated energy levels. Such levels of energy may be
dysregulated in those with PBD, potentially leading to increased anxiety, hostility, and
behavioral dysregulation, which could contribute to interpersonal difficulties.

Limitations are as follows: The generalizability of the results is flawed by the small
sample size. In addition, the small sample size limited the inclusion of other possible con-
founding variables, such as comorbidity and psychopharmacological treatments. Therefore,
as previously mentioned, the present work should be corroborated by further research.
Second, the cross-sectional design of the study limited the possibility of hypothesizing
causal inferences among the dimensions measured. Therefore, longitudinal studies are
needed to further investigate this interplay. Third, although the present study investigated
a wide array of behavioral symptoms, certain variables should have been considered when
investigating behavior in PBD. Specifically, the psychotropic medications used by subjects
with PBD in this study were described as classes. Specific psychotropic medications have
been shown to modify brain structure and function [94]. However, we were unable to
study the effect of a single medication due to the small sample size. Therefore, additional
studies are needed to evaluate the effects of psychotropic medications in patients with PBD.
Other variables that should be investigated include the subjects’ affective temperament
and predominant polarity [95,96]. Affective temperament refers to the temporally stable
individual’s activity level, rhythms, moods, and related cognitions as well as their vari-
ability, whereas predominant polarity is the pattern of mood episodes that an individual
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experiences most frequently over a certain period [97]. Both concepts have been proven to
influence mood brain structure and function [96,98]. Therefore, greater attention should be
paid to these two concepts.

5. Conclusions
PBD is characterized by a wide array of behavioral, neuropsychological, neuroanatom-

ical, and neurophysiological alterations compared to HCs. A complex relationship links all
these dimensions. The foundations of this relationship include areas involved in mood, en-
ergy, and cognitive control; interpretations of positive and negative stimuli; and behavioral
disturbances related to mood and energy imbalance. These preliminary findings corrobo-
rate the relationship between the brain and behavior. Furthermore, the findings suggest
that research aimed at identifying neuromarkers of cognitive and behavioral alterations
in PBD should be encouraged. Nevertheless, because of the limitations described above,
this work should be considered preliminary. Additional studies with larger sample sizes
are needed to confirm the present findings and define a comprehensive framework that
incorporates brain-behavior relationships in PBD.
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